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Abstract. In this paper, we will consider the Borel complexity of Pride’s

quasi-order �p and Pride’s equivalence relation ≈p on the space G of finitely

generated groups. Our main results show that these relations are as complex

as they conceivably could be.

1. Introduction

Following Pride [16, 2], the group G1 is said to be larger than the group G2,

written G1 �p G2, if there exist subgroups H1 6 G1 and N2 6 H2 6 G2 such that

the following conditions are satisfied:

(i) [G1 : H1], [G2 : H2] <∞.

(ii) N2 is a finite normal subgroup of H2.

(iii) There exists a surjective homomorphism f : H1 → H2/N2.

Let ≈p be the associated equivalence relation defined by

G1 ≈p G2 ⇐⇒ G1 �p G2 and G2 �p G1;

and for each group G, let [G ]≈p
denote the corresponding ≈p-equivalence class.

Then �p induces a partial ordering of the collection of ≈p-equivalence classes,

which we will also denote by �p. Throughout this paper, we will only be concerned

with the restrictions of the relations �p and ≈p to the space G of finitely generated

groups. Here it is clear that [ 1 ]≈p
is the �p-least class and that [ F ]≈p

is the �p-

greatest class, where F is any finitely generated nonabelian free group. Similarly, if

G is a finitely generated infinite simple group, then G is atomic; i.e. [G ]≈p
is an

immediate successor of [ 1 ]≈p in the �p-partial order. (For more interesting exam-

ples of atomic groups, see Neumann [14] and Grigorchuk-Wilson [7].) In contrast,

it is unknown whether [ F ]≈p
has an immediate predecessor under the �p-partial

order. (For a discussion of this problem, see Edjvet-Pride [2].)
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In this paper, we will consider the Borel complexity of Pride’s quasi-order �p

and Pride’s equivalence relation ≈p on the space G of finitely generated groups. Our

main results show that these relations are as complex as they conceivably could be.

Before we can give exact statements of our main results, we first need to describe

how to represent the class of finitely generated groups by the elements of a suitable

Polish space G and then we need to recall some of the basic notions of the theory

of Borel equivalence relations.

We will begin by describing the the space G of (marked) finitely generated groups,

which was first introduced by Grigorchuk [5]. (For a fuller treatment, see Cham-

petier [1] or Grigorchuk [6].) A marked group (G, s̄) consists of a finitely generated

group with a distinguished sequence s̄ = (s1, · · · , sm) of generators. (Here the se-

quence s̄ is allowed to contain repetitions and we also allow the possibility that the

sequence contains the identity element.) Two marked groups (G, (s1, · · · , sm)) and

(H, (t1, · · · , tn)) are said to be isomorphic if m = n and the map si 7→ ti extends

to a group isomorphism between G and H.

Definition 1.1. For each m ≥ 2, let Gm be the set of isomorphism types of marked

groups (G, (s1, · · · , sm)) with m distinguished generators.

Let Fm be the free group on the generators {x1, · · · , xm}. Then for each marked

group (G, (s1, · · · , sm)), we can define an associated surjective homomorphism

θG,s̄ : Fm → G by θG,s̄(xi) = si. It is easily checked that two marked groups

(G, (s1, · · · , sm)) and (H, (t1, · · · , tm)) are isomorphic if and only if ker θG,s̄ =

ker θH,t̄. Thus we can naturally identify Gm with the set Nm of normal subgroups

of Fm. Note that Nm is a closed subset of the compact space P(Fm) of all subsets

of Fm and so Nm is also a compact space.1 Hence, via the above identification, we

can regard Gm as a compact space.

For each m ≥ 2, there is a natural embedding of Nm into Nm+1 defined by

N 7→ the normal closure of N ∪ {xm+1} in Fm+1;

1If C is any countably infinite set, then the Cantor space 2C = { f | f : C → {0, 1} } with

the natural product topology is a compact space. Hence, identifying each subset B ⊆ C with its

characteristic function χB ∈ 2C , the powerset P(C) is also a compact space.
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and this enables us to regard Nm as a clopen subset of Nm+1 and to form the locally

compact Polish space N =
⋃
Nm. Note that N can be identified with the space of

normal subgroups N of the free group F∞ on countably many generators such that

N contains all but finitely many elements of the basis X = {xi | i ∈ N+}. Similarly,

we can form the locally compact Polish space G =
⋃
Gm of finitely generated groups

via the corresponding natural embedding

(G, (s1, · · · , sm)) 7→ (G, (s1, · · · , sm, 1))

In the literature, the Polish spaces N and G are usually completely identified.

However, in this paper, it will be convenient to distinguish between these two

spaces.

Next we need to recall some of the basic notions of the theory of Borel equivalence

relations, including the notion of a Borel reduction which will provide us with a

measure of the relative complexity of the commonly studied equivalence relations

on the space G of finitely generated groups. If X is a Polish space, then a Borel

equivalence relation on X is an equivalence relation E ⊆ X ×X which is a Borel

subset of X ×X. For example, the isomorphism relation, the virtual isomorphism

relation and the quasi-isometry relation are all Borel equivalence relations on G.

(See Thomas [19].) If E, F are Borel equivalence relations on the Polish spaces X,

Y respectively, then we say that E is Borel reducible to F and write E ≤B F if

there exists a Borel map f : X → Y such that

x E y ⇐⇒ f(x) F f(y).

We say that E and F are Borel bireducible and write E ∼B F if both E ≤B F and

F ≤B E. Finally we write E <B F if both E ≤B F and F �B E. The notion of a

Borel reduction from E to F is intended to capture the idea of an explicit reduction

from the E-classification problem to the F -classification problem.

