ON THE CONCEPT OF “LARGENESS” IN GROUP THEORY

SIMON THOMAS

ABSTRACT. In this paper, we will consider the Borel complexity of Pride’s
quasi-order >, and Pride’s equivalence relation /2, on the space G of finitely
generated groups. Our main results show that these relations are as complex

as they conceivably could be.

1. INTRODUCTION

Following Pride [16, 2], the group G; is said to be larger than the group Ga,
written G =, Ga, if there exist subgroups H; < G and Np < Hy < G2 such that
the following conditions are satisfied:

(i) [G1: Hy), [G2 : Hs] < 0.
(ii) Ng is a finite normal subgroup of Hs.
(iii) There exists a surjective homomorphism f : H; — Hs/Na.

Let =2, be the associated equivalence relation defined by
Gy ~p Gy e Gy tp Gy and Go tp Gl;

and for each group G, let [G]~, denote the corresponding ~z,-equivalence class.
Then =, induces a partial ordering of the collection of ~s,-equivalence classes,
which we will also denote by <,,. Throughout this paper, we will only be concerned
with the restrictions of the relations <, and ~,, to the space G of finitely generated
groups. Here it is clear that [1]x, is the <)-least class and that [F]x, is the <p-
greatest class, where [ is any finitely generated nonabelian free group. Similarly, if
G is a finitely generated infinite simple group, then G is atomic; i.e. [G]x, is an
immediate successor of [1]x, in the <,-partial order. (For more interesting exam-
ples of atomic groups, see Neumann [14] and Grigorchuk-Wilson [7].) In contrast,
it is unknown whether [F]~  has an immediate predecessor under the =<,-partial

order. (For a discussion of this problem, see Edjvet-Pride [2].)
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In this paper, we will consider the Borel complexity of Pride’s quasi-order =,
and Pride’s equivalence relation =, on the space G of finitely generated groups. Our
main results show that these relations are as complex as they conceivably could be.
Before we can give exact statements of our main results, we first need to describe
how to represent the class of finitely generated groups by the elements of a suitable
Polish space G and then we need to recall some of the basic notions of the theory
of Borel equivalence relations.

We will begin by describing the the space G of (marked) finitely generated groups,
which was first introduced by Grigorchuk [5]. (For a fuller treatment, see Cham-
petier [1] or Grigorchuk [6].) A marked group (G,3) consists of a finitely generated
group with a distinguished sequence § = (s1,- -, $;,) of generators. (Here the se-
quence § is allowed to contain repetitions and we also allow the possibility that the
sequence contains the identity element.) Two marked groups (G, (s1,- -+, $m)) and
(H,(t1, - ,ty)) are said to be isomorphic if m = n and the map s; — t; extends

to a group isomorphism between G and H.

Definition 1.1. For each m > 2, let G,,, be the set of isomorphism types of marked

groups (G, (81, ,8m)) with m distinguished generators.
Let F,,, be the free group on the generators {xy,- - , 2, }. Then for each marked
group (G, (s1, - ,8m)), we can define an associated surjective homomorphism

0cs : Fm — G by 0gs(x;) = s;. It is easily checked that two marked groups
(G, (81, ,8m)) and (H,(t1, -+ ,tm)) are isomorphic if and only if kerfg; =
ker 0 ;. Thus we can naturally identify G, with the set N, of normal subgroups
of F,,. Note that N, is a closed subset of the compact space P(F,,) of all subsets
of F,, and so N,, is also a compact space.! Hence, via the above identification, we
can regard G,, as a compact space.

For each m > 2, there is a natural embedding of N, into N, 1 defined by

N +— the normal closure of N U{xp41} in Frpq;

11f C is any countably infinite set, then the Cantor space 2C = {f|f:C —{0,1}} with
the natural product topology is a compact space. Hence, identifying each subset B C C with its

characteristic function xp € 2€ | the powerset P(C) is also a compact space.



ON THE CONCEPT OF “LARGENESS” IN GROUP THEORY 3

and this enables us to regard N, as a clopen subset of NV,,,11 and to form the locally
compact Polish space N' = |JMN,,. Note that A/ can be identified with the space of
normal subgroups NV of the free group F,, on countably many generators such that
N contains all but finitely many elements of the basis X = {z; | ¢ € N*}. Similarly,
we can form the locally compact Polish space G = | J G, of finitely generated groups

via the corresponding natural embedding
(Ga (51a e 757n)) — (G7 (517 5 Smy 1))

In the literature, the Polish spaces N and G are usually completely identified.
However, in this paper, it will be convenient to distinguish between these two
spaces.

Next we need to recall some of the basic notions of the theory of Borel equivalence
relations, including the notion of a Borel reduction which will provide us with a
measure of the relative complexity of the commonly studied equivalence relations
on the space G of finitely generated groups. If X is a Polish space, then a Borel
equivalence relation on X is an equivalence relation £ C X x X which is a Borel
subset of X x X. For example, the isomorphism relation, the virtual isomorphism
relation and the quasi-isometry relation are all Borel equivalence relations on G.
(See Thomas [19].) If E, F' are Borel equivalence relations on the Polish spaces X,
Y respectively, then we say that E is Borel reducible to F' and write £ <p F' if
there exists a Borel map f: X — Y such that

tEy < [f(x) Ff(y).

