UNIFORMLY RECURRENT SUBGROUPS OF SIMPLE LOCALLY
FINITE GROUPS

SIMON THOMAS

ABSTRACT. We study the uniformly recurrent subgroups of simple locally finite

groups.

1. INTRODUCTION

Let G be a countably infinite group and let Subg be the compact space of
subgroups H < G. Then G acts as a group of homeomorphisms of Subg via the
conjugation action, H +%» gHg 1. Following Glasner-Weiss [5], a subset X C Subg
is said to be a uniformly recurrent subgroup or URS if X is a minimal G-invariant
closed subset of Subg. For example, if N < G is a normal subgroup, then the
singleton set { N } is a URS of G. Throughout this paper, these singleton URSs
will be regarded as trivial URSs. More interesting examples of URSs arise as the
stabilizer URSs of minimal actions. For example, suppose that A is a compact space
and that G ~ A is a minimal G-action. Let f : A — Subg be the G-equivariant

stabilizer map defined by
=Gy ={geG|g-z=2a}

and let Xa = f(A). If f is continuous, then it follows easily that X is a URS of
G; and, as expected, X is called the stabilizer URS of the minimal action G ~ A.
(It is well-known and easily checked that the map f : A — Subg is continuous if
and only Fixa(g) = {x € A | g-z =z } is clopen for every g € G.) By Matte-Bon-
Tsankov [16], if X C Subg is any URS of G, then there exists a minimal action
G ~ A such that the stabilizer map f : A — Subg is continuous and f(A) = X.
(In fact, Matte-Bon-Tsankov [16] have proved this realization theorem in the wider

setting of locally compact groups.)
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In this paper, we will study the URSs of the countably infinite simple locally
finite groups. From mow on, in order to slightly simplify the terminology, we will
use the expression “locally finite group” as an abbreviation for “countably infinite
locally finite group”.

We will begin by discussing two representative examples of nontrivial URSs of

simple locally finite groups.

Example 1.1. If Alt(21), Alt(Q3) are finite alternating groups, then a proper
embedding ¢ : Alt(Q1) — Alt(Q2) is said to be strictly diagonal if (Alt(Qy)) acts
via its natural permutation representation on each of its orbits in (25. The simple

locally finite group G = |,y G; is said to be the strictly diagonal limit of the

€N
finite alternating groups G; = Alt(A;) if every embedding G; — G, is strictly
diagonal. In this case, let sg = [Ag| and let s; 41 = |A;41|/|A;| be the number of

Gi-orbits on A;;1. Then each s; > 1 and we can suppose that
Ai:80><51><~'~><8i,
where the embedding G; — G411 is given by

g (Lo lisliy1) = (g~ (bo, -+ 4i), Liy1 ).

Equip the infinite product A = Hi20 s; with its usual product topology. Then G

acts as a group of homeomorphisms of the compact space A via

g (607"' a€i7€i+lagi+27"') = (g (EOa"' agi>7£i+1;€i+27"')7 g € Gia

and it is clear that every G-orbit is dense in A. Thus G ~ A is a minimal G-action.
Since the stabilizer map « oy G, is continuous and 1 & G, & G for each z € A, it
follows that XA = f(A) is a nontrivial URS of G. We will refer to G ~ A as the

canonical minimal action of G.

Recall that a simple locally finite group G is said to be an L(Alt)-group if we can
express G = |, G as the union of a strictly increasing chain of finite alternating
groups G; = Alt(A;). (Here we allow arbitrary embeddings G; < G;41.) In [21],
Thomas-Tucker-Drob proved the following classification theorem as a corollary of

their classification of the ergodic invariant random subgroups of the L(Alt)-groups.



UNIFORMLY RECURRENT SUBGROUPS 3

Theorem 1.2 (Thomas-Tucker-Drob [21]). If G is an L(Alt)-group and X C Subg
is a nontrivial URS, then G can be expressed as a strictly diagonal limit of finite
alternating groups and X is the stabilizer URS of the corresponding canonical min-

imal action G ~ A.
For later use, we record the following consequence of Theorem 1.2.

Corollary 1.3 (Thomas-Tucker-Drob [21]). The infinite alternating group Alt(N)

has no nontrivial URSS.

Proof. Clearly Alt(N) is an L(Alt)-group, and it is easily seen that Alt(N) cannot

be expressed as a strictly diagonal limit of finite alternating groups. O

In Section 2, we will extend Theorem 1.2 to a classification of the nontrivial URSs
of the simple locally finite groups which can be expressed as an increasing union
G = J;en Gi of products of finite alternating groups G; = Alt(A1) x- - - x Alt(Ayy, ).
More precisely, we will show that every nontrivial URS of such a group G arises as
the stabilizer URS of the minimal action of G on the compact path space P(B) of

an associated unital Bratteli diagram B.

Example 1.4. Let K be a finite field and let o be the nondegenerate symplectic

form on the infinite dimensional vector space V' = ,.y+ Keg such that

o(eary1, €2042) = —o (€042, €2041) =1

for all £ € N; and otherwise o(e;,e;) = 0. Let Sp(K) be the corresponding sym-
plectic group; and for each n > 1, let Sp(2n, K) be the subgroup consisting of the
elements g € Sp(K) such that g(e;) = ep for all £ > 2n + 1. (Thus Sp(2n, K)
can be identified with the finite symplectic group on V5, = @1SZS2n Key.) Then
the stable symplectic group FSp(K) = |, cn+ SP(2n, K) is a simple locally finite
group.

Now suppose that K has characteristic 2 and let @ be the set of quadratic forms
q on V such that for all x, y € V,

o(x,y) = q(x +y) +q(x) +q(y);

and for each ¢ € Q, let GO(q, K) be the corresponding orthogonal group and let
FGO(q,K) = GO(¢q, K) N FSp(K).
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Clearly Q is a closed subset of the compact space KV of functions f : V — K.
Consider the action of the stable symplectic group G = FSp(K) on Q defined
by (9-¢q)(z) = q(¢g~'(x)). Then, as we will explain in Section 5, every G-orbit
is dense in @ and thus G ~ @Q is a minimal G-action. Since the stabilizer map
q A G4, = FGO(q, K) is continuous and each orthogonal group FGO(g, K) satisfies
1¢ FGO(q, K) ¢ G, it follows that

X ={FGO(¢,;K)|qe Q}

is a nontrivial URS of G.

We can also define a closely related second nontrivial URS of G as follows.
For each ¢ € Q, let FQ(q,K) = FGO(q,K) be the commutator subgroup of
FGO(q,K). (Alternatively, FQ(q, K) can be characterized as the subgroup of
FGO(q, K) consisting of the elements that can be expressed as a product of an
even number of orthogonal transvections. For example, see Wilson [23] for a clear
account of the corresponding orthogonal subgroups of the finite symplectic groups
Sp(2n, K).) Then [FGO(q,K) : FQ)(q,K)] = 2. Clearly the G-equivariant map
FGO(q, K) — FQ(q, K) is continuous, it follows that

X'={FQq.K)[qeQ}
is also a nontrivial URS of G.
In Section 5, we will prove the following classification theorem.

Theorem 1.5. If G is a finitary linear simple locally finite group and X C Subg is
a nontrivial URS, then G is the stable symplectic group FSp(K) over a finite field

K of characteristic 2, and either
(i) X ={FGO(¢,K) | q€ Q}, or
(i) X ={FQ(¢,K)[qe Q}.