A Borel equivalence relation E on a Polish space X is said to be countable if

every E-class is countable; and a countable Borel equivalence relation E is said

to be universal if F ≤B E for every countable Borel equivalence relation F . For

example, by Thomas-Velickovic [20], the isomorphism relation ∼= on G is a universal

countable Borel equivalence relation.
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Remark 1.2. Two finitely generated groups G1, G2 ∈ G are bi-embeddable, written

G1 ≈em G2, if G1 embeds into G2 and G2 embeds into G1. It is easily checked

that the bi-embeddability relation ≈em is a Borel equivalence relation on G. In

fact, since each finitely generated group has only countably many finitely generated

subgroups, it follows that ≈em is a countable Borel equivalence relation and hence

there exists a Borel reduction ϕ : G → G from the bi-embeddability relation ≈em

to the isomorphism relation ∼=. However, I do not know how to explicitly define an

example of such a Borel reduction ϕ. (The proof that ∼= is a universal countable

Borel equivalence relation ultimately relies on the Lusin-Novikov Uniformization

Theorem [9, Theorem 18.10] and this does not provide an explicit example of such

a Borel reduction.)

Of course, it is clear that Pride’s equivalence relation ≈p is not a countable

Borel equivalence relation; and, in fact, the main result of this paper implies that

∼= <B ≈p. Hence if we wish to understand the precise Borel complexity of Pride’s

equivalence relation ≈p, then we must work within a strictly larger class of Borel

equivalence relations than the relatively well-understood class of countable Borel

equivalence relations.

Definition 1.3. A binary relation R on a Polish space X is said to be Kσ if R is

the union of countably many compact subsets of X ×X.

For example, the isomorphism relation, the virtual isomorphism relation and

the quasi-isometry relation are all Kσ equivalence relations on G. (See Thomas

[19].) By Kechris [8] and Louveau-Rosendal [10], there also exists a universal Kσ

equivalence relation. In fact, Rosendal [17] has recently shown that the relation of

Lipschitz equivalence between compact metric spaces is a universal Kσ equivalence

relation; and Thomas [19] has conjectured that the quasi-isometry relation on G is

also universal Kσ. In Section 5, we will prove the following result, which provides

the first purely group-theoretic example of a complete Kσ equivalence relation.

Theorem 1.4. Pride’s equivalence relation ≈p is a universal Kσ equivalence rela-

tion.
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Pride’s equivalence relation ≈p can be regarded as a combination of two more

basic equivalence relations; namely, the virtual isomorphism relation ≈V I and the

bi-surjectability equivalence relation ≈s, which are defined as follows.

Definition 1.5. Two finitely generated groups G1, G2 ∈ G are said to be virtually

isomorphic or commensurable up to finite kernels, written G1 ≈V I G2, if there exist

subgroups Ni 6 Hi 6 Gi for i = 1, 2 satisfying the following conditions:

(a) [G1 : H1], [G2 : H2] <∞.

(b) N1, N2 are finite normal subgroups of H1, H2 respectively.

(c) H1/N1
∼= H2/N2.

Definition 1.6. The surjectability relation �s is the quasi-order on the space G of

finitely generated groups defined by

• G1 �s G2 if there exists a surjective homomorphism f : G1 → G2;

and the associated bi-surjectability equivalence relation ≈s is defined by

• G1 ≈s G2 if both G1 �s G2 and G2 �s G1.

Combining Theorem 1.4 with the earlier results of Thomas [18, 19], it follows that

∼= <B ≈V I <B ≈p. In particular, the Borel complexity of ≈V I is strictly less than

that of Pride’s equivalence relation ≈p. However, the following result shows that

the bi-surjectability equivalence relation ≈s has precisely the same Borel complexity

as Pride’s equivalence relation ≈p.

Theorem 1.7. The bi-surjectability equivalence relation ≈s is a universal Kσ

equivalence relation.

This paper is organised as follows. In Section 2, we will discuss some basic

results concerning Kσ quasi-orders and equivalence relations; and in Section 3, we

will recall a fundamental result from small cancellation theory which will play a

key role in the proofs of the main results. In Section 4, we will prove Theorem 1.7;

and in Section 5, we will prove Theorem 1.4.

Our group-theoretic notation is standard. For example, if G is a group and

A ⊆ G, then 〈A〉 denotes the subgroup of G which is generated by A and CG(A)

denotes the centralizer of A in G.
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2. Kσ quasi-orders and equivalence relations

As we will soon see, Theorems 1.4 and 1.7 are immediate consequences of the

analogous results for the quasi-orders �p and �s. Consequently, it is next necessary

to say a few words about the basic theory of Kσ quasi-orders.

Recall that a binary relation R is said to be a quasi-order if R is symmetric and

transitive. The basic notions of the theory of countable Borel equivalence relations

have natural generalizations to the more general setting of Borel quasi-orders. For

example, if R, S are Borel quasi-orders on the Polish spaces X, Y respectively, then

R is said to be Borel reducible to S, again written R ≤B S, if there exists a Borel

map f : X → Y such that

x R y ⇐⇒ f(x) S f(y).

By Louveau-Rosendal [10], the class of Kσ quasi-orders also admits universal

elements. Furthermore, if R is a universal Kσ quasi-order on the Polish space X,

then the associated equivalence relation ER, defined by

x ER y ⇐⇒ x R y and y R x,

is a universal Kσ equivalence relation. To see this, suppose that E is a Kσ equiv-

alence relation on the Polish space Z. Then E is also a Kσ quasi-order and hence

there exists a Borel reduction f : Z → X from E to R. Clearly f is also a Borel

reduction from E to ER and hence E ≤B ER. Thus Theorems 1.4 and 1.7 are

immediate consequences of the following two results.