We say that E and F' are Borel bireducible and write E ~p F if both £ <g F and
F <p E. Finally we write E <p F if both E <p F and F £p E. The notion of a
Borel reduction from FE to F is intended to capture the idea of an explicit reduction
from the E-classification problem to the F-classification problem.

A Borel equivalence relation E on a Polish space X is said to be countable if
every FE-class is countable; and a countable Borel equivalence relation E is said
to be universal if F <p E for every countable Borel equivalence relation F. For
example, by Thomas-Velickovic [20], the isomorphism relation 2 on G is a universal

countable Borel equivalence relation.
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Remark 1.2. Two finitely generated groups G1, G2 € G are bi-embeddable, written
G1 ~em Go, if G1 embeds into G2 and G embeds into Gy. It is easily checked
that the bi-embeddability relation =, is a Borel equivalence relation on G. In
fact, since each finitely generated group has only countably many finitely generated
subgroups, it follows that ~.,, is a countable Borel equivalence relation and hence
there exists a Borel reduction ¢ : G — G from the bi-embeddability relation =,
to the isomorphism relation 2. However, I do not know how to explicitly define an
example of such a Borel reduction . (The proof that & is a universal countable
Borel equivalence relation ultimately relies on the Lusin-Novikov Uniformization

Theorem [9, Theorem 18.10] and this does not provide an explicit example of such

a Borel reduction.)

Of course, it is clear that Pride’s equivalence relation =2, is not a countable
Borel equivalence relation; and, in fact, the main result of this paper implies that
= <p =p. Hence if we wish to understand the precise Borel complexity of Pride’s
equivalence relation ~,,, then we must work within a strictly larger class of Borel
equivalence relations than the relatively well-understood class of countable Borel

equivalence relations.

Definition 1.3. A binary relation R on a Polish space X is said to be K, if R is

the union of countably many compact subsets of X x X.

For example, the isomorphism relation, the virtual isomorphism relation and
the quasi-isometry relation are all K, equivalence relations on G. (See Thomas
[19].) By Kechris [8] and Louveau-Rosendal [10], there also exists a universal K,
equivalence relation. In fact, Rosendal [17] has recently shown that the relation of
Lipschitz equivalence between compact metric spaces is a universal K, equivalence
relation; and Thomas [19] has conjectured that the quasi-isometry relation on G is
also universal K,. In Section 5, we will prove the following result, which provides

the first purely group-theoretic example of a complete K, equivalence relation.

Theorem 1.4. Pride’s equivalence relation ~, is a universal K, equivalence rela-

tion.
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Pride’s equivalence relation ~,, can be regarded as a combination of two more
basic equivalence relations; namely, the virtual isomorphism relation ~y; and the

bi-surjectability equivalence relation ~, which are defined as follows.

Definition 1.5. Two finitely generated groups G1, G2 € G are said to be virtually
isomorphic or commensurable up to finite kernels, written G1 =y G, if there exist
subgroups N; < H; < G; for i = 1,2 satisfying the following conditions:

(a) [Gy1: Hy], [G2 : Ha] < 0.

(b) Ny, Ny are finite normal subgroups of Hy, Hs respectively.

(¢) Hi/N1 = Hy/Ns.

Definition 1.6. The surjectability relation =, is the quasi-order on the space G of

finitely generated groups defined by
e (G1 =4 G4 if there exists a surjective homomorphism f : G — Go;
and the associated bi-surjectability equivalence relation = is defined by

o G ~, Gy if both G1 =, Gy and Gy =, G1.

Combining Theorem 1.4 with the earlier results of Thomas [18, 19], it follows that
= <p =y <p ~p. In particular, the Borel complexity of ~y is strictly less than
that of Pride’s equivalence relation ~,. However, the following result shows that
the bi-surjectability equivalence relation ~ has precisely the same Borel complexity

as Pride’s equivalence relation ~,.

Theorem 1.7. The bi-surjectability equivalence relation ~s is a universal K,

equivalence relation.

This paper is organised as follows. In Section 2, we will discuss some basic
results concerning K, quasi-orders and equivalence relations; and in Section 3, we
will recall a fundamental result from small cancellation theory which will play a
key role in the proofs of the main results. In Section 4, we will prove Theorem 1.7;
and in Section 5, we will prove Theorem 1.4.

Our group-theoretic notation is standard. For example, if G is a group and
A C @G, then (A) denotes the subgroup of G which is generated by A and Cg(A)

denotes the centralizer of A in G.
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2. K, QUASI-ORDERS AND EQUIVALENCE RELATIONS

As we will soon see, Theorems 1.4 and 1.7 are immediate consequences of the
analogous results for the quasi-orders =, and >=,. Consequently, it is next necessary
to say a few words about the basic theory of K, quasi-orders.