Here a group G is said to be finitary linear if G has a faithful representation as a
group of linear transformations of an infinite dimensional vector space V over a field
K such that the fixed-point subspace of every element g € G has finite codimension
in V. (In particular, the class of finitary linear simple locally finite groups includes

the class of linear simple locally finite groups.)
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In the remainder of this introduction, we will discuss the problem of classifying
the URS of arbitrary simple locally finite groups. We will begin by making the

following easy but useful observation.

Proposition 1.6. If G is a simple locally finite group, then G has a nontrivial
URS if and only if there exist subgroups H, F' < G such that:

(i) F is finite;

(i) 1 gHg *NF G F forallg€@G.

Proof. First suppose that X C Subg is a nontrivial URS of G. Then 1, G ¢ X.
Let H < G be any subgroup such that H € X. Then we claim that there exists a
finite subgroup F such that 1 ¢ gHg !N F ¢ F for all g € G. Suppose not. Then

it follows easily that either:

(a) for each finite subgroup F' < G, there exists an element g € G such that
gHg 'NF =1;o0r
(b) for each finite subgroup F < G, there exists an element g € G such that
gHg 'NF=F.
However, if (a) holds, then 1 lies in the closure of { gHg™! | g € G }; while if (b)
holds, then G lies in the closure of { gHg™! | g € G }. Hence such a finite subgroup
F < G does indeed exist.
Next suppose that there exists a subgroups H, F' < G such that conditions (i)
and (ii) hold. Let Z be the closure of { gHg™! | g € G} in Subg. Then 1, G ¢ Z.
Let X C Z be a minimal G-invariant closed subset of Subg. Then X is a nontrivial

URS of G. 0

A weaker version of the above condition on the subgroup H < G has been
extensively studied in connection with the problem of the determining the ideal

lattices of the complex group algebras CG of simple locally finite groups G.

Definition 1.7. A subgroup H of a locally finite group G is said to be confined if
there exists a finite subgroup F' < G such that gHg ' N F # 1 for all g € G.

In particular, if H, F' < G satisfy conditions 1.6(i) and 1.6(ii), then it follows
that H is a proper confined subgroup of G. (However, as we will see later, the

existence of a proper confined subgroup is not enough to guarantee the existence
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of a nontrivial URS.) The following classification theorem summarizes the relevant
results of Hartley-Zalesskii [9] and Leinen-Puglisi [13, 14]. (It should be stressed
that Hall’s classification [8] of the nonlinear finitary linear simple locally finite

groups also plays an essential role in the proof of Theorem 1.8.)

Theorem 1.8. If G is a simple locally finite group, then G has a proper confined

subgroup if and only if G satisfies one of the following conditions:

(i) G is isomorphic to a nonlinear finitary linear group over a finite field K ;

(ii) G is of 1-type.

Thus, in view of Theorem 1.5 and Theorem 1.8, the classification problem for
the nontrivial URSs of simple locally finite groups has been reduced to the case
when G is of 1-type. The definition of “1-type” makes use of the notion of a Kegel
sequence. (By Kegel-Wehrfritz [11, Lemma 4.5], every simple locally finite group

has a Kegel sequence.)

Definition 1.9. If G is a simple locally finite group, then a Kegel sequence for G
is a sequence K = { (G;, M;) | i € N} of pairs of finite subgroups of G such that:
e Go<G1 < <G <Gip1 <
e G= UieN G
e M; is a maximal proper normal subgroup of G;
e G;NM;y; =1.
The finite simple groups {G;/M; | i € N} are called the factors of the Kegel

sequence K.

Definition 1.10. Suppose that G is a simple locally finite group which is not
finitary linear. Then G is of 1-type if every Kegel sequence of G has a factor which

is isomorphic to an alternating group.

Of course, it follows that if G is a simple locally finite group of 1-type and
K ={(Gi,M;) | ie N} is a Kegel sequence, then G;/M; is isomorphic to an
alternating group for all but finitely many ¢ € N. The assumption that G is of
1-type has strong structural consequences. (For the general theory of groups of

1-type, see Delcroix-Meierfrankenfeld [4].)
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For example, suppose that G is a simple locally finite group and that G can

be expressed as an increasing union G = J, . G; of products of finite alternating

ieN
groups G; = Alt(A;1) X -+ x Alt(A;,); and for each ¢ € Nand 1 < j <, let

Nij = H{Alt(A,g) ‘ 1<l<r;, 0 75]}

The union G = |,y G; is said to be strongly diagonal if whenever i < k and ¥ is a

ieN
nontrivial orbit of G; on some Ay, then there exists j such that IV;; acts trivially

on ¥ and Alt(A;;) acts naturally on 2.

Theorem 1.11 (Hartley-Zalesskii [10]). Suppose that G is a simple locally finite
group which can be expressed as an increasing union G = |J;cy Gi of products of
finite alternating groups. If G is of 1-type, then there exists ig such that the union
G = Ui, Gi is strongly diagonal.

Definition 1.12. The simple locally finite group G is an LDA-group if G can be

expressed as a strongly diagonal union G = | J, . G; of products of finite alternating

ieN
groups.

On the other hand, suppose that G is a finitary linear simple locally finite group
which can be expressed as an increasing union of products of finite alternating
groups. Then G has a Kegel sequence, each of whose factors is isomorphic to a
finite alternating group. (For example, this follows easily from Meierfrankenfeld

[17, Lemma 2.15].) Thus the following result is an immediate consequence of Hall

[6, Theorem 5.2].

Theorem 1.13. If G is a finitary linear simple locally finite group which can
be expressed as an increasing union of products of finite alternating groups, then

G = Alt(N).

Once again, suppose that G is a simple locally finite group which can be expressed
as an increasing union of products of finite alternating groups. Then, applying
Theorems 1.8, 1.11, 1.13 and Corollary 1.3, it follows that if G has a nontrivial
URS, then G is an LDA-group.

In Sections 2, 3 and 4, we will classify the URSs of the LDA-groups; and in
Section 5, we will classify the URSs of the finitary linear simple locally finite groups.

As we will see in Section 5, the classification of the URSs of the finitary linear simple
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locally finite groups is an easy consequence of Leinen-Puglisi’s classification [13] of
the confined subgroups of the classical finitary linear simple locally finite groups.
The classification of the URSs of the LDA-groups is more interesting and makes
use of an observation that is potentially useful in the setting of arbitary countable
amenable groups; namely, that if G is a countable amenable group and X C Subg is
a URS, then there exists a G-invariant ergodic Borel probability measure v on Subg
which concentrates on X. Consequently, measure-theoretic techniques (such as the
Pointwise Ergodic Theorem for countable amenable groups [15]) can be employed
in the study of the URSs of countable amenable groups.

Recall that a Borel probability measure v on Subg which is invariant under the
conjugation action G ~ Subg is called an invariant random subgroup or IRS. For
example, suppose that G acts via measure-preserving maps on the Borel probability

space ( Z, ) and let f : Z — Subg be the G-equivariant stabilizer map defined by

2= G, ={geG|g-z=2}.

Then the corresponding stabilizer distribution v = f.u is an IRS of G. In fact, by
a result of Abért-Glasner-Virag [2], every IRS of G can be realized as the stabilizer
distribution of a suitably chosen measure-preserving action. Moreover, by Creutz-
Peterson (3], if v is an ergodic IRS of G, then v is the stabilizer distribution of an
ergodic action G ~ (Z, ).