Theorem 2.1. Pride’s quasi-order �p is a universal Kσ quasi-order.

Theorem 2.2. The surjectability relation �s is a universal Kσ quasi-order.

The proofs of Theorems 2.1 and 2.2 make essential use of the following concrete

example of a universal Kσ quasi-order.

Definition 2.3. Let ⊆Z2,t
P(Z2) be the quasi-order on the Polish space P(Z2) defined

by

S ⊆Z2,t
P(Z2) T ⇐⇒ (∃ (m,n) ∈ Z2 ) (m,n) + S ⊆ T.

Theorem 2.4 (Louveau-Rosendal [10]). ⊆Z2,t
P(Z2) is a universal Kσ quasi-order.
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Remark 2.5. By considering the Borel map S 7→ (Z2 r S), it follows that the

reverse quasi-order ⊇Z2,t
P(Z2) is also universal Kσ. This easily implies that if � is any

universal Kσ quasi-order, then � is also universal Kσ.

For technical reasons, we will find it more convenient to work with the restriction

of the quasi-order ⊆Z2,t
P(Z2) to the following Borel subset of P(Z2).

Definition 2.6. Let P∞(Z2) be the Borel subset of P(Z2) consists of those S ⊆ Z2

such that for all finite subsets F ⊆ Z,

S ∩ { (k, `) ∈ Z2 | k /∈ F and ` /∈ F } 6= ∅.

In order to simplify notation, we will denote the restriction of the quasi-order ⊆Z2,t
P(Z2)

to P∞(Z2) by ⊆Z2
.

Proposition 2.7. The quasi-orders ⊆Z2,t
P(Z2) and ⊆Z2

are Borel bireducible.

Proof. Clearly the inclusion map P∞(Z2) ↪→ P(Z2) is a Borel reduction from ⊆Z2

to ⊆Z2,t
P(Z2). Conversely, it is easily checked that the map

S 7→ { (3k, 3`) ∈ Z2 | (k, `) ∈ S } ∪ ( Z2 r (3Z)2 )

is a Borel reduction from ⊆Z2,t
P(Z2) to ⊆Z2

. �

Hence, for example, in order to prove that �p is a universal Kσ quasi-order,

it will be enough to show that �p is a Kσ relation and that there exists a Borel

reduction from ⊆Z2
to �p.

3. The C ′(1/6) Cancellation Condition

In this section, we will recall some basic notions of small cancellation theory,

which will play a key role in the proof of Theorem 2.2. (For a fuller treatment, see

Lyndon-Schupp [11, Chapter V].)

Let Fn = 〈x1, · · · , xn 〉 be the free group on n generators. Then a nontrivial

reduced word w ∈ Fn is said to be cyclically reduced if the first and last letters of

w are not inverses of each other. In this paper, we will only consider presentations

(3.4) G = 〈x1, · · · , xn | R 〉



8 SIMON THOMAS

such that every relator r ∈ R is cyclically reduced. If R ⊆ Fn is a set of cyclically

reduced words, then the symmetrization R∗ ofR is defined to be the smallest subset

R ⊆ R∗ ⊆ Fn such that the following conditions are satisfied:

(a) if r ∈ R∗, then r−1 ∈ R∗; and

(b) whenever r = uv ∈ R∗ is the freely reduced product of the subwords u and

v, then the cyclic conjugate r∗ = vu ∈ R∗.

Of course, since vu = u−1uvu, it follows that the presentation

〈x1, · · · , xn | R∗ 〉

defines the same group G as the presentation (3.4). The presentation (3.4) is said

to be symmetrized if R = R∗.

Definition 3.5. The presentation (3.4) is said to satisfy the C ′(1/6) cancellation

condition if whenever r1 6= r2 ∈ R∗ are distinct elements with r1 = bc1 and r2 = bc2

as freely reduced words, then

|b| < 1/6 min{ |r1|, |r2| }.

Here |w| denotes the length of the word w ∈ Fn.

In the next section, we will make repeated use of the following fundamental

result, which is due to Greendlinger [3]. (A proof can also be found in Lyndon-

Schupp [11, Section V.4].)

Theorem 3.6. Suppose that G = 〈x1, · · · , xn | R 〉 is a symmetrized presentation

which satisfies the C ′(1/6) cancellation condition. Let w be a nontrivial cyclically

reduced word in x1, · · · , xn such that w = 1 in G. Then there exists a cyclically

reduced conjugate w∗ of w and a relator r ∈ R such that w∗ contains a subword s

of r with |s| > 1/2 |r|.

4. The surjectability relation

In this section, we will prove that the surjectability relation �s is a universal Kσ

quasi-order on the space G of finitely generated groups. As explained in Section 2,

this implies that the associated surjectability equivalence relation ≈s is a universal

Kσ equivalence relation. To prove that �s is a universal Kσ quasi-order, it is
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enough to show that �s is a Kσ relation and that there exists a Borel reduction

from ⊆Z2
to �s.

Lemma 4.1. �s is a Kσ quasi-order on the space G of finitely generated groups.

Instead of working directly with G, it will be more convenient to work with the

space N of normal subgroups N of the free group F∞ on countably many generators

such that N contains all but finitely many elements of the basis X = {xi | i ∈ N+}.

Let Autf (F∞) be the subgroup of Aut(F∞) generated by the elementary Nielsen

transformations

{αi | i ∈ N+ } ∪ {βij | i 6= j ∈ N+ },

where αi is the automorphism sending xi to x−1
i and leaving X r {xi} fixed; and

βij is the automorphism sending xi to xixj and leaving X r {xi} fixed. Then the

natural action of the countable group Autf (F∞) on F∞ induces a corresponding

action as a group of homeomorphisms on the space N . Furthermore, if N , M ∈ N ,

then F∞/N ∼= F∞/M if and only if there exists ϕ ∈ Autf (F∞) such that ϕ[N ] = M .