Recall that a binary relation R is said to be a quasi-order if R is symmetric and
transitive. The basic notions of the theory of countable Borel equivalence relations
have natural generalizations to the more general setting of Borel quasi-orders. For
example, if R, S are Borel quasi-orders on the Polish spaces X, Y respectively, then
R is said to be Borel reducible to S, again written R <p S, if there exists a Borel

map f: X — Y such that
tRy <= [f(x)S[f(y)

By Louveau-Rosendal [10], the class of K, quasi-orders also admits universal
elements. Furthermore, if R is a universal K, quasi-order on the Polish space X,

then the associated equivalence relation Er, defined by
rFEry <= zRyandyRux,

is a universal K, equivalence relation. To see this, suppose that F is a K, equiv-
alence relation on the Polish space Z. Then F is also a K, quasi-order and hence
there exists a Borel reduction f : Z — X from E to R. Clearly f is also a Borel
reduction from E to Er and hence E <p Epr. Thus Theorems 1.4 and 1.7 are

immediate consequences of the following two results.
Theorem 2.1. Pride’s quasi-order =, is a universal K, quasi-order.
Theorem 2.2. The surjectability relation > is a universal K, quasi-order.

The proofs of Theorems 2.1 and 2.2 make essential use of the following concrete

example of a universal K, quasi-order.

Definition 2.3. Let gff(’ztz) be the quasi-order on the Polish space P(Z?) defined
by

S oty T = (3(m,n) €Z?) (mn) +SCT.

Theorem 2.4 (Louveau-Rosendal [10]). Q?j(’ztz) is a universal K, quasi-order.
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Remark 2.5. By considering the Borel map S — (Z2 < 9), it follows that the
reverse quasi-order 27232(’%2) is also universal K. This easily implies that if < is any

universal K, quasi-order, then > is also universal K, .

For technical reasons, we will find it more convenient to work with the restriction

of the quasi-order Q?j{ztz) to the following Borel subset of P(Z?).

Definition 2.6. Let P>°(Z?) be the Borel subset of P(Z?) consists of those S C 7?2
such that for all finite subsets F' C Z,

SN{(k,t)eZ?|k¢ Fand (¢ F} #0.
In order to simplify notation, we will denote the restriction of the quasi-order §7Z32(’£2)
to P> (Z2) by CZ°.

Proposition 2.7. The quasi-orders §7Z:(’Zt2) and §Z2 are Borel bireducible.

Proof. Clearly the inclusion map P> (Z2) < P(Z2) is a Borel reduction from CZ°

to §7Z,2(’th). Conversely, it is easily checked that the map
S — {(3k,30) € Z* | (k,0) € S} U (Z*\ (3Z2)*)
. . 72t 72
is a Borel reduction from gp(Zz) to C*. O

Hence, for example, in order to prove that >, is a universal K, quasi-order,
it will be enough to show that =, is a K, relation and that there exists a Borel

reduction from gZz to =p.

3. THE C'(1/6) CANCELLATION CONDITION

In this section, we will recall some basic notions of small cancellation theory,
which will play a key role in the proof of Theorem 2.2. (For a fuller treatment, see
Lyndon-Schupp [11, Chapter V].)

Let F,, = (x1, -+ ,z,) be the free group on n generators. Then a nontrivial
reduced word w € FF,, is said to be cyclically reduced if the first and last letters of

w are not inverses of each other. In this paper, we will only consider presentations

(3.4) G= (w1, -,z |R)



8 SIMON THOMAS

such that every relator r € R is cyclically reduced. If R C F,, is a set of cyclically
reduced words, then the symmetrization R* of R is defined to be the smallest subset
R CR* CF, such that the following conditions are satisfied:

(a) if r € R*, then r~! € R*; and

(b) whenever r = uv € R* is the freely reduced product of the subwords u and

v, then the cyclic conjugate r* = vu € R*.

1

Of course, since vu = u~ uwvu, it follows that the presentation

<J?1,"',37n |R*>

defines the same group G as the presentation (3.4). The presentation (3.4) is said
to be symmetrized if R = R*.

Definition 3.5. The presentation (3.4) is said to satisfy the C’(1/6) cancellation
condition if whenever ry # ro € R* are distinct elements with ry = bcy and 79 = beg

as freely reduced words, then
[b] < 1/6 min{ |r1], |ro] }.
Here |w| denotes the length of the word w € F,,.

In the next section, we will make repeated use of the following fundamental
result, which is due to Greendlinger [3]. (A proof can also be found in Lyndon-

Schupp [11, Section V.4].)

Theorem 3.6. Suppose that G = (x1,-+- ,x, | R) is a symmetrized presentation
which satisfies the C'(1/6) cancellation condition. Let w be a nontrivial cyclically
reduced word in x1,--- ,x, such that w = 1 in G. Then there exists a cyclically
reduced conjugate w* of w and a relator r € R such that w* contains a subword s

of r with |s| > 1/2|r|.

