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Abstract. We study the uniformly recurrent subgroups of simple locally finite

groups.

1. Introduction

Let G be a countably infinite group and let SubG be the compact space of

subgroups H 6 G. Then G acts as a group of homeomorphisms of SubG via the

conjugation action, H
g7→ gHg−1. Following Glasner-Weiss [5], a subset X ⊆ SubG

is said to be a uniformly recurrent subgroup or URS if X is a minimal G-invariant

closed subset of SubG. For example, if N E G is a normal subgroup, then the

singleton set {N } is a URS of G. Throughout this paper, these singleton URSs

will be regarded as trivial URSs. More interesting examples of URSs arise as the

stabilizer URSs of minimal actions. For example, suppose that ∆ is a compact space

and that G y ∆ is a minimal G-action. Let f : ∆ → SubG be the G-equivariant

stabilizer map defined by

x 7→ Gx = { g ∈ G | g · x = x }.

and let X∆ = f(∆). If f is continuous, then it follows easily that X∆ is a URS of

G; and, as expected, X∆ is called the stabilizer URS of the minimal action Gy ∆.

(It is well-known and easily checked that the map f : ∆ → SubG is continuous if

and only Fix∆(g) = {x ∈ ∆ | g ·x = x } is clopen for every g ∈ G.) By Matte-Bon-

Tsankov [16], if X ⊆ SubG is any URS of G, then there exists a minimal action

G y ∆ such that the stabilizer map f : ∆ → SubG is continuous and f(∆) = X.

(In fact, Matte-Bon-Tsankov [16] have proved this realization theorem in the wider

setting of locally compact groups.)
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In this paper, we will study the URSs of the countably infinite simple locally

finite groups. From now on, in order to slightly simplify the terminology, we will

use the expression “locally finite group” as an abbreviation for “countably infinite

locally finite group”.

We will begin by discussing two representative examples of nontrivial URSs of

simple locally finite groups.

Example 1.1. If Alt(Ω1), Alt(Ω2) are finite alternating groups, then a proper

embedding ϕ : Alt(Ω1)→ Alt(Ω2) is said to be strictly diagonal if ϕ(Alt(Ω1)) acts

via its natural permutation representation on each of its orbits in Ω2. The simple

locally finite group G =
⋃
i∈NGi is said to be the strictly diagonal limit of the

finite alternating groups Gi = Alt(∆i) if every embedding Gi ↪→ Gi+1 is strictly

diagonal. In this case, let s0 = |∆0| and let si+1 = |∆i+1|/|∆i| be the number of

Gi-orbits on ∆i+1. Then each si > 1 and we can suppose that

∆i = s0 × s1 × · · · × si,

where the embedding Gi ↪→ Gi+1 is given by

g · ( `0, · · · , `i, `i+1 ) = ( g · (`0, · · · , `i), `i+1 ).

Equip the infinite product ∆ =
∏
i≥0 si with its usual product topology. Then G

acts as a group of homeomorphisms of the compact space ∆ via

g · ( `0, · · · , `i, `i+1, `i+2, · · · ) = ( g · (`0, · · · , `i), `i+1, `i+2, · · · ), g ∈ Gi,

and it is clear that every G-orbit is dense in ∆. Thus Gy ∆ is a minimal G-action.

Since the stabilizer map x
f7→ Gx is continuous and 1  Gx  G for each x ∈ ∆, it

follows that X∆ = f(∆) is a nontrivial URS of G. We will refer to G y ∆ as the

canonical minimal action of G.

Recall that a simple locally finite group G is said to be an L(Alt)-group if we can

express G =
⋃
i∈NGi as the union of a strictly increasing chain of finite alternating

groups Gi = Alt(∆i). (Here we allow arbitrary embeddings Gi ↪→ Gi+1.) In [21],

Thomas-Tucker-Drob proved the following classification theorem as a corollary of

their classification of the ergodic invariant random subgroups of the L(Alt)-groups.
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Theorem 1.2 (Thomas-Tucker-Drob [21]). If G is an L(Alt)-group and X ⊆ SubG

is a nontrivial URS, then G can be expressed as a strictly diagonal limit of finite

alternating groups and X is the stabilizer URS of the corresponding canonical min-

imal action Gy ∆.

For later use, we record the following consequence of Theorem 1.2.