(For example, see Champetier [1].)

It is easily checked that the inclusion relation ⊆ is a Kσ relation on N . Hence

Lemma 4.1 is an immediate consequence of the following result.

Lemma 4.2. If N , M ∈ N , then the following conditions are equivalent.

(i) F∞/N �s F∞/M .

(ii) There exists ϕ ∈ Autf (F∞) such that ϕ[N ] ⊆M .

Proof. It is clear that (ii) implies (i). Suppose that F∞/N �s F∞/M . Then there

exists a surjective homomorphism f : F∞ → F∞/M such that N 6 L = ker f .

Since L ∈ N and F∞/L ∼= F∞/M , there exists ϕ ∈ Autf (F∞) such that ϕ[L] = M .

Of course, this means that ϕ[N ] ⊆M . �

In the remainder of this section, we will define a Borel reduction S 7→ KS from

⊆Z2
to �s. The construction of the following auxiliary group GS makes essential

use of the ideas of Champetier [1, Section 4].

Definition 4.3. Let F4 be the free group on { a, b, c, d } and let ϕ, ψ ∈ Aut(F4) be

the automorphisms defined by

• ϕ(a) = ab and ϕ(x) = x for all x ∈ { b, c, d };
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• ψ(c) = cd and ψ(x) = x for all x ∈ { a, b, d }.

Then for each S ∈ P∞(Z2), we define

GS = 〈 a, b, c, d | RS 〉,

where RS = { (ϕk(a)ψ`(c) b d )17 | (k, `) ∈ S }.

For each S ∈ P∞(Z2), let NS ∈ N4 be the normal closure of RS in F4. Thus

GS = F4/NS . Consider the induced action of the subgroup

〈ϕ,ψ 〉 = {ϕmψn | (m,n) ∈ Z2 } 6 Aut(F4)

on N4. Suppose that S, T ∈ P∞(Z2) and that S ⊆Z2
T . Choose (m,n) ∈ Z2 such

that (m,n) + S ⊆ T . Let S′ = (m,n) + S and let τ = ϕmψn ∈ Aut(F4). Then for

each (k, `) ∈ S,

(ϕk(a)ψ`(c) b d )17 τ7→ (ϕm+k(a)ψn+`(c) b d )17

and so τ [RS ] = RS′ . Thus τ [NS ] ⊆ NT and so GS �s GT . In summary, for all S,

T ∈ P∞(Z2), we have that

S ⊆Z2
T =⇒ GS �s GT .

It is conceivable that the map S 7→ GS is already a Borel reduction from ⊆Z2
to �s.

However, when we we attempted to prove this, we found that our arguments were

becoming unpleasantly complicated. So in order to keep the proofs as straightfor-

ward as possible, we decided to extend each group GS to the slightly larger group

KS as follows.

Definition 4.4. For each S ∈ P∞(Z2), let HS be the free product with amalga-

mation

HS = GS ∗A (A× V ),

where A = 〈 a, b 〉 and V is an elementary abelian group of order 25; and let KS be

the free product with amalgamation

KS = HS ∗D (D ×W ),

where D = 〈 c, d 〉 ∗ V and W is an elementary abelian group of order 310.
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Remark 4.5. For later use, note that since GS is a 4-generator group, it follows

that there does not exist a surjective homomorphism from GS onto V ; and hence

if S, T ∈ P∞(Z2), then there does not exist a surjective homomorphism from

GS onto HT . Similarly, if S, T ∈ P∞(Z2), then there does not exist a surjective

homomorphism from HS onto KT .

The remainder of this section is devoted to the proof of the following result.

Theorem 4.6. The map S 7→ KS is a Borel reduction from ⊆Z2
to �s.

We will initially focus our attention on the group GS . We have already noted

that if S ⊆Z2
T , then GS �s GT . In fact, our argument proves the following

slightly stronger result.

Lemma 4.7. If S ⊆Z2
T , then there exists a surjective homomorphism

θ : GS → GT

with the property that θ[〈 a, b 〉] 6 〈 a, b 〉 and θ[〈 c, d 〉] 6 〈 c, d 〉.

�

Most of our effort will be devoted to proving that the converse also holds.

Theorem 4.8. If S, T ∈ P∞(Z2), then the following conditions are equivalent.

(i) S ⊆Z2
T .

(ii) There exists a surjective homomorphism θ : GS → GT with the property

that θ[〈 a, b 〉] 6 〈 a, b 〉 and θ[〈 c, d 〉] 6 〈 c, d 〉.

The following easy observation will play a key role in the proof of Theorem 4.8.

Lemma 4.9. For each S ∈ P∞(Z2), the presentation

GS = 〈 a, b, c, d | RS 〉

satisfies the C ′(1/6) cancellation condition.

�

In particular, the symmetrized presentation GS = 〈 a, b, c, d | R∗
S 〉 satisfies the

conclusion of Theorem 3.6.
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Lemma 4.10. For each S ∈ P∞(Z2), the subgroups 〈 a, b 〉 and 〈 c, d 〉 of GS are

freely generated by { a, b }, { c, d } respectively.