4. THE SURJECTABILITY RELATION

In this section, we will prove that the surjectability relation > is a universal K,
quasi-order on the space G of finitely generated groups. As explained in Section 2,
this implies that the associated surjectability equivalence relation ~; is a universal

K, equivalence relation. To prove that =g is a universal K, quasi-order, it is
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enough to show that =, is a K, relation and that there exists a Borel reduction

from §Z2 to »,.
Lemma 4.1. =, is a K, quasi-order on the space G of finitely generated groups.

Instead of working directly with G, it will be more convenient to work with the
space N of normal subgroups N of the free group F, on countably many generators
such that N contains all but finitely many elements of the basis X = {z; | i € N*}.
Let Aut¢(F) be the subgroup of Aut(F.,) generated by the elementary Nielsen
transformations

{ailieN YU {8 |i#jeNT},

where o; is the automorphism sending x; to x; ! and leaving X ~ {z;} fixed; and
Bij is the automorphism sending z; to z;z; and leaving X ~ {z;} fixed. Then the
natural action of the countable group Auts(Fs) on Fo induces a corresponding
action as a group of homeomorphisms on the space A/. Furthermore, if N, M € N,
then Foo /N = F /M if and only if there exists ¢ € Auts(Fy) such that ¢[N] = M.
(For example, see Champetier [1].)

It is easily checked that the inclusion relation C is a K, relation on N. Hence

Lemma 4.1 is an immediate consequence of the following result.

Lemma 4.2. If N, M € N, then the following conditions are equivalent.
(i) Foo/N =, Fou/M.
(ii) There exists ¢ € Auty(Foo) such that o[N] C M.

Proof. Tt is clear that (ii) implies (i). Suppose that Foo /N =, Foo/M. Then there
exists a surjective homomorphism f : Foo — Fo/M such that N < L = ker f.
Since L € N and Foo /L = Fo, /M, there exists ¢ € Auts(Fs) such that ¢[L] = M.
Of course, this means that ¢[N] C M. O

In the remainder of this section, we will define a Borel reduction S — Kg from
CZ to >s. The construction of the following auxiliary group Gg makes essential

use of the ideas of Champetier [1, Section 4].

Definition 4.3. Let Fy be the free group on { a,b,c¢,d } and let ¢, ) € Aut(F4) be
the automorphisms defined by

e p(a) =aband p(x) = for all x € {b,c,d };
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e Y(c) =cd and Y(z) =z for all x € {a,b,d }.
Then for each S € P> (Z?), we define
Gs = {(a,b,c,d| Rs),
where Rs = { (¢*(a) ¥4(c) bd)17 | (k,0) € S ).

For each S € P>(Z?), let Ng € N, be the normal closure of Rg in Fy. Thus
Gs = F4/Ng. Consider the induced action of the subgroup

(o 00) = {@™y" | (m,n) € Z* } < Aut(Fy)

on Ny. Suppose that S, T € P>(Z?2) and that S C%° T. Choose (m,n) € Z? such
that (m,n) +S CT. Let 8" = (m,n) + 5 and let 7 = ¢"¢"™ € Aut(F4). Then for
each (k,0) € S,

(@) ¢ () bd)'T = (" (a) " () bd)'T

and so 7[Rs] = Rg/. Thus 7[Ng] C Nr and so Gg >s Gr. In summary, for all S,
T € P>°(Z?), we have that

SCPT — Qg . Gr.

It is conceivable that the map S — Gy is already a Borel reduction from QZQ to .
However, when we we attempted to prove this, we found that our arguments were
becoming unpleasantly complicated. So in order to keep the proofs as straightfor-
ward as possible, we decided to extend each group G to the slightly larger group

Kg as follows.

Definition 4.4. For each S € P>(Z?), let Hg be the free product with amalga-

mation
HS ZGS * A (AX V),

where A = (a,b) and V is an elementary abelian group of order 2°; and let Kg be

the free product with amalgamation
KS = HS *pD (D X W),

where D = (¢,d) * V and W is an elementary abelian group of order 31°.
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Remark 4.5. For later use, note that since Gg is a 4-generator group, it follows
that there does not exist a surjective homomorphism from Gg onto V; and hence
if S, T € P>(Z?), then there does not exist a surjective homomorphism from
Gs onto Hp. Similarly, if S, T € P>°(Z?), then there does not exist a surjective

homomorphism from Hg onto K.
The remainder of this section is devoted to the proof of the following result.
Theorem 4.6. The map S — Kg is a Borel reduction from QZZ to =.

We will initially focus our attention on the group Gg. We have already noted
that if S §Z2 T, then Gg =5 Grpr. In fact, our argument proves the following

slightly stronger result.

Lemma 4.7. If S §Z2 T, then there exists a surjective homomorphism
0 : GS — GT

with the property that 0[{a,b)] < (a,b) and 0[(c,d)] < (¢, d).

Most of our effort will be devoted to proving that the converse also holds.