This remaining sections of this paper are organized as follows. In Section 2,
following Lavrenyuk-Nekrashevych [12], we will first describe how to realize each
LDA-group G as the group A(B) associated with a suitable Bratteli diagram B;
and then we will state the classification theorem for the URSs of the LDA-groups.
In Section 3, we will discuss the ergodic theory of countably infinite locally finite
groups and present some results on the normalized permutation characters of finite
groups. In Section 4, we will prove the classification theorem for the URSs of the
LDA-groups; and in Section 5, we will prove the classification theorem for the URSs

of the finitary linear simple locally finite groups.
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2. LDA-GROUPS

Suppose that G is a simple locally finite group which can be expressed as an

increasing union G' = J;c G of products of finite alternating groups. Then, as
we explained in Section 1, if G has a nontrivial URS, then it follows that G is an
LDA-group. In this section, we will state the classification theorem for the URSs
of the LDA-groups. First, following Lavrenyuk-Nekrashevych [12], we will describe
how to realize each LDA-group G as the group A(B) associated with a suitable

(labelled) Bratteli diagram B.

Definition 2.1. A Bratteli diagram B = ({V;},{F;},s,r,d) consists of:

e aset V(B) = |,y Vi of vertices, where each V; is a finite nonempty set;

aset E(B) = | |;cn+ Ei of edges, where each Ej is a finite nonempty set;

e source maps s : F; — V;_1 with the property that for each vertex v € V;_1,
there exists at least one edge e € E; such that s(e) = v;

e range maps r: EB; — Vi;

a labelling d : V(B) — NT such that for every vertex v € V(B)

(2.1) d(v) > > d(s(e)).

r(e)=v
The Bratteli diagram B is said to be unital if there is an equality in (2.1) for all
but finitely many vertices v € V(B). (This terminology comes from the fact that
B is unital if and only if an associated approximately finite-dimensional C*-algebra

is unital.)

To each Bratelli diagram B = ({V;},{F;},s,r,d), we associate a corresponding
LDA-group, A(B) = ey Gi, where each G; = [[, ¢y, Alt(A,) for some set A,
of cardinality d(v) as follows. First we define the sets A, inductively by setting

A, ={aj|0<l<d(v)}ifvelp, and

Ay ={0"elec Eii,r(e) =v,0 € Ay J ULy | k(v) <€ <d(v)}
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if v € Viy1, where k(v) = d(v) — >_,)—, d(s(e)). Next for each u € V;, we define
the embedding Alt(A,) < G;+1 by specifying the action of each g € Alt(A,) on

each z € | | A, as follows:

veVii1
o if z = 0 " e for some 0 € A, and some edge e with s(e) = u, then

glo"e) =g(o) "¢

e otherwise, g(z) = z.

Clearly these embeddings extend to an embedding G; — G;;1, and we define
A(B) = UiGN Gi.

Remark 2.2. If (n; |€ N) is a strictly increasing sequence of natural numbers,
then we can define an associated Bratelli diagram B’ = ({V/},{E}},s',r’,d') as

follows:

o V/=V,, andd =d ||,y V/-
e F!is the set of paths p =e; ---ep in B from V,,,_, to V,,, s'(p) = s(e1) and
r'(p) = r(ex).
The Bratteli diagram B’ is said to be a telescoping of B. Clearly we can identify

A(B') with | J;cy G, and so A(B') = A(B).
The set P(B) of paths through B consists of the infinite sequences « of the form
Y=o i1 €ipal c ek €ppr oo
where v € V; and k(v) < £ < d(v), s(ei+1) = of, and r(ex) = s(ex+1) for all
k >i+ 1. Let A(B) ~ P(B) be the action defined by
g(v) = glag "eip1 eipa” o Ter) e e, g € Gy.

For each ¢ € N, v € V; and 0 € A, let P(0) be the set of paths v € P(B) of the
form

Y=0"eit1 €iya
Then the sets P(o) form a clopen basis for a locally compact topology on P(B).
Clearly P(B) is compact if and only if B is unital.

Remark 2.3. If B’ is a telescoping of B, then A(B’) ~ P(B’) is canonically
isomorphic to A(B) ~ P(B).

Definition 2.4. Let B = ({V;},{E;},s,r,d) be a Bratelli diagram.
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(a) B is thick if for every vertex u € V;, there exists a vertex v € Vj, for some
k > i such that v and v are connected by more than one path.
(b) B is simple if for every path v € P(B) and vertex v € V(B), there exists a

path starting at v and ending in a vertex on .

Remark 2.5. It is easily seen that if B is a simple unital Bratteli diagram, then
for each ¢ € N, there exists j > ¢ such that for every pair of vertices v € V; and

v € Vj, there exists a path from u to v.

Theorem 2.6 (Lavrenyuk-Nekrashevych [12]). If G is a simple locally finite LD A-
group, then exactly one of the following holds:

(i) G = Alt(N).

(ii) G = A(B) for some simple thick Bratelli diagram B.

By Corollary 1.3, the infinite alternating group Alt(N) has no nontrivial URSs.
Thus we can restrict our attention to the LD A-groups which are isomorphic to

A(B) for some simple thick Bratelli diagram B.

Example 2.7. Suppose that B is a simple thick unital Bratelli diagram and that
G = A(B). Then P(B) compact. Also, since B is simple, it follows easily that
every G-orbit is dense in P(B). Thus G ~ P(B) is a minimal G-action. Since the
stabilizer map ~y oy G, is continuous and 1 & G, & G for each v € P(B), it follows
that Xpp) = f(P(B)) is a nontrivial URS of G. We will refer to G ~ P(B) as

the canonical minimal action of G.
In Section 4, we will prove the following classification theorem.

Theorem 2.8. Suppose that B is a simple thick Bratelli diagram.
(i) If B is unital, then the only nontrivial URS of A(B) is the stabilizer URS

of the canonical minimal action A(B) ~ P(B).

(ii) A(B) has a nontrivial URS if and only if B is unital.

3. ERGODIC THEORY AND NORMALIZED PERMUTATION CHARACTERS

In this section, in preparation for the proof of Theorem 2.8, we will discuss the
ergodic theory of countably infinite locally finite groups and present some results

on the normalized permutation characters of finite groups.
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Let G = {J;cy G be the union of the strictly increasing chain of finite subgroups
G; and let G ~ (Z, ) be an ergodic action on a Borel probability space. Then
the following is a special case of more general results of Vershik [22, Theorem 1]

and Lindenstrauss [15, Theorem 1.3].

The Pointwise Ergodic Theorem. With the above hypotheses, if B C Z is a

u-measurable subset, then for u-a.e. z € Z,

. 1
u(B) = }g}}o @ {

g€G;|g-z€ B}

In particular, the Pointwise Ergodic Theorem applies when B is the y-measurable
subset Fixz(g) = {2z € Z | g-2z =z} for some g € G. For each z € Z and i € N,
let Q;(z) ={g-2|g € G;} be the corresponding G;-orbit. Then, as pointed out in

Thomas-Tucker-Drob [21, Theorem 2.1], the following result is an easy consequence

of the Pointwise Ergodic Theorem.
Theorem 3.1. With the above hypotheses, for p-a.e. z € Z, for all g € G,
u(Fixz(g)) = lim | Fixg,(9) |/ () |

Of course, the permutation group G; ~ €;(z) is isomorphic to G; ~ G;/H;,
where G;/H,; is the set of cosets of H; ={h € G; | h-z =z} in G,. The following
simple observation will be used repeatedly in our later applications of Theorem 3.1.