Proof. For example, to see that 〈 a, b 〉 is freely generated by { a, b }, suppose that

w ∈ 〈 a, b 〉 is a nontrivial cyclically reduced word. If s is a subword of some

symmetrized relator r ∈ R∗
S with |s| > 1/2 |r|, then s must contain either d or

d−1. In particular, s is not a subword of a cyclically reduced conjugate of w, and

it follows that w 6= 1. �

Lemma 4.11. Suppose that S, T ∈ P∞(Z2) and that θ : GS → GT is a surjective

homomorphism such that θ[〈 a, b 〉] 6 〈 a, b 〉 and θ[〈 c, d 〉] 6 〈 c, d 〉. Then it follows

that θ[〈 a, b 〉] = 〈 a, b 〉 and θ[〈 c, d 〉] = 〈 c, d 〉.

Proof. Suppose that z ∈ 〈 a, b 〉 r θ[〈 a, b 〉]. Choose an element z′ ∈ GS such that

θ(z′) = z and express

z′ = x1 y1 · · ·xn yn xn+1,

where each xi ∈ 〈 a, b 〉 and each yj ∈ 〈 c, d 〉. Furthermore, suppose that z′ has been

chosen so that n is minimalized. Consider the identity

w = θ(x1) θ(y1) · · · θ(xn) θ(yn) θ(xn+1) z−1 = 1.

By the minimality of n, we have that:

(i) θ(xi) 6= 1 for 1 < i ≤ n; and

(ii) θ(yj) 6= 1 for 1 ≤ j ≤ n.

Since z /∈ θ[〈 a, b 〉], we also have that:

(iii) θ(xn+1) z−1 θ(x1) 6= 1.

Hence, except possibly for some cancellation within θ(xn+1) z−1 θ(x1), the word w

is cyclically reduced. Applying Theorem 3.6, it follows easily that there exists an

integer i and a pair (k, `) ∈ T such that one of the following two possibilites occurs:

(a) θ(xi) θ(yi) θ(xi+1) θ(yi+1) = ϕk(a)ψ`(c) b d ; or

(b) θ(yi) θ(xi+1) θ(yi+1) θ(xi+2) = d−1 b−1 ψ`(c−1)ϕk(a−1) .

If (a) holds, then θ(xi) = ϕk(a) and θ(xi+1) = b. Clearly ϕk induces an auto-

morphism of 〈 a, b 〉 and so {ϕk(a), b } = {ϕk(a), ϕk(b) } generates 〈 a, b 〉. But this

means that z ∈ θ[〈 a, b 〉], which is a contradiction. A similar argument deals with
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the case when (b) holds. This completes the proof that θ[〈 a, b 〉] = 〈 a, b 〉; and a

similar argument shows that θ[〈 c, d 〉] = 〈 c, d 〉. �

Proof of Theorem 4.8. We have already noted that (i) implies (ii). So suppose

that θ : GS → GT is a surjective homomorphism such that θ[〈 a, b 〉] 6 〈 a, b 〉

and θ[〈 c, d 〉] 6 〈 c, d 〉. Applying Lemma 4.11, it follows that θ[〈 a, b 〉] = 〈 a, b 〉

and θ[〈 c, d 〉] = 〈 c, d 〉. Recall that if F is a finitely generated free group, then

every surjective homomorphism f : F → F is an automorphism. (For example,

see Lyndon-Schupp [11, Proposition 3.5].) Hence, by Lemma 4.10, there exist

automorphisms π ∈ Aut(〈 a, b 〉) and τ ∈ Aut(〈 c, d 〉) such that θ � 〈 a, b 〉 = π and

θ � 〈 c, d 〉 = τ . If (k, `) ∈ S, then applying θ to the identity

(ϕk(a)ψ`(c) b d )17 = 1

in GS , we obtain that

(πϕk(a) τψ`(c)π(b) τ(d) )17 = 1

in GT . Note that πϕk(a), π(b) ∈ 〈 a, b 〉 and that τψ`(c), τ(d) ∈ 〈 c, d 〉; and so

(πϕk(a) τψ`(c)π(b) τ(d) )17 is cyclically reduced. Hence, applying Theorem 3.6, it

follows easily that there exists a pair (k′, `′) ∈ T such that one of the following four

possibilities occurs:

(i) πϕk(a) τψ`(c)π(b) τ(d) = ϕk′
(a)ψ`′

(c) b d;

(ii) πϕk(a) τψ`(c)π(b) τ(d) = b dϕk′
(a)ψ`′

(c);

(iii) πϕk(a) τψ`(c)π(b) τ(d) = b−1 ψ`′
(c−1)ϕk′

(a−1) d−1;

(iv) πϕk(a) τψ`(c)π(b) τ(d) = ϕk′
(a−1) d−1 b−1 ψ`′

(c−1).

Since S ∈ P∞(Z2), we can choose (k, `) ∈ S such that πϕk(a) 6= b, b−1 and

τψ`(c) 6= d, d−1; and it then follows that

πϕk(a) = ϕk′
(a) τψ`(c) = ψ`′

(c)

π(b) = b τ(d) = d

Hence π = ϕm and τ = ψn, where m = k′ − k and n = `′ − `. It follows that for

each r ∈ R(m,n)+S , we have that r = 1 in GT . Since the presentation

GZ2 = 〈 a, b, c, d | RZ2 〉
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satisfies the C ′(1/6) cancellation condition, it follows that R(m,n)+S ⊆ RT and

hence (m,n) + S ⊆ T . This completes the proof of Theorem 4.8. �

We are now ready to prove that the map S 7→ KS is a Borel reduction from ⊆Z2

to �s. We will begin by proving the easier implication.

Proposition 4.12. If S ⊆Z2
T , then KS �s KT .

Proof. Suppose that S ⊆Z2
T . Then, combining Theorem 4.8 and Lemma 4.11,

it follows that there exists a surjective homomorphism θ : GS → GT such that

θ[〈 a, b 〉] = 〈 a, b 〉 and θ[〈 c, d 〉] = 〈 c, d 〉. Clearly θ extends canonically to a surjec-

tive homomorphism θ′ : HS → HT such that θ′[V ] = V ; and θ′ extends canonically

to a surjective homomorphism θ′′ : KS → KT such that θ′′[W ] = W . �

The proof of the converse implication makes use of the following two lemmas.