Corollary 1.3 (Thomas-Tucker-Drob [21]). The infinite alternating group Alt(N)

has no nontrivial URSs.

Proof. Clearly Alt(N) is an L(Alt)-group, and it is easily seen that Alt(N) cannot

be expressed as a strictly diagonal limit of finite alternating groups. �

In Section 2, we will extend Theorem 1.2 to a classification of the nontrivial URSs

of the simple locally finite groups which can be expressed as an increasing union

G =
⋃
i∈NGi of products of finite alternating groups Gi = Alt(∆i1)×· · ·×Alt(∆iri).

More precisely, we will show that every nontrivial URS of such a group G arises as

the stabilizer URS of the minimal action of G on the compact path space P(B) of

an associated unital Bratteli diagram B.

Example 1.4. Let K be a finite field and let σ be the nondegenerate symplectic

form on the infinite dimensional vector space V =
⊕

`∈N+ Ke` such that

σ(e2`+1, e2`+2) = −σ(e2`+2, e2`+1) = 1

for all ` ∈ N; and otherwise σ(ei, ej) = 0. Let Sp(K) be the corresponding sym-

plectic group; and for each n ≥ 1, let Sp(2n,K) be the subgroup consisting of the

elements g ∈ Sp(K) such that g(e`) = e` for all ` ≥ 2n + 1. (Thus Sp(2n,K)

can be identified with the finite symplectic group on V2n =
⊕

1≤`≤2nKe`.) Then

the stable symplectic group FSp(K) =
⋃
n∈N+ Sp(2n,K) is a simple locally finite

group.

Now suppose that K has characteristic 2 and let Q be the set of quadratic forms

q on V such that for all x, y ∈ V ,

σ(x, y) = q(x+ y) + q(x) + q(y);

and for each q ∈ Q, let GO(q,K) be the corresponding orthogonal group and let

FGO(q,K) = GO(q,K) ∩ FSp(K).
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Clearly Q is a closed subset of the compact space KV of functions f : V → K.

Consider the action of the stable symplectic group G = FSp(K) on Q defined

by (g · q)(x) = q(g−1(x)). Then, as we will explain in Section 5, every G-orbit

is dense in Q and thus G y Q is a minimal G-action. Since the stabilizer map

q
f7→ Gq = FGO(q,K) is continuous and each orthogonal group FGO(q,K) satisfies

1  FGO(q,K)  G, it follows that

X = {FGO(q,K) | q ∈ Q}

is a nontrivial URS of G.

We can also define a closely related second nontrivial URS of G as follows.

For each q ∈ Q, let FΩ(q,K) = FGO(q,K)′ be the commutator subgroup of

FGO(q,K). (Alternatively, FΩ(q,K) can be characterized as the subgroup of

FGO(q,K) consisting of the elements that can be expressed as a product of an

even number of orthogonal transvections. For example, see Wilson [23] for a clear

account of the corresponding orthogonal subgroups of the finite symplectic groups

Sp(2n,K).) Then [FGO(q,K) : FΩ(q,K) ] = 2. Clearly the G-equivariant map

FGO(q,K) 7→ FΩ(q,K) is continuous, it follows that

X ′ = {FΩ(q,K) | q ∈ Q}

is also a nontrivial URS of G.

In Section 5, we will prove the following classification theorem.

Theorem 1.5. If G is a finitary linear simple locally finite group and X ⊆ SubG is

a nontrivial URS, then G is the stable symplectic group FSp(K) over a finite field

K of characteristic 2, and either

(i) X = {FGO(q,K) | q ∈ Q}, or

(ii) X = {FΩ(q,K) | q ∈ Q}.

Here a group G is said to be finitary linear if G has a faithful representation as a

group of linear transformations of an infinite dimensional vector space V over a field

K such that the fixed-point subspace of every element g ∈ G has finite codimension

in V . (In particular, the class of finitary linear simple locally finite groups includes

the class of linear simple locally finite groups.)
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In the remainder of this introduction, we will discuss the problem of classifying

the URS of arbitrary simple locally finite groups. We will begin by making the

following easy but useful observation.

Proposition 1.6. If G is a simple locally finite group, then G has a nontrivial

URS if and only if there exist subgroups H, F 6 G such that:

(i) F is finite;

(ii) 1  gHg−1 ∩ F  F for all g ∈ G.

Proof. First suppose that X ⊆ SubG is a nontrivial URS of G. Then 1, G /∈ X.