(For example, see Thomas-Tucker-Drob [21, Proposition 2.2].)

Definition 3.2. If K ~ ) is an action of a finite group K on a finite set €2, then

the corresponding normalized permutation character 6 is defined by
0(g) = | Fixa(g) |/12], g€ K.

Proposition 3.3. If H < K are finite groups and 0 is the normalized permutation

character corresponding to the action K ~ K/H, then

0(g) g8 N H| _ |{8€K|898_1€H}"
[9% | K|

The following consequence of Proposition 3.3 implies that when computing upper

bounds for the normalized permutation characters of actions A ~ A/H, we can

restrict our attention to those coming from maximal subgroups H < A.
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Corollary 3.4. If H < H' < A are finite groups and 0, 6’ are the normalized
permutation characters corresponding to the actions A ~ A/H and A ~ A/H’,

then 0(g) < 6'(g) for all g € A.

We will next present two easy but useful results on the normalized permutation
characters of finite products of finite groups. Suppose that K = ngegm Ky is a
finite product of finite groups. Let H < K and let 6 be the normalized permutation
character corresponding to the action K ~ K/H. For each g € K and 1 < /¢ < m,
let g¢ € Ky be the element such that g = g1---g¢- - gm. Let Ho ={hy | h € H}
and let 8y be the normalized permutation character corresponding to the action

]{2 F\f}(g/lfz.
Proposition 3.5. With the above hypotheses, 0(g) < ngegm 0e(ge) forallg € K.

Proof. Let P = ngzgm Hy. Then H < P < K; and by repeated applications of

Proposition 3.3, we obtain that

 HseK|sgs'e HY

0(g)
|K|
{se K|sgs~te P}
- K|
 {seK|siges;t € Hyforalll1 < (< m}
K|
71—[ |{t€Kg|tggt71€Hg}|
T lli<<m | K|
= nggm 0c(ge)-
O
Next suppose that Si,---,.S, are pairwise isomorphic groups and that r > 2.

Then H < ngzgr Sy is said to be a diagonal subgroup if there exist isomorphisms
mp 2 S1 — Sp for 2 < € < r such that H = { (h,m2(h), -+ ,m.(h)) | h € S1 }. In the
degenerate case when r = 1, we will take S7 to be the only diagonal subgroup of S;.
Slightly abusing notation, since none of our arguments depend on the particular
isomorphisms 7y, we will write

H =Diag( [] Se).

1<e<r
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Lemma 3.6. Let K = S x--- xS, where S is a finite group and r > 2, and
—_——

€S

T tim
let H = Diag(K) = {(g9,---,9) | g € S}. If 0 is the normalized permutation
character corresponding to the action K ~ K/H and h = (g,---,9) € H, then

6(h) = (ﬁ)“l.

Proof. Note that

r—1
o(h) = ¥ || = 21— ()
97" lg°]
O

In the proof of Theorem 2.8, we will also make use of the following result on the

subgroups of finite products of simple nonabelian groups.

Proposition 3.7. Suppose that Sy,--- , S, are simple nonabelian groups and that
H < 51 x -+ xS, is a subgroup such that each of the projections H — Sy is
surjective. Then there exists a partition Ay U---U A, of {1,---,m} such that

H =[] Diag( [] Se).

k=1 LeA,

Sketch proof. For each h € H, let h = hyhy -+ h,,, where each hy € Sy, and let
s(h)={€|h¢#1}. Let P={A1,---,A,} be the collection of minimal subsets
AC{1,---,m} such that there exists 1 # h € H with s(h) = A. Then it is easily
checked that P is a partition of {1,--- ,;m } and that

H= HDiag( H Se).
k=1

e Ay
(I

Finally we record two results from Thomas-Tucker-Drob [21, Section 6] on the
normalized permutation characters of finite alternating groups. In the statements

of both of the following lemmas, A denotes a finite set of cardinalty |A| = n.

Lemma 3.8. For any e > 0 and 0 < a < 1, there exists an integer ro . such that
if rae <r<n/2 and H < Alt(A) is a subgroup with an H-invariant set ¥ C A of
cardinality |X| = r, then for any element g € Alt(A) satisfying |supp(g)| > an,

[{s € Alt(A) | sgs™t € H}|
| Alt(A)]

<E.
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Lemma 3.9. For anye >0 and0<a <1 andr > 0, there exists an integer dg r .

such that if dgre <d < (n—71)/2 and H < Alt(A) is any subgroup such that

(i) there exists an H-invariant subset ¥ C A of cardinality v, and
(ii) H acts imprimitively on A N\ with a proper system of imprimitivity B of
blocksize d,
then for any element g € Alt(A) satisfying | supp(g)| > an,

[{s € Alt(A) | sgs~t € H}|
| Alt(A)]

< E.

4. THE PROOF OF THEOREM 2.8

In this section, we will present the proof of Theorem 2.8. We will first prove
that if B is a unital simple thick Bratelli diagram, then the only nontrivial URS
of A(B) is the stabilizer URS of the canonical minimal action A(B) ~ P(B). So
suppose that B is a unital simple thick Bratelli diagram. Then, after replacing B

by a suitable telescoping if necessary, we can suppose that

k(v) =d(v) = > d(s(e)) =0
r(e)=v
for every vertex v € V(B) \ Vy. Similarly, by Remark 2.5, we can suppose that

for every i € N, every vertex u € V; is joined by an edge to every vertex v € V.

Let G = A(B) = [J;en Gi be the corresponding LDA-group, where each G; =
[T,cv, Alt(A,).

Lemma 4.1. limmin{ [A,|:v €V} = co.

Proof. Let v € V1. Since every u € V; is joined to v by an edge, we have that

IN(ED STV}

uevV;
and the result follows. O

Lemma 4.2. liminf min{ |suppa (9)|/|A|:v € Vi} >0 forall1#gcG.

Proof. Suppose that (k; | i € N) is a strictly increasing sequence of natural numbers

and that v; € Vi, for each ¢ € N. Then it is easily checked that

N ={ge G| lim [supps, (9)|/|Av] =0}
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is a normal subgroup of G. On the other hand, let h € Gy be such that h [ A,
is fixed-point-free for all u € V. Then for all i > 0, regarding h as an element of
G, we have that h [ A, is fixed-point-free for all v € V; and so h ¢ N. Since G is

simple, the result follows. O

Suppose that X C Subg is a nontrivial URS. Since G is amenable, there exists
a G-invariant ergodic Borel probability measure v on Subg which concentrates on
X. Applying Creutz-Peterson [3, Proposition 3.3.1], we can suppose that v is the
stabilizer distribution of an ergodic action G ~ (Z, ). Let x(g9) = u(Fixz(g));
and for each z € Z and i € N, let Q;(2) ={g-2| g € G;}. Then, by Theorem 3.1,
for pra.e. z € Z, for all g € G, we have that

x(9) = u(Fixz(g)) = lim | Fixo,(z)(9) [/[Q(2) -

Fix such an element z € Z and let H = {g € G | g- z = z } be the corresponding
point stabilizer. Then we can suppose that x(g) > 0 for all g € H. For each i € N,
let H; = HNG;. Then G; ~ ;(z) is isomorphic to G; ~ G;/H;. Let 0; be the
normalized permutation character corresponding to the action G; ~ G;/H;.