Theorem 4.8. If S, T € P>(Z?), then the following conditions are equivalent.
(i) § CZ T.
(ii) There exists a surjective homomorphism 6 : Gg — Grp with the property

that 0[(a,b)] < (a,b) and 0[{c,d)] < {c,d).
The following easy observation will play a key role in the proof of Theorem 4.8.
Lemma 4.9. For each S € P>(Z?), the presentation
Gs = (a,b,c,d| Rg)
satisfies the C'(1/6) cancellation condition.

O

In particular, the symmetrized presentation Gg = (a,b,c,d | R%) satisfies the

conclusion of Theorem 3.6.
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Lemma 4.10. For each S € P>(Z?), the subgroups {a,b) and {c,d) of Gs are
freely generated by {a,b}, {c,d} respectively.

Proof. For example, to see that {a,b) is freely generated by { a,b}, suppose that
w € (a,b) is a nontrivial cyclically reduced word. If s is a subword of some
symmetrized relator r € R with |s| > 1/2|r|, then s must contain either d or
d~'. In particular, s is not a subword of a cyclically reduced conjugate of w, and

it follows that w # 1. O

Lemma 4.11. Suppose that S, T € P>*(Z?) and that 0 : Gs — Gr is a surjective
homomorphism such that 0[(a,b)] < (a,b) and 0[{c,d)] < (¢,d). Then it follows
that 0[(a,b)] = (a,b) and 0[{c,d)] = (¢, d).

Proof. Suppose that z € (a,b) \ 0[(a,b)]. Choose an element z’ € Gg such that
0(z") = z and express

2 =miyr o T Yn Tt
where each z; € (a,b) and each y; € (¢, d). Furthermore, suppose that 2’ has been

chosen so that n is minimalized. Consider the identity
w = 0(x1) 0(y1) - 0(wn) O(yn) O(wps1) 2~ = 1.

By the minimality of n, we have that:

(i) O(x;) # 1 for 1 <i <mn; and

(i) O(y;) #1for 1 <j<n.
Since z ¢ 0[({a,b)], we also have that:

(iil) O(zn+1) 27" 0(z1) # 1.
Hence, except possibly for some cancellation within 8(z,41) 27! 6(z1), the word w
is cyclically reduced. Applying Theorem 3.6, it follows easily that there exists an
integer ¢ and a pair (k,£) € T such that one of the following two possibilites occurs:

(a) 0(x:) 0(yi) O(xi1) 0(yir1) = *(a) ¥*(c) bd; or

(b) 0(y:) 0(wis1) O(yiv1) Owina) = d b ™) " (a™).
If (a) holds, then 6(x;) = ¢*(a) and 6(x;11) = b. Clearly ¢* induces an auto-
morphism of (a,b) and so { ¢*(a),b} = {©*(a),p*(b) } generates (a,b). But this

means that z € 6[(a,b)], which is a contradiction. A similar argument deals with
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the case when (b) holds. This completes the proof that 8[{a,b)] = (a,b); and a
similar argument shows that 8[(c,d)] = (¢, d). O

Proof of Theorem 4.8. We have already noted that (i) implies (ii). So suppose
that 0 : Gg — Gr is a surjective homomorphism such that 6[{a,b)] < (a,b)
and 0[(c,d)] < (¢,d). Applying Lemma 4.11, it follows that 0[(a,b)] = (a,b)
and 0[(c,d)] = (c,d). Recall that if F is a finitely generated free group, then
every surjective homomorphism f : F — F is an automorphism. (For example,
see Lyndon-Schupp [11, Proposition 3.5].) Hence, by Lemma 4.10, there exist
automorphisms 7 € Aut({a,b)) and 7 € Aut({¢c,d)) such that 6 [ (a,b) = 7 and
01 (c,d)=r7.1If (k,£) € S, then applying 0 to the identity

(¢"(@)9(c)bd)'T =1

in Gg, we obtain that

(7" (a) 7o () m(b) 7(d) )" =1

in Gr. Note that ¥ (a), 7(b) € (a,b) and that 7¢%(c), 7(d) € (¢,d); and so
(mk(a) Tp(c) m(b) 7(d) )17 is cyclically reduced. Hence, applying Theorem 3.6, it
follows easily that there exists a pair (k’,¢) € T such that one of the following four

possibilities occurs:

(i) 7 (@) Ty () w(b) 7(d) = ¢* (a) ¥ (c) s
(i) wp"(a) T () m(b) 7(d) = bd ¥ (@) ¥ (¢);
(iii) mp*(a) Tt () w(b) T(d) = b1 " () M (a7 ) d 7
(iv) mp"(a) Te () () T(d) = ¥ (a™) a7 b7l (7).

Since S € P>(Z?), we can choose (k,¢) € S such that 7¢*(a) # b, b~ and
T¢t(c) # d, d'; and it then follows that

mok(a) = ¥ (a) T (c) = 9" ()
m(b) =0 7(d) =d

Hence m = ¢™ and 7 = 9", where m = k' — k and n = ¢/ — £. Tt follows that for

each 7 € R(y,n)+s, we have that r =1 in Gr. Since the presentation

Gzz = <a,b,C7d|Rz2>
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satisfies the C’(1/6) cancellation condition, it follows that R(m n)+s € Rr and
hence (m,n) + S C T. This completes the proof of Theorem 4.8. ]

We are now ready to prove that the map S — Kg is a Borel reduction from QZQ

to =s. We will begin by proving the easier implication.
Proposition 4.12. If S QZZ T, then Kg =5 Kr.