Lemma 4.13. If 1 6= w ∈W , then CKS
(w) = D ×W .

Proof. Suppose that z ∈ CKS
(w) rD. Then z can be written as

z = dy1 · · · yr,

where d ∈ D, r ≥ 1, each yi /∈ D and successive pairs yi, yi+1 lie in different factors

HS or D×W of the free product with amalgamation KS = HS ∗D (D×W ). Note

that

dy1 · · · yrwy
−1
r · · · y−1

1 d−1

is equal to w. This implies that yr ∈ D ×W and hence yrwy
−1
r ∈ D ×W . Since

yrwy
−1
r has order 3, it follows that yrwy

−1
r /∈ D and this implies that r = 1. Thus

z = dy1 ∈ D ×W . �

A similar argument yields the following result.

Lemma 4.14. If 1 6= v ∈ V , then CHS
(v) = A× V .

�

Proof of Theorem 4.6. It only remains to prove that if KS �s KT , then S ⊆Z2
T .

Suppose that f : KS → KT is a surjective homomorphism. Then Remark 4.5

implies that f [W ] 6= 1. Fix some element w ∈W with f(w) 6= 1. Then f(w) ∈ KT
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has order 3. Applying the Torsion Theorem [4] for C ′(1/6) presentations, it follows

that GT does not contain any elements of order 3; and by Corollary 4.4.5 [12], the

same is also true of HT . Applying Corollary 4.4.5 [12] once more, it follows that

the element f(w) lies in a conjugate of D ×W . Hence, after adjusting f by an

inner automorphism of KT , we can suppose that f(w) ∈ W . Using Lemma 4.13,

it follows easily that f [D ×W ] 6 D ×W and this implies that f [W ] 6 W . Let

π : KT → HT be the canonical surjection such that π[W ] = 1. Then the map

KS
f−→ KT

π−→ HT

induces a surjective homomorphism f̄ : HS → HT such that f̄ [D] 6 D. Once

again, Remark 4.5 implies that f̄ [V ] 6= 1. Fix some element v ∈ V such that

f̄(v) 6= 1. Then f̄(v) ∈ D = 〈 c, d 〉 ∗ V has order 2 and so f̄(v) is conjugate in D

to an element of V . Hence after conjugating by a suitable element of D, we can

suppose that f̄(v) ∈ V . (Of course, even after this adjustment to f̄ , we still have

that f̄ [D] 6 D.) Arguing as above, this implies that f̄ [A × V ] 6 A × V and that

f̄ [V ] 6 V . Let π̄ : HT → GT be the canonical surjection such that π̄[V ] = 1. Then

the map

HS
f̄−→ HT

π̄−→ GT

induces a surjective homomorphism θ : GS → GT such that θ[〈 a, b 〉] 6 〈 a, b 〉

and θ[〈 c, d 〉] 6 〈 c, d 〉. Hence, applying Theorem 4.8, we obtain that S ⊆Z2
T , as

required. This completes the proof of Theorem 4.6. �

Finally, the following result will play an important role in the next section.

Proposition 4.15. Suppose that 1 6= x ∈ KS and let N = 〈xKS 〉 be the corre-

sponding normal closure. Then CKS
(N) = 1.

Proof. Suppose that 1 6= y ∈ CKS
(N). Then it follows that yKS ⊆ CKS

(N)

and hence M = 〈 yKS 〉 satisfies [M,N ] = 1. It is easily checked that if L is

any nontrivial normal subgroup of KS , then L contains an element which is not

conjugate to an element of either of the factors HS or D×W . In particular, there

exist such elements u ∈ N and v ∈ M , which can be written as u = u1 · · ·un and

v = v1 · · · vm, where:

(1) n, m ≥ 2;
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(2) ui, vj /∈ D;

(3) the ui are alternately from different factors HS or D ×W ; and

(4) the vj are alternately from different factors HS or D ×W .

Furthermore, after conjugating by suitably chosen elements of HS or D ×W , we

can suppose that:

(5) u1, un ∈ HS and v1, vm ∈ D ×W .

But then both

uv = u1 · · ·unv1 · · · vm and vu = v1 · · · vmu1 · · ·un

are in reduced form and it follows that uv 6= vu, which is a contradiction. �

5. Pride’s Quasi-order

In this section, we will prove that Pride’s quasi-order �p is a universal Kσ quasi-

order on the space G of finitely generated groups. As explained in Section 2, this

implies that the associated equivalence relation ≈p is a universal Kσ equivalence

relation. To prove that �p is a universal Kσ quasi-order, it is enough to show that

�p is a Kσ relation and that there exists a Borel reduction from ⊆Z2
to �p.

Lemma 5.1. �p is a Kσ quasi-order on the space G of finitely generated groups.

Proof. First notice that if G, H ∈ G, then G �p H if and only if there exist groups

G′, H ′ ∈ G such that G′ ≈V I G, H ′ ≈V I H and G′ �s H
′. Applying Thomas

[19, 6.4] and Lemma 4.1, the virtual isomorphism relation ≈V I and the surjectivity

relation �s are both Kσ subsets of G2. It follows easily that each of the following

is a Kσ subset of G4:

• R1 = { (G,G′,H ′,H ) ∈ G4 | G ≈V I G
′ },

• R2 = { (G,G′,H ′,H ) ∈ G4 | G′ �s H
′ },

• R3 = { (G,G′,H ′,H ) ∈ G4 | H ′ ≈V I H };

and hence R =
⋂3

i=1Ri is a Kσ subset of G4. Letting π : G4 → G2 be the projection

defined by (G,G′,H ′,H ) 7→ (G,H ), we have that �p is equal to π[R] and it follows

that �p is a Kσ subset of G2. �

In the remainder of this section, adapting the ideas of Thomas [18, Section 2], we

will define a Borel reduction S 7→WS from ⊆Z2
to �p. Throughout this section, Γ
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will denote an infinite finitely generated simple group, which satisfies the following

two additional properties:

• Every proper subgroup of Γ is finite.