Let H 6 G be any subgroup such that H ∈ X. Then we claim that there exists a

finite subgroup F such that 1  gHg−1 ∩ F  F for all g ∈ G. Suppose not. Then

it follows easily that either:

(a) for each finite subgroup F 6 G, there exists an element g ∈ G such that

gHg−1 ∩ F = 1; or

(b) for each finite subgroup F 6 G, there exists an element g ∈ G such that

gHg−1 ∩ F = F .

However, if (a) holds, then 1 lies in the closure of { gHg−1 | g ∈ G }; while if (b)

holds, then G lies in the closure of { gHg−1 | g ∈ G }. Hence such a finite subgroup

F 6 G does indeed exist.

Next suppose that there exists a subgroups H, F 6 G such that conditions (i)

and (ii) hold. Let Z be the closure of { gHg−1 | g ∈ G } in SubG. Then 1, G /∈ Z.

Let X ⊆ Z be a minimal G-invariant closed subset of SubG. Then X is a nontrivial

URS of G. �

A weaker version of the above condition on the subgroup H 6 G has been

extensively studied in connection with the problem of the determining the ideal

lattices of the complex group algebras CG of simple locally finite groups G.

Definition 1.7. A subgroup H of a locally finite group G is said to be confined if

there exists a finite subgroup F 6 G such that gHg−1 ∩ F 6= 1 for all g ∈ G.

In particular, if H, F 6 G satisfy conditions 1.6(i) and 1.6(ii), then it follows

that H is a proper confined subgroup of G. (However, as we will see later, the

existence of a proper confined subgroup is not enough to guarantee the existence
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of a nontrivial URS.) The following classification theorem summarizes the relevant

results of Hartley-Zalesskii [9] and Leinen-Puglisi [13, 14]. (It should be stressed

that Hall’s classification [8] of the nonlinear finitary linear simple locally finite

groups also plays an essential role in the proof of Theorem 1.8.)

Theorem 1.8. If G is a simple locally finite group, then G has a proper confined

subgroup if and only if G satisfies one of the following conditions:

(i) G is isomorphic to a nonlinear finitary linear group over a finite field K;

(ii) G is of 1-type.

Thus, in view of Theorem 1.5 and Theorem 1.8, the classification problem for

the nontrivial URSs of simple locally finite groups has been reduced to the case

when G is of 1-type. The definition of “1-type” makes use of the notion of a Kegel

sequence. (By Kegel-Wehrfritz [11, Lemma 4.5], every simple locally finite group

has a Kegel sequence.)

Definition 1.9. If G is a simple locally finite group, then a Kegel sequence for G

is a sequence K = { (Gi,Mi ) | i ∈ N } of pairs of finite subgroups of G such that:

• G0 6 G1 6 · · · 6 Gi 6 Gi+1 6 · · ·

• G =
⋃
i∈NGi

• Mi is a maximal proper normal subgroup of Gi

• Gi ∩Mi+1 = 1.

The finite simple groups {Gi/Mi | i ∈ N } are called the factors of the Kegel

sequence K.

Definition 1.10. Suppose that G is a simple locally finite group which is not

finitary linear. Then G is of 1-type if every Kegel sequence of G has a factor which

is isomorphic to an alternating group.

Of course, it follows that if G is a simple locally finite group of 1-type and

K = { (Gi,Mi ) | i ∈ N } is a Kegel sequence, then Gi/Mi is isomorphic to an

alternating group for all but finitely many i ∈ N. The assumption that G is of

1-type has strong structural consequences. (For the general theory of groups of

1-type, see Delcroix-Meierfrankenfeld [4].)
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For example, suppose that G is a simple locally finite group and that G can

be expressed as an increasing union G =
⋃
i∈NGi of products of finite alternating

groups Gi = Alt(∆i1)× · · · ×Alt(∆iri); and for each i ∈ N and 1 ≤ j ≤ ri, let

Nij =
∏
{Alt(∆i`) | 1 ≤ ` ≤ ri, ` 6= j }.

The union G =
⋃
i∈NGi is said to be strongly diagonal if whenever i < k and Σ is a

nontrivial orbit of Gi on some ∆kt, then there exists j such that Nij acts trivially

on Σ and Alt(∆ij) acts naturally on Σ.