Proof. Suppose that S §Z2 T. Then, combining Theorem 4.8 and Lemma 4.11,
it follows that there exists a surjective homomorphism 6 : Gg — G such that
0[(a,b)] = (a,b) and 0[(c,d)] = (¢,d). Clearly 6 extends canonically to a surjec-
tive homomorphism 6’ : Hg — Hrp such that 8'[V] = V; and 6’ extends canonically

to a surjective homomorphism 6" : Kg — Ky such that 8”[W] = W. O

The proof of the converse implication makes use of the following two lemmas.
Lemma 4.13. If1#w e W, then Ck,(w) =D x W.
Proof. Suppose that z € Ck,(w) ~ D. Then z can be written as

z=dyi-yr,

where d € D, r > 1, each y; ¢ D and successive pairs y;, y;+1 lie in different factors
Hg or D x W of the free product with amalgamation K¢ = Hg xp (D x W). Note
that

dys - yrwyy Ly td T

is equal to w. This implies that y,. € D x W and hence y,wy! € D x W. Since
yrwy, ! has order 3, it follows that y,wy, ! ¢ D and this implies that » = 1. Thus
z=dy € DxW. O

A similar argument yields the following result.
Lemma 4.14. If1#v eV, then Cy,(v) = Ax V.

O

Proof of Theorem 4.6. 1t only remains to prove that if Kg >y K, then S QZZ T.
Suppose that f : Kg — Krp is a surjective homomorphism. Then Remark 4.5

implies that f[W] # 1. Fix some element w € W with f(w) # 1. Then f(w) € K
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has order 3. Applying the Torsion Theorem [4] for C’(1/6) presentations, it follows
that G does not contain any elements of order 3; and by Corollary 4.4.5 [12], the
same is also true of Hy. Applying Corollary 4.4.5 [12] once more, it follows that
the element f(w) lies in a conjugate of D x W. Hence, after adjusting f by an
inner automorphism of Kr, we can suppose that f(w) € W. Using Lemma 4.13,
it follows easily that f[D x W] < D x W and this implies that f[W] < W. Let

7 : Kr — Hr be the canonical surjection such that 7[W] = 1. Then the map
Ks -5 Kr ™ Hy

induces a surjective homomorphism f : Hg — Hy such that f[D] < D. Once
again, Remark 4.5 implies that f[V] # 1. Fix some element v € V such that
f(v) # 1. Then f(v) € D = (c¢,d) * V has order 2 and so f(v) is conjugate in D
to an element of V. Hence after conjugating by a suitable element of D, we can
suppose that f(v) € V. (Of course, even after this adjustment to f, we still have
that f[D] < D.) Arguing as above, this implies that f[A x V] < A x V and that
fIV] < V. Let 7 : Hr — G be the canonical surjection such that #[V] = 1. Then
the map
Hs L Hy = Gy

induces a surjective homomorphism 6 : Gg — Gr such that 8[(a,b)] < (a,b)
and 0[(c,d)] < (¢,d). Hence, applying Theorem 4.8, we obtain that 5 CZ° T, as

required. This completes the proof of Theorem 4.6. (Il

Finally, the following result will play an important role in the next section.

Proposition 4.15. Suppose that 1 # x € Kg and let N = (25 be the corre-

sponding normal closure. Then Cg4(N) = 1.

Proof. Suppose that 1 # y € Ck(N). Then it follows that y%s C Cg,(N)
and hence M = (y¥s) satisfies [M,N] = 1. It is easily checked that if L is
any nontrivial normal subgroup of Kg, then L contains an element which is not
conjugate to an element of either of the factors Hg or D x W. In particular, there
exist such elements v € N and v € M, which can be written as u = uy - - - u, and

v =y - Uy, where:

(1) n, m >2;
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(2) wi, v; & D;

(3) the u; are alternately from different factors Hg or D x W; and

(4) the v; are alternately from different factors Hg or D x W.
Furthermore, after conjugating by suitably chosen elements of Hg or D x W, we
can suppose that:

(5) w1, up € Hg and vy, vy, € D X W.

But then both
UV = U+ UpV1 -V, AN VU = V] * - Vpp Uy * - Up,

are in reduced form and it follows that uv # vu, which is a contradiction. O

5. PRIDE’S QUASI-ORDER

In this section, we will prove that Pride’s quasi-order >, is a universal K, quasi-
order on the space G of finitely generated groups. As explained in Section 2, this
implies that the associated equivalence relation ~,, is a universal K, equivalence
relation. To prove that =, is a universal K, quasi-order, it is enough to show that

=p is a K relation and that there exists a Borel reduction from QZQ to =p.
Lemma 5.1. >, is a K, quasi-order on the space G of finitely generated groups.