• Every automorphism of Γ is inner.

For the existence of such a group Γ, see Obraztsov [15].

Definition 5.2. For each S ∈ P∞(Z2), let

WS = KS wr Γ,

where KS is the finitely generated group given by Definition 4.4.

Theorem 5.3. The map S 7→WS is a Borel reduction from ⊆Z2
to �p.

Here KS wrΓ denotes the (restricted) wreath product of KS by Γ, which is defined

as follows. For each function b : Γ → KS , the support supp(b) is defined to be

supp(b) = {α ∈ Γ | b(α) 6= 1 };

and the base group BS of KS wr Γ is defined to be

BS = { b : Γ → KS | supp(b) is finite },

equipped with pointwise multiplication; i.e. if b, c ∈ BS , then

(bc)(α) = b(α) c(α)

for all α ∈ Γ. There is a natural action of Γ on BS defined by

bγ(α) = b(αγ−1);

and KS wr Γ is defined to be the corresponding semidirect product

KS wr Γ = { ( γ, b ) | γ ∈ Γ, b ∈ BS}

with multiplication defined by

( γ, b ) ( δ, c ) = ( γ δ, bδc ).

As usual, we identify Γ and BS with the corresponding subgroups of KS wr Γ and

we write γb instead of ( γ, b ).
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Notation 5.4. For each finite subset F ⊆ Γ, we define the corresponding subgroup

B
(F )
S of the base group BS by

B
(F )
S = { b ∈ BS | supp(b) ⊆ F }.

We will begin by proving the easier direction of Theorem 5.3.

Lemma 5.5. If S ⊆Z2
T , then WS �p WT .

Proof. By Proposition 4.12, if S ⊆Z2
T , then there exists a surjective homomor-

phism θ : KS → KT ; and it is clear that θ can be extended to a surjective homo-

morphism θ′ : WS →WT . �

The next two lemmas explain how to recognize the group KS within any group

LS such that LS ≈V I KS wr Γ.

Lemma 5.6. If S ∈ P∞(Z2) and LS 6 WS is a subgroup of finite index, then LS

has no nontrivial finite normal subgroups.

Proof. This is an immediate consequence of Thomas [18, Lemma 2.2]. �

Lemma 5.7. Suppose that S ∈ P∞(Z2) and that LS 6 WS is a subgroup of finite

index. Let F ⊆ Γ be a finite subset with |F | ≥ 2 and let γ ∈ F . Then for each

g ∈ KS, there exists an element b ∈ B(F )
S ∩ LS such that b(γ) = g. Hence

(B(F )
S ∩ LS )

(B(Fr{γ})
S ∩ LS )

∼= KS .

Proof. Applying Thomas [18, Lemma 2.2], since [WS : LS ] <∞, it follows that

[WS ,WS ] = [LS , LS ] 6 LS .

Furthermore, by Neumann [13, Theorem 4.1 and Corollary 4.5], we have that

[WS ,WS ] ∩BS = [Γ, BS ] = { b ∈ BS |
∏

γ∈supp(b)

b(γ) ∈ [KS ,KS ] }.

Let δ ∈ F r {γ}. Then for each g ∈ KS , we can define an element b ∈ B
(F )
S ∩ LS

with b(γ) = g by

b(α) =


g, if α = γ;

g−1, if α = δ;

1, otherwise.
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In particular, the homomorphism ψ : B(F )
S ∩ LS → KS , defined by ψ(b) = b(γ), is

surjective and clearly kerψ = B
(Fr{γ})
S ∩ LS . �

For the remainder of this section, suppose that S, T ∈ P∞(Z2) and that WS �p

WT . Then, applying Lemma 5.6, there exist subgroups LS 6 WS and LT 6 WT of

finite index such that LS �s LT . Let π : LS → LT be a surjective homomorphism.

Since Γ is an infinite simple group and [Γ : Γ∩LS ], [Γ : Γ∩LT ] <∞, it follows that

Γ 6 LS and Γ 6 LT . Hence LS = (BS ∩ LS) o Γ and LT = (BT ∩ LT ) o Γ; and,

of course, [BS : BS ∩ LS ], [BT : BT ∩ LT ] < ∞. Let ρ : LT → Γ be the canonical

surjective homomorphism and let ϕ = ρ ◦ π : LS → Γ.

Lemma 5.8. π[BS ∩ LS ] 6 BT ∩ LT .

Proof. Suppose not. Since BS ∩LS E LS and ϕ[LS ] = Γ, it follows that ϕ[BS ∩LS ]

is a nontrivial normal subgroup of Γ and hence ϕ[BS ∩LS ] = Γ. Choose an element

b ∈ BS ∩ LS such that ϕ(b) 6= 1 and let F = supp(b). Since B(F )
S ∩ LS E BS ∩ LS ,

it follows that ϕ[B(F )
S ∩ LS ] = Γ. Choose an element γ ∈ Γ such that F γ ∩ F = ∅.

Since

γ−1(B(F )
S ∩ LS) γ = B

(F γ)
S ∩ LS ,

it follows that

[B(F )
S ∩ LS , γ

−1(B(F )
S ∩ LS) γ ] = 1.