For each i € N, v € V; and g € G, let g, € Alt(A,) be such that g = [],cy. gu;
and for each v € V;, let H, = {h, | h € H;} and let 6, be the normalized
permutation character corresponding to the action Alt(A,) ~ Alt(A,)/H,. Then,
applying Proposition 3.5, we obtain:

Lemma 4.3. 6;(g) < Hve\/,- 0, (gv) for all g € G;.

For each i € N and v € V, let n, = |A,| and let n; = Zvew ny. (Of course,
using the notation introduced earlier, we have that n, = |A,| = d(v), where d is
the labelling function of the Bratelli diagram B. We have introduced the extra

notation n, in order to make the calculations in this section a little more readable.)

Lemma 4.4. There exist constants s > 0, d > 1 such that for all but finitely
many i € N, for all v € V;, there exists a unique H,-invariant subset ¥, C A, of
cardinality 0 < |X,| < s such that:

e H, acts transitively on A, \ 3, ; and

o there exists a mazimal system of imprimitivity B, of blocksize 1 < d,, < d

for the action H, ~ A, N X, and H, induces at least Alt(B,) on B,.
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Remark 4.5. Note that we allow the possibility that d, = 1, in which case H,
induces at least Alt(A, ~X,) on A, N\ X,.

Proof of Lemma 4.4. Let 1 # g € H be an element of prime order p; say, g € H;,.
Then, applying Lemma 4.3, since

0 < x(g) = lim | Fixo,(z)(9) |/|€:(2) | = lim 6i(g),

it follows that
lim inf min{ 6, (g,) : v € V; } > 0.

Also, by Lemma 4.2, there exists a constant 0 < a < 1 such that for all i > iy and

v € V;, we have that |suppy, (gv)| > apn,. For each i > ig and v € V;, let
ry = max{|X|: £ C A, is Hy-invariant and || < |A,| }.

Then, applying Lemma 3.8, we see that there exists s such that 0 < r, < s for all
v € V; with i > ip. Furthermore, choosing i so that |A,| > 4s for all v € V;,
it follows that for all 7+ > iy and v € V;, there exists a unique H,-invariant subset
¥y € A, of cardinality r, and that H, acts transitively on A, \ ¥,. Similarly,
applying Lemma 3.9, there exists an integer d > 1 such that for all ¢ > iy and
v € V;, there exists a maximal system of imprimitivity B, of blocksize 1 < d, < d
for the transitive action of H, ~ A, N Xy.

Clearly we can also suppose that iy has been chosen so that an, > 2 for v € V;
with ¢ > ig. Fix such a vertex v and let n = n,. Suppose that g, € Alt(A,) is a
product of b p-cycles. Since b > an > 2, it follows that the conjugacy classes of g,
in Alt(A,) and Sym(A,) coincide and hence
()| — bL

pbbl(n — bp)!

Applying Stirling’s Approximation and the fact that b > an, it follows that there

I’

exist constants ¢, k > 0 such that

Alt(Ay) n n" n n" n( n\(p—1)a
lgs | > ck b = by >ck b > ck™(n") .

Let m = |B,| and let K,, < Sym(B,) be the group induced by the action H, ~ B,.
Suppose that Alt(B,) € K, Then, by Praeger-Saxl [19], it follows that

|| < 4™ < 4™
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and since H, is isomorphic to a subgroup of Sym(X%,) x ( Sym(d,) wr K, ), it follows
that |H,| < s!(d!)"4™. Thus
6 (g0) = o'l |H,| sl(dl)4r
v\Yv g{}\]t(Av)‘ ‘g’{)xlt(AU)| ck"(n”)(Pfl)a'

It follows that there exist only finitely many i > iy such that Alt(B,) € K, for

some v € V;. O

Next we prove the following strengthening of Lemma 4.4.

Lemma 4.6. There exist constants s, t > 1 such that for all but finitely many
i € N, there exists a subset T; C 'V, of cardinality 0 < |T;| < t such that for all
veV,
o ifv¢T;, then H, = Alt(A,);
e if v € T;, then there exists a unique H,-invariant subset ) # X, C A, of
cardinality at most s such that H, induces at least Alt(A,~\X,) on A, \X,.

Proof. Throughout, let p be an odd prime such that p > max{5,s,d}, where s, d
are the constants given by Lemma 4.4. We will first show that we can take d = 1
in the statement of Lemma 4.4.

Since limmin{ |A,| : v € V; } = oo and p, d are fixed, there exists ig such that
Ay > p(p+1)(d+1) and |B,| > 7 for all v € V;,. Furthermore, we can suppose
that ip has been chosen so that H;, satisfies the conclusion of Lemma 4.4. Let

¢: Hiy = [] Sym(B.)
v€eVig
be the homomorphism induced by the actions H, ~ B, and let K = ¢(H;,). Then,
by Lemma 4.4, K projects onto either Alt(B,) or Sym(B,) for every v € V;,. It

follows easily that Ko = KN[] Alt(B,) projects onto Alt(B,) for every v € Vj,.

vEVi,

Hence, applying Proposition 3.7, there exists a partition P of V;, such that
Ko =[] Diag(] ] Alt(B.)).
sep veES
Notice that since each |B,| > 7, if u, v € S € P and 7 : Alt(B,) — Alt(B,) is
the isomorphism associated with the corresponding diagonal factor of Ky, then 7
preserves the cycle structure of the permutations. Consequently, there exists an

element k = [] k, € Ky such that each k, is an element of order p which

UGVz‘O
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fixes at most p — 1 blocks of B,. Since p > max{ s,d }, it follows that ker ¢ has no
elements of order p, and this means that there exists an element g € H;, of order
p such that p(g) = k. Let v € V;, and let a, € [0,1] be such that g, be a product

of a,n, p-cycles. Since
|supp(go)| > 1w — [s 4+ (p — 1)d] > n,, — (d + 1)p,

it follows that
_Isupp(gy)] 1 d+1) 1

Py P ny — (p+1)

v

Now suppose that ¢ > iy and u € V;. Then, regarding g as an element of H;, it
follows that g, is a product of more than n,/(p + 1) p-cycles. Arguing as in the

proof of Lemma 4.4, it follows that there exists constants ¢, £ > 0 such that

|g$lt(Au)| > ckne (nzzu)(p—l)/(pﬂ)_

On the other hand, by another application of Stirling’s Approximation, there also
exist constants C', K > 0 such that

|H,| < [Sym(E,) x (Sym(d,) wrSym(n/d,))| < C K™ ne/%.

Ifd, >2,then (p—1)/(p+1) >4/6 >1/2>1/d,. Since

Alt(Ay n n
oy 19 OB H CKm ()
e T AR g B el () =D/ (041)

U

it follows that there exist only finitely many ¢ > i¢ such that d, > 2 for some
u € V;. Thus we can assume that d = 1.