Proof. First notice that if G, H € G, then G =, H if and only if there exist groups
G', H' € G such that G’ ~y; G, H ~y; H and G’ =, H'. Applying Thomas
[19, 6.4] and Lemma 4.1, the virtual isomorphism relation a2y ; and the surjectivity
relation >, are both K, subsets of G2. It follows easily that each of the following
is a K, subset of G*:

e Ry ={(G,G'H'H) € G| G ~y; G},

e Ry ={(G,G'"H ,H)€G* |G =, H'},

e R3={(G,G',H',H)eG* | H =~y H};
and hence R = ﬂ‘?:l R; is a K, subset of G*. Letting 7 : G* — G? be the projection
defined by (G,G',H', H) — (G, H), we have that =, is equal to 7[R] and it follows
that =, is a K, subset of G. O

In the remainder of this section, adapting the ideas of Thomas [18, Section 2|, we

will define a Borel reduction S — Wg from §22 to =p. Throughout this section, T’
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will denote an infinite finitely generated simple group, which satisfies the following

two additional properties:

e Every proper subgroup of I is finite.

e Every automorphism of I" is inner.

For the existence of such a group I, see Obraztsov [15].
Definition 5.2. For each S € P>(Z?), let
Wsg=Kgwrl,
where Kg is the finitely generated group given by Definition 4.4.
Theorem 5.3. The map S — Wg is a Borel reduction from QZZ to =p.

Here KgwrI' denotes the (restricted) wreath product of Kg by I', which is defined

as follows. For each function b : ' — Kg, the support supp(b) is defined to be
supp(b) = {a € I' [ b(a) # 1 };
and the base group Bg of Kg wr T is defined to be
Bs ={b:T — Kg | supp(b) is finite },

equipped with pointwise multiplication; i.e. if b, ¢ € Bg, then

(be) (@) = b() e(a)
for all a € I'. There is a natural action of I' on Bg defined by

b (er) = blay™);
and Kg wr I is defined to be the corresponding semidirect product

KswrT'={(v,b)|v€T,be Bs}
with multiplication defined by
(7,0) (8,¢) = (74,6°¢).

As usual, we identify I' and Bg with the corresponding subgroups of Kg wr I'" and

we write vb instead of (7,b).
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Notation 5.4. For each finite subset F' C I, we define the corresponding subgroup
BéF) of the base group Bg by

BY) = {be Bs | supp(b) C F}.
We will begin by proving the easier direction of Theorem 5.3.
Lemma 5.5. If S §Z2 T, then Wg =, Wr.

Proof. By Proposition 4.12, if S QZQ T, then there exists a surjective homomor-
phism 6 : K¢ — Kp; and it is clear that € can be extended to a surjective homo-

morphism 6’ : Wg — Wr. ]

The next two lemmas explain how to recognize the group Kg within any group

Lg such that Lg ~y; KgwrI.

Lemma 5.6. If S € P°°(Z?) and Ls < Wy is a subgroup of finite index, then Lg

has no nontrivial finite normal subgroups.
Proof. This is an immediate consequence of Thomas [18, Lemma 2.2]. (]

Lemma 5.7. Suppose that S € P>(Z?) and that Ls < Wy is a subgroup of finite
index. Let FF C T be a finite subset with |F| > 2 and let v € F. Then for each
g € Kg, there exists an element b € BgF) N Lg such that b(y) = g. Hence

(B nLs)

~ K.
(BgF\{W}) a LS)

Proof. Applying Thomas [18, Lemma 2.2], since [Wg : Lg] < 0o, it follows that
[Ws,Ws] =[Ls,Ls] < Lg.
Furthermore, by Neumann [13, Theorem 4.1 and Corollary 4.5], we have that

(Ws,Ws]NBs =[[,Bs]={beBs| [[ by €lKs Ks]}
y€supp(b)
Let § € F \ {v}. Then for each g € Kg, we can define an element b € BgF) N Lg
with b(y) = g by
g, fa=my
bla)=4Qg71, ifa=24;

1, otherwise.
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In particular, the homomorphism 1) : Bng) N Lg — Kg, defined by ¥(b) = b(y), is
surjective and clearly kery = BéF\{'Y}) N Lg. (]

For the remainder of this section, suppose that S, T' € P>°(Z?) and that Wg =,
Wr. Then, applying Lemma 5.6, there exist subgroups Lg < Wg and Ly < Wy of
finite index such that Lg =4 Lp. Let w: Lg — L7 be a surjective homomorphism.
Since I is an infinite simple group and [I' : 'N Lg], [I' : TN Lp] < o0, it follows that
I'< Lsand ' < Ly. Hence Lg = (BgN Lg) x ' and Ly = (Br N L) x T; and,
of course, [Bs : Bs N Lg], [Br : Br N Ly] < 0o. Let p: Ly — T be the canonical

surjective homomorphism and let ¢ = pon: Lg —T.
Lemma 5.8. n[BsNLg] < BrNLr.