On the other hand, we also have that

ϕ[γ−1(B(F )
S ∩ LS) γ] = ϕ(γ)−1Γϕ(γ) = Γ

and hence [ Γ,Γ ] = 1, which is a contradiction. �

Lemma 5.9. ϕ[Γ] = Γ.

Proof. By Lemma 5.8, we have that BS ∩LS 6 kerϕ. Hence, since ϕ is surjective,

we must have that Γ 
 kerϕ and so Γ∩kerϕ = 1. Thus ϕ[Γ] is an infinite subgroup

of Γ and this implies that ϕ[Γ] = Γ. �

Since every automorphism of Γ is inner, after adjusting π by an inner automor-

phism of LS if necessary, we can suppose that ϕ(γ) = γ for all γ ∈ Γ.

Lemma 5.10. π[BS ∩ LS ] = BT ∩ LT .
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Proof. Let b ∈ BT ∩ LT . Then there exists an element c ∈ LS such that π(c) = b.

Express c = γd, where d ∈ BS ∩ LS and γ ∈ Γ. Then

1 = ρ(b) = ϕ(γd) = γ

and hence c ∈ BS ∩ LS . �

Lemma 5.11. π[B({γ})
S ∩ LS ] 6= 1 for any γ ∈ Γ.

Proof. Suppose that there exists γ ∈ Γ such that π[B({γ})
S ∩ LS ] = 1. If β ∈ Γ is

arbitrary and α = γ−1β, then

π[B({β})
S ∩ LS ] = π[α−1(B({γ})

S ∩ LS )α ] = π(α)−1π[B({γ})
S ∩ LS ]π(α) = 1.

Applying Lemma 5.10, since KT is infinite and finitely generated, there exists a

finite subset F ⊆ Γ such that π[B(F )
S ∩ LS ] is infinite. But notice that

[B({β})
S : B({β})

S ∩ LS ] <∞

for each β ∈ F and hence

[B(F )
S ∩ LS :

⊕
β∈F

(B({β})
S ∩ LS ) ] <∞.

But this implies that π[B(F )
S ∩ LS ] is finite, which is a contradiction. �

Lemma 5.12. There exists a fixed γ0 ∈ Γ such that

π[B(F )
S ∩ LS ] 6 B

(γ0F )
T ∩ LT

for each nonempty finite subset ∅ 6= F ⊆ Γ.

Proof. First we will consider the case when F = {1}. Suppose that b ∈ B({1})
S ∩LS

satisfies π(b) 6= 1 and let Fb = supp(π(b)). We claim that |Fb| = 1. Suppose not

and let α 6= β ∈ Fb. Let N = 〈 bBS∩LS 〉 6 B
({1})
S ∩ LS and let γ = β−1α. Then

γ−1N γ 6 γ−1(B({1})
S ∩ LS ) γ = B

({γ})
S ∩ LS

and so [N, γ−1Nγ ] = 1. On the other hand, by Lemma 5.10, we have that

π[N ] = 〈π(b)BT∩LT 〉 6 B
(Fb)
T ∩ LT .

Let M = { c(α) | c ∈ π[N ] }. Then Lemma 5.7 implies that M is the normal

closure in KT of the nonidentity element π(b)(α). Similarly, since α ∈ Fb∩Fbγ and
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π(γ) = fγ for some f ∈ BT ∩ LT , we see that M ′ = { d(α) | d ∈ π[γ−1N γ] } is

the normal closure in KT of the nonidentity element π(γ−1b γ)(α). However, since

[N, γ−1Nγ ] = 1, it follows that [M,M ′ ] = 1 and this contradicts Proposition

4.15. Thus | supp(π(b))| = 1 for every b ∈ B
({1})
S ∩ LS such that π(b) 6= 1. A

similar argument shows that if b, c ∈ B({1})
S ∩LS are such that π(b), π(c) 6= 1, then

supp(π(b)) = supp(π(c)). Let γ0 ∈ Γ denote the element such that

π[B({1})
S ∩ LS ] 6 B

({γ0})
T ∩ LT .

If γ ∈ Γ is arbitrary, then π(γ) = fγ for some f ∈ BT ∩ LT and so

π[B({γ})
S ∩ LS ] = π[ γ−1(B({1})

S ∩ LS ) γ ] 6 γ−1(B({γ0})
T ∩ LT ) γ = B

({γ0γ})
T ∩ LT .

Finally, suppose that b ∈ BS ∩ LS is any element such that π(b) 6= 1. Let

γ ∈ Γrsupp(b) and let c ∈ B({γ})
S ∩LS with π(c) 6= 1. Then, letting N = 〈 cBS∩LS 〉,

we have that [ b,N ] = 1 and hence [π(b), π[N ] ] = 1. Arguing as above, this implies

that γ0γ /∈ supp(π(b)). Hence supp(π(b)) ⊆ γ0 supp(b), as required. �

We are now ready to complete the proof of Theorem 5.3. Let σ : BT ∩LT → KT

be the homomorphism defined by σ(b) = b(γ0); and let ψ : BS ∩ LS → KT be the

homomorphism defined by ψ = σ ◦ π. Applying Lemmas 5.7 and 5.10, it follows

that ψ is surjective. Since KT is finitely generated, there exists a finite subset

F ⊆ Γ such that ψ[B(F )
S ∩ LS ] = KT . By Lemma 5.12, we have that 1 ∈ F

and that B(Fr{1})
S ∩ LS 6 kerψ. Hence, by Lemma 5.7, ψ induces a surjective

homomorphism θ : KS → KT ; and by Theorem 4.6, this implies that S ⊆Z2
T .

This completes the proof of Theorem 2.1.
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