For each i > ig, let T; = {v € V; | X, # 0 }. Let p be a prime such that p > s.
Then, arguing as with the element g above, we can suppose that there exists an
element h € H;, of order p such that |Fixa, (hy)| < m,/2 for all v € V;,. It follows
that if ¢ > iy and we regard h as an element of H;, then |Fixa, (hy)| < ny /2 for
all u € V;. Fix an i > ig and suppose that u € T;. Let K, be the setwise stabilizer
of ¥, in Alt(A,) and let €/, be the normalized permuation character of the action

Alt(A,) ~ Alt(A,)/K,. Applying Corollary 3.4, since H, < K, it follows that

~ {s € Alt(A,) | shys™ € Ky }

O (hu) < 0,,(hu) | Alt(A,)]
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Let x € ¥,. Since p > |X,|, it follows that if sh,s™! € K,, then sh,s™! acts
trivially on ¥, and so sh,s~1(x) = z. Thus

0 () < {s € Alt(A,) | s H(x) € Fixa, (hy) }| | Fixa, (hy)|

1
= < =,
| Alt(AL)] |A,| =9

Applying Lemma 4.3, we see that 6;(h) < (1/2)", where t; = |T;|. Since
it follows that there exists a constant ¢ such that |T;| < ¢ for all i > 4. O

In order to simplify notation, we will suppose that the conclusion of Lemma 4.6
holds for all ¢+ € N. For those i € N such that T; # (), let 7; : H; — HueT,_- Sym(X%,)
be the homomorphism such that g — [[,c7 g | ¥y and let K; = kerm;; and for
those ¢ € N such that T; = 0, let K; = H;. Foreachv € V;, let K, ={g, | g € K; }.
Then K, < Alt(A, N %,) if v € T;; and, of course, K, < Alt(A,) if v ¢ T;. Since
there is a constant ¢ such that each Kj; is a normal subgroup of H; of index at most
¢, it follows that there exists ig such that for all ¢ > ig,

e if v ¢ T;, then K, = Alt(A,);
e if v € T;, then K, = Alt(A, N X,).

Applying Proposition 3.7, for each i > ig, there exists a partition P; of V; such that
K; = [ Diag(]] Al(2.)),
SeP; veES

where

A, NX, ifveT;
Q, =

Ay ifvéT,.
In particular, it follows that each K; is isomorphic to a product of alternating
groups. Since [H;11 : K;11] < ¢, it follows that K; N K; 1 is a normal subgroup of
K; of index at most ¢, and this implies that K; < K;y1. Let K = UZ.ZZ.0 K;.

Claim 4.7. There ezists i1 > ig such that P; is the partition of V; into singleton

sets for all i > 7.

Proof. Let I be the set of i > ig such that there exists S; € P; with |S;| > 2.
Suppose that I is infinite. Let 1 # g € K;, be an element of prime order p,
where p > s. For each i > ig and v € V;, let g, € Alt(A,) be the corresponding
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element when g is regarded as an element of GG;. Then, since each vertex in the
Bratelli diagram B is joined by an edge to every vertex on the next level, it follows
that each such g, # 1; and since limmin{|A,| : v € V;} = oo, it follows that

lim min{ |gf}lt(Av)|

:v € V; } = oo. Also note that since g has prime order p > s, it
follows that gGi NH,; = gGi N K; for all i > ig.
For each i € I, choose some v € S;. Applying Proposition 3.5 and Lemma 3.6,

it follows that
G G G; G Alt(A,) [Sil-1
0i(9) = g% N Hil /g% | = 19% N Kl /lg% | < (1/1g2@1)
But this means that x(g) = lim;_, 6;(g) = 0, which is a contradiction. O

Thus we obtain that for all ¢ > iy,
K= ] AltAa,~2) x [ Al(Ay).
veT; veEV;NT;
Since K < H and H # G, we can suppose that i; has been chosen so that T; # ()
for all 4 > i1. Note that for all 7 > iy,
SMml < > sl
veT; u€T; 1
Hence there exist an integer 7 > 1 such that ) .. [¥,] = r for all but finitely

many ¢ € N.

Claim 4.8. X = {G. |y P(B)}.

o~

Proof. Let v = a ey “es” -+ e; €1 -+ be any path through B, where
a € A, for some x € V. Fix some ¢ > i and let v, = o e; “ex” -+ ¢;. Then
v; € A, for some u € V;; and there exists j > i with ZveTj |2,| = r such that for

all v € V}, there are at least r paths between u and v. It follows that there exists

o~

g; € G, such that each element 8 € ¢;(J ¥,) has the form v; “e;11 7 - e

veT;

for some edges e;41,- - ,¢e;, and this implies that

9iHg ' NG > g:iKigr ' NG =Alt(A, ~ {7 ) x  []  Alt(Ay) = (Gi),
weViN{u}

As (G,), is a maximal proper subgroup of Gj, it follows that g;Hg; ' NG; = (G)-,

for all but finitely many ¢ € N, and this implies that G, € X. By the minimality
of X, we must have that X = {G, |y € P(B) }. O
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Remark 4.9. The above argument shows that if v is any ergodic IRS of G, then
v concentrates on the stabilizers of the r-subsets F' € [P(B)]" for some r > 1. Of
course, in order to classify the ergodic IRS of G, it is first necessary to classify the

G-invariant ergodic measures on [P(B)]".

Conjecture 4.10. If B is simple thick Bratelli unital diagram and v is an er-
godic IRS of A(B), then there exist A(B)-invariant ergodic probability measures
H1,- -, fy on P(B) such that v is the stabilizer distribution of

A(B) ~ (P(B)",pu1 X =+« X iy ).

Finally, in order to complete the proof of Theorem 2.8, it only remains to prove
that if B = ({V;},{F;},s,r,d) is a non-unital simple thick Bratelli diagram, then
A(B) has no nontrivial URSs. After replacing B by a suitable telescoping if neces-
sary, we can suppose that for every ¢ € NT, there exists v € V; such that

k(v) =d(v) — Y d(s(e)) > 0.
r(e)=v
(Of course, it is possible that there are no edges e with r(e) = v.) Next we will define
a sequence of unital simple thick Bratelli diagrams B,, = ({V;"},{E"}, sn,In,dy )
such that:

* P(B) = Unen P(Bn);
o A(B) =U,en A(Bn)-

Fix some n € N. First for each ¢ < n, we define:
e V' =Viandd, |V =d | VP

and then we define V' ; and d,, | V% for j > i inductively by:

e V7, is the set of vertices v € Vj11 such that there exists an edge e € Ej1;
with r(e) = v and s(e) € V};
o if v € V], then d,(v) = Y {dn(s(e)) | s(e) € V' r(e) =v }.
Finally, E7 is the set of edges e € E; such that s(e) € V*, and r(e) € V;"; and s,
r, are the restrictions of s, r to | J,cn+ B It is easily checked that each B, is a
unital simple thick Bratelli diagram and that P(B) = |J,,cx P(Bn). Note that

AB,) = ] Away),

iENveV?
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where A} = A, if v € V]* =V for some ¢ < n, and

Ay ={oc"e|r(e)=v,0 € AY,}

s(e

if v € V;" for some i > n. Thus A(B) = J,,cny A(Bn).
Note that if y = o} “e;41 €42 --- € P(B), where v € V; and k(v) < £ < d(v),
then v € P(B,,) if and only if n > i. Also if v ¢ P(B,,), then A(B,) < A(B),.
Now suppose that X C Sub,(p) is a nontrivial URS. As usual, let A(B) =

Usen Gi, where each G; = [[, oy, Alt(A,). For each n, let

fn X = SUbA(Bn)

be the A(B)-equivariant continuous map defined by H — H N A(B,) and let
X, = fu(X). Then X, is a compact subspace of Subyp,) and A(B,) ~ X,,.
Suppose that 1 € X,, for infinitely many n € N. Then for infinitely many n € N,
there exists H,, € X such that

H,NG, < H,NAB,) =1;

and it follows that 1 € X, which is a contradiction. Thus we can suppose that
1 ¢ X, for all but finitely many n € N. Similary, we can suppose that A(B,) ¢ X,
for all but finitely many n € N. Let ng € N be such that 1 ¢ X,, and A(B,) ¢ X,
for all n > ng.