Proof. Suppose not. Since BsNLg < Lg and ¢[Lg] =T, it follows that ¢[Bgs N Lg]
is a nontrivial normal subgroup of I' and hence p[BgN Lg] =I'. Choose an element
b € Bg N Lg such that ¢(b) # 1 and let F' = supp(b). Since BgF) NLs < BgNLg,
it follows that @[BéF) N Lg] =T. Choose an element vy € T such that FyN F = .
Since
v B nLs)y =B nLs,

it follows that

(B nLs, v 1(BS NLs)y] =1.
On the other hand, we also have that

el HBY) NLs)] = () "' Tp(y) =T

and hence [T',T'] = 1, which is a contradiction. O
Lemma 5.9. ¢[I'] =T.

Proof. By Lemma 5.8, we have that Bg N Lg < ker . Hence, since ¢ is surjective,
we must have that I' £ ker ¢ and so I'Nker ¢ = 1. Thus ¢[I'] is an infinite subgroup
of T and this implies that ¢[T'] =T. O

Since every automorphism of I' is inner, after adjusting 7 by an inner automor-

phism of Lg if necessary, we can suppose that ¢(vy) =« for all v € T.

Lemma 5.10. 7[BsN Lg] = By N L.
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Proof. Let b € By N Ly. Then there exists an element ¢ € Lg such that w(c) = b.
Express ¢ = vd, where d € Bg N Lg and v € I'. Then

1=p(b) =p(vd) =~
and hence ¢ € Bg N Lg. ([l

Lemma 5.11. W[Bg{v}) NLs]#1 for anyy€T.

Proof. Suppose that there exists v € T" such that W[Bé{V}) NLg]=1.Ifgelis

arbitrary and o = vy~ 13, then
B A Lg) = 7la (B nLg)a] = n(a) [ B nLs) () = 1.

Applying Lemma 5.10, since K7 is infinite and finitely generated, there exists a
finite subset F' C I' such that W[BgF) N Lg] is infinite. But notice that

(B B A Lg) < oo

for each € F and hence

(B nLs: (B nLs)] < .
BeEF
But this implies that w[BgF) N Lg] is finite, which is a contradiction. O

Lemma 5.12. There exists a fixed v9 € T’ such that
BY nLs) < B niy
for each nonempty finite subset ) # F CT.

Proof. First we will consider the case when F' = {1}. Suppose that b € B(S{l}) NLg
satisfies m(b) # 1 and let F, = supp(m(b)). We claim that |F}| = 1. Suppose not
and let a # 3 € Fy,. Let N = (bBsNLs ) Bé{l}) N Lg and let v = 8~ 'a. Then

,yle,Y < ,yfl(B‘(s{l}) e LS)’Y — Bg{"/}) N LS
and so [ N,y 'N~] = 1. On the other hand, by Lemma 5.10, we have that
7[N] = (x(b)PrEry < BEY Ly

Let M = {c¢() | ¢ € n[N]}. Then Lemma 5.7 implies that M is the normal

closure in K of the nonidentity element 7(b)(«). Similarly, since o € Fy, N Fyy and
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7(y) = fr for some f € Br N Ly, we see that M’ = {d(a) | d € w[y"1N~]} is
the normal closure in K7 of the nonidentity element (v~ 1b~)(a). However, since
[N,y"'N~] = 1, it follows that [M,M’] = 1 and this contradicts Proposition
4.15. Thus |supp(w(b))| = 1 for every b € Bg{l}) N Lg such that 7(b) # 1. A
similar argument shows that if b,c € Bé{l}) N Lg are such that 7(b), 7(c) # 1, then

supp(m (b)) = supp(w(c)). Let 9 € I' denote the element such that
B nLg] < B n Ly
If v € T is arbitrary, then 7(v) = fv for some f € Br N Ly and so
B A Lg] = w7 (BYY 1 L )] < -1 (BEY A Ly )y = B A Ly

Finally, suppose that b € Bs N Lg is any element such that w(b) # 1. Let
v € I'\xsupp(b) and let ¢ € Bg{v})ﬂLS with 7(c) # 1. Then, letting N = (cBsNEs ),
we have that [b, N] = 1 and hence [7(b), 7[N]] = 1. Arguing as above, this implies
that voy ¢ supp(mw(b)). Hence supp(n (b)) C 7o supp(b), as required. O

We are now ready to complete the proof of Theorem 5.3. Let 0 : BN Ly — Krp
be the homomorphism defined by o(b) = b(7y); and let ¢ : Bs N Lg — K be the
homomorphism defined by 1 = o o w. Applying Lemmas 5.7 and 5.10, it follows
that 1 is surjective. Since Krp is finitely generated, there exists a finite subset
F C T such that ¢[BY) N Lg] = Ky. By Lemma 5.12, we have that 1 € F
and that B(SF\{l}) N Ls < kerty. Hence, by Lemma 5.7, ¥ induces a surjective
homomorphism 6 : Kg — Kp; and by Theorem 4.6, this implies that S QZz T.
This completes the proof of Theorem 2.1.
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