For each n > ng, let Y, C Suby(p,) be the stabilizer URS of the canonical
minimal action A(B,,) ~ P(B,). Then the minimal A(B,)-invariant closed subsets
of Suby(p,) are precisely {1}, { A(B,)} and Y,,. In particular, Y,, is the unique
minimal A(B,)-invariant closed subset of X,,. Let ¢, : Subu(p,_,) — Suby(g,) be
the A(By,)-equivariant continuous map defined by K — KNA(B,,). Then ¢, (Yn+1)
is an A(B,,)-invariant closed subset of X,, and thus Y,, C ¢, (Y;,11). Hence we can
inductively define subgroups H,, € Y,, for n > ng such that H,11 NA(B,) = H,. It
follows easily that H = >,
then H, is the stabilizer of a path 7, € P(B,). Recall that if v, ¢ P(B,,), then
A(Bp,) < A(B),. It follows easily that there exists a fixed path v € P(By,,) such

H,, € X. Furthermore, by Theorem 2.8(i), if n > ny,

that ~,, = v for all n > ng and hence H is the stabilizer of v with respect to the
action A(B) ~ P(B). However, there exists g € A(B) such that g(v) ¢ P(By,),
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and this means that
A(By,) < A(B)g(“/) = gA(B)’y971 = gH.‘]il»

which contradicts the fact that A(By,) ¢ Xp,-

5. THE NONLINEAR FINITARY LINEAR GROUPS

In this section, we will classify the URSs of the nonlinear finitary linear simple
locally finite groups. These groups have been explicitly classified by Hall as follows.
(In [8], Hall classified all of the nonlinear finitary linear simple locally finite groups,
including also the uncountable ones. If x is an uncountable cardinal, then it is not
true that there exists a unique group of cardinality x of each geometric type over

each locally finite field K.)

Theorem 5.1 (Hall [8]). A countable nonlinear simple locally finite group G that
has a faithful representation as a finitary linear group is isomorphic to one of:

(i) the infinite alternating group Alt(N);
(i) the stable special linear group SLY (K) over some locally finite field K ;

(iv

)
)
(iii) the stable symplectic group FSp(K) over some locally finite field K ;
) the stable special unitary group FSU(K) over some locally finite field K ;
)

(v) the stable orthogonal group FQ(K) over some locally finite field K.

For a clear introduction to the classical finitary linear groups SLY (K), FSp(K),
FSU(K), FQ(K) and their associated geometries, see Hall [7].

Recall that, by Corollary 1.3, the infinite alternating group Alt(N) has no non-
trivial URSs. Also, Theorem 1.8 implies that if G has a nontrivial URS and G is
isomorphic to SLY (K), FSp(K), FSU(K) or FQ(K), then K is a finite field.

5.1. The stable special linear group. For the rest of this section, let V' =
@D,.cn+ Ken be an infinite dimensional vector space over the finite field K and
let V* be the corresponding dual space. For each ¢ € V* and = € V such that
(x) =0, let t, , be the corresponding transvection defined by

to (V) =v+ @)z
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Let B* = { e} | n € NT } be the set of elements of the dual space V* corresponding
to the basis B ={e, | n € N* } and let T < V* be the subspace generated by B*.
If o =37 kiely € T, then we will write * = > | kien, .

Definition 5.2. The stable special linear group SLY (K) is the subgroup of GL(V)
generated by {t, . |p €T,z € V,p(x) =0}.

For each n € N* | let V,, be the subspace of V generated by { e, ez, -+ , e, } and
let V¥ be the subspace of V* generated by {ef,e5, -, e’ }. Then we can identify
SL(V,,) with the subgroup of SL2 (K) generated by

{too | 0 €V 2 €V 0(x) =0}

and we have that SLI (K) = U, cn+ SL(V,), where the corresponding embedding
SL(V,) < SL(V,41) is given by

A0
011

Ar—

In [13], Leinen-Puglisi classified the confined subgroups of SLY (K) as follows.
Here, by definition, if S < T and U < V are subspaces, then

anng(U) ={p eS| p(u)=0forall ue U},

and similarly for anng (.9).

Theorem 5.3 (Leinen-Puglisi [13]). If K is a finite field, then a subgroup H of
SLY (K) is confined if and only if there exist subspaces S < T and U <V of finite

codimensions such that:
e anng(U) =0 and anny(S) = 0;
o Tx(S,U) = (tpa e SzelUpx)=0)<H.

This classification theorem easily implies the following result.
Theorem 5.4. The stable special linear group SLY (K) has no nontrivial URSs.

Proof. Let G = SLY (K) and suppose that X C Subg is a nontrivial URS. Let
H < G be a subgroup such that H € X. Then H is confined and hence there exist

subspaces S < T and U < V of finite codimensions such that:

e anng(U) = 0 and anny (S) = 0;
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o Tx(S,U)=(tpu e S,zelUpx)=0)< H.
Let R={¢* €V |peS}andlet W = RNU. Then W also has finite codimension;

say, codim W = d. For each n € NT, let W,, = W NV,,. Then for each n > d + 2,
we have that dim W,, > n — d and that

SL(Wy) = (tepz | @z €Wy, o(x)=0) < SL(V,) N H.

But then there exists g, € SL(V,) such that SL(V,,_4) < g, H g, ! and so G =
SLY (K) lies in the closure of { gHg™' | g € G }, which contradicts the assumption
that X is a nontrivial URS. O

5.2. The classical finitary linear groups of isometries. Once again, let V =
D,,cn+ Ken be an infinite dimensional vector space over the finite field K and let
SLY (K) be the stable special linear group. Then the classical finitary linear groups
of isometries FSp(K), FSU(K) and FQ(K) are defined as follows.

First let o0 be the canonical nondegenerate symplectic form on V' such that

o(e20t1,€2042) = —0(€2042,€2041) =1

for all £ € N; and otherwise o(e;,e;) = 0. Let Sp(K) be the corresponding sym-

plectic group; i.e. the group of all o-preserving elements g € GL(V).
Definition 5.5. The stable symplectic group is FSp(K) = Sp(K) N SLY (K).

Next suppose that the finite field K admits an automorphism « of order 2. Let
o be the canonical nondegenerate unitary form on V' such that o(e;, e;) = d;;; and
let GU(K) be the corresponding unitary group; i.e. the group of all o-preserving
elements g € GL(V).

Definition 5.6. The stable special unitary group is FSU(K) = GU(K)NSLY (K).
Finally let @ : V — K be the quadratic form such that
V=H 1lHy1l ---1H, 1.

is the direct sum of the pairwise orthogonal hyperbolic 2-spaces H,, = (€a,—_1, €2n ),
where Q(aean—1+Be2,) = af. Let GO(K) be the corresponding orthogonal group;
i.e. the group of all @-preserving elements g € GL(V).
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Definition 5.7. The stable orthogonal group is FQ(K) = (GO(K) N SLY (K))';
i.e. FQ(K) is the commutator subgroup of GO(K) N SLY (K).

We next need to recall some features of the quadratic geometry associated with
each finite field of characteristic 2. So suppose that K has characteristic 2 and that
o is the canonical nondegenerate symplectic form on V' = P, .+ Ke,. Recall that

a quadratic form ¢ : V — K is said to be associated with o if for all z, y € V,

o(z,y) = q(z +y) +q(x) + q(y).

Let Q be the compact space of the quadratic forms associated with ¢. Then we
can define an action of the stable symplectic group F'Sp(K) as a group of homeo-

morphisms of Q by (g ¢)(z) = q(g~*(z)).
Proposition 5.8. FSp(K) ~ Q is a minimal action.

Proof. For each m > 1, let o, be the restriction of o to Vo, = @7221 Ke,, and let
Q.. be the set of quadratic forms ¢, : Vo, — K associated with o,,. Then the

finite symplectic group Sp(2m, K) has two orbits under its action on Q,,,; namely,

Q. ={qm € Qm | (Vam, ¢m ) is an O°-geometry },

where € € {4+, — }. Here (Vay,, g ) is an OF-geometry if Va,, is an othogonal sum
of m hyperbolic 2-spaces; and ( Vo, G ) is an O~ -geometry if Vs, is an othogonal

sum of m — 1 hyperbolic 2-spaces and one anisotropic 2-space. Note that the sets

Q(Qm)Z{q€Q|QTV2m=(Jm}7 quQm,mEN+,

form a clopen basis for the compact topology on Q.

Let ¢ € Q; and for each m € N*t, let ¢, = ¢ | Vom. Let Q(q),) be any
basic clopen subset of Q, where ¢/, € Q,,. Recall that the orthogonal sum of two
hyperbolic 2-spaces is isometric to the orthogonal sum of two anisotropic 2-spaces.
(For example, see Aschbacher [1, 21.2].) It follows that ¢, can be extended to a
quadratic form ¢q;,, ,; € Q41 such that g, 1, gmy1 lie in the same Sp(2m +2, K)-
orbit; and hence there exists g € F\Sp(K) such that g-q € Q(q),,1) € Q(q,,). O

For later use, we also record the following result, which is an easy consequence

of Parker-Rowley [18, Theorem 1.1].
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Lemma 5.9. Suppose that K is a finite field of characteristic 2 and that m > 3.
Let V(2m, K) be a 2m-dimensional vector space over K, let o be a nondegen-
erate symplectic form on V(2m,K) and let q be an associated quadratic form.
Let GO(2m, K) < Sp(2m, K) be the orthogonal group corresponding to q and let
Q(2m,K) = GO(2m, K)'. Then the only subgroups H of Sp(2m, K) satisfying

Q2m,K) < H < Sp(2m, K).
are Q(2m, K), GO(2m, K) and Sp(2m, K).

In the remainder of this section, we will prove that if G is a finitary linear
simple locally finite group and X C Subg is a nontrivial URS, then G is the
stable symplectic group F'Sp(K) over a finite field K of characteristic 2, and either
X ={FGO(q,K)|qge Q}tor X ={FQ(q,K) | ¢ € Q}. Our proof makes use of
the following classification of the confined subgroups of the classical finitary linear

groups of isometries.

Notation 5.10. If ¢ € Q, then GO(q, K) denotes the corresponding orthogonal
group and FQ(q, K) = (GO(q, K) N SL (K))'.

Notation 5.11. If G is a subgroup of GL(V) and W is a subspace of V', then
Ne(W)={geG|gW)=W}
is the setwise stabilizer of W in G and
Co(W)={g€G|g(w)=w for all we W}
is the pointwise stabilizer of W in G.

Theorem 5.12 (Leinen-Puglisi [13]). Suppose that G is a classical finitary linear
group of isometries relative to a non-degenerate symplectic, unitary, or quadratic
form on the vector-space V' over the finite field K and that H < G is a confined
subgroup. Then there exists a unique minimal H-invariant subspace W of finite
codimension in V such that one of the following holds:
(a) If char(K) = 2 and G is a stable symplectic group, then there exists a
quadratic form q associated with the symplectic form o with the property that
HANT has finite index in Np(W), where T = FQ(q, K) is the corresponding
stable orthogonal subgroup of G.
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(b) In all other cases, H has finite index in Ng(W).

Lemma 5.13. Suppose that G is a classical finitary linear group of isometries
relative to a non-degenerate symplectic, unitary, or quadratic form on the vector-
space V' over the finite field K and that H < G is a confined subgroup. If there
exists an H-invariant subspace W of finite codimension in V' such that H has finite

index in Ng(W), then G lies in the closure of {gHg ' | g€ G}.

Proof. We will just consider the case when G = FSp(K) is the stable symplectic
group. (The other cases are very similar.) Suppose that H < G is a confined
subgroup and that there exists an H-invariant subspace W of finite codimension d
in V such that H has finite index in Ng(W). Let [Ng(W) : H|] = £ and let m > 3 be
such that |PSp(2m, K)| > £!. Since dim WN V(g4 > 2m+d, it follows that there
exists a nondegenerate subspace U < W N V5(444,) such that dimU = 2m. Since
U is nondegenerate, it follows that V = U @ U*. Let Sp(U) = Ng(U) N Cg(U™).
Then, since Sp(U) acts trivially on V/U, it follows that Sp(U) < Ng(W). Also
[Sp(U) : Sp(U)NH] < £ and hence Sp(U) < H. Finally, since U, Va,,, < Va(qym) are
nondegenerate subspaces of dimension 2m, it follows that there exists an element

g € Sp(2(d + m), K) such that
Sp(2m, K) =g Sp(U) g~ < gHg™".
Thus G = U,,,>, Sp(2m, K) lies in the closure of {gHg™' | g € G'}. O

Proof of Theorem 1.5. Suppose that G is a classical finitary linear group and that
X C Subg is a nontrivial URS. Let H € X. Then H is a confined subgroup of G.
Applying Theorem 5.12 and Lemma 5.13, since G ¢ X, it follows that G = F'Sp(K)
is the stable symplectic group over a finite field K of characteristic 2 and that there
exists:

e a unique minimal H-invariant subspace W of finite codimension in V;

e a quadratic form ¢ on V associated with the symplectic form o;

such that H NT" has finite index in Np (W), where I' = FQ(q, K). For each m > 3,
let T, = FQ(q, K) N Sp(2m, K). Then, arguing as in the proof of Lemma 5.13, for

each m > 3, there exists g,, € I' such that I',,, < g, H g;,,}. Thus

T < gm H g, 1 Sp(2m, K) < Sp(2m, K).
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Since G ¢ X, it follows that for all but finitely many m,

gm H g;,' 0 Sp(2m, K) # Sp(2m, K).

Applying Lemma 5.9, it follows that for all but finitely many m, either

gm H g,," 0 Sp(2m, K) = FQ(q, K) N Sp(2m, K)

or else

gm H g5," 1 Sp(2m, K) = FGO(q, K) N Sp(2m, K).

This implies that either F'Q(q, K) € X or FGO(q, K) € X, and the result follows.
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