Theorem 1.11 (Hartley-Zalesskii [10]). Suppose that G is a simple locally finite

group which can be expressed as an increasing union G =
⋃
i∈NGi of products of

finite alternating groups. If G is of 1-type, then there exists i0 such that the union

G =
⋃
i≥i0 Gi is strongly diagonal.

Definition 1.12. The simple locally finite group G is an LDA-group if G can be

expressed as a strongly diagonal union G =
⋃
i∈NGi of products of finite alternating

groups.

On the other hand, suppose that G is a finitary linear simple locally finite group

which can be expressed as an increasing union of products of finite alternating

groups. Then G has a Kegel sequence, each of whose factors is isomorphic to a

finite alternating group. (For example, this follows easily from Meierfrankenfeld

[17, Lemma 2.15].) Thus the following result is an immediate consequence of Hall

[6, Theorem 5.2].

Theorem 1.13. If G is a finitary linear simple locally finite group which can

be expressed as an increasing union of products of finite alternating groups, then

G ∼= Alt(N).

Once again, suppose thatG is a simple locally finite group which can be expressed

as an increasing union of products of finite alternating groups. Then, applying

Theorems 1.8, 1.11, 1.13 and Corollary 1.3, it follows that if G has a nontrivial

URS, then G is an LDA-group.

In Sections 2, 3 and 4, we will classify the URSs of the LDA-groups; and in

Section 5, we will classify the URSs of the finitary linear simple locally finite groups.

As we will see in Section 5, the classification of the URSs of the finitary linear simple
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locally finite groups is an easy consequence of Leinen-Puglisi’s classification [13] of

the confined subgroups of the classical finitary linear simple locally finite groups.

The classification of the URSs of the LDA-groups is more interesting and makes

use of an observation that is potentially useful in the setting of arbitary countable

amenable groups; namely, that if G is a countable amenable group and X ⊆ SubG is

a URS, then there exists a G-invariant ergodic Borel probability measure ν on SubG

which concentrates on X. Consequently, measure-theoretic techniques (such as the

Pointwise Ergodic Theorem for countable amenable groups [15]) can be employed

in the study of the URSs of countable amenable groups.

Recall that a Borel probability measure ν on SubG which is invariant under the

conjugation action G y SubG is called an invariant random subgroup or IRS. For

example, suppose that G acts via measure-preserving maps on the Borel probability

space (Z, µ ) and let f : Z → SubG be the G-equivariant stabilizer map defined by

z 7→ Gz = { g ∈ G | g · z = z }.

Then the corresponding stabilizer distribution ν = f∗µ is an IRS of G. In fact, by

a result of Abért-Glasner-Virag [2], every IRS of G can be realized as the stabilizer

distribution of a suitably chosen measure-preserving action. Moreover, by Creutz-

Peterson [3], if ν is an ergodic IRS of G, then ν is the stabilizer distribution of an

ergodic action Gy (Z, µ ).

This remaining sections of this paper are organized as follows. In Section 2,

following Lavrenyuk-Nekrashevych [12], we will first describe how to realize each

LDA-group G as the group A(B) associated with a suitable Bratteli diagram B;

and then we will state the classification theorem for the URSs of the LDA-groups.

In Section 3, we will discuss the ergodic theory of countably infinite locally finite

groups and present some results on the normalized permutation characters of finite

groups. In Section 4, we will prove the classification theorem for the URSs of the

LDA-groups; and in Section 5, we will prove the classification theorem for the URSs

of the finitary linear simple locally finite groups.
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2. LDA-groups

Suppose that G is a simple locally finite group which can be expressed as an

increasing union G =
⋃
i∈NGi of products of finite alternating groups. Then, as

we explained in Section 1, if G has a nontrivial URS, then it follows that G is an

LDA-group. In this section, we will state the classification theorem for the URSs

of the LDA-groups. First, following Lavrenyuk-Nekrashevych [12], we will describe

how to realize each LDA-group G as the group A(B) associated with a suitable

(labelled) Bratteli diagram B.

Definition 2.1. A Bratteli diagram B = ( {Vi}, {Ei}, s, r, d ) consists of:

• a set V (B) =
⊔
i∈N Vi of vertices, where each Vi is a finite nonempty set;

• a set E(B) =
⊔
i∈N+ Ei of edges, where each Ei is a finite nonempty set;

• source maps s : Ei → Vi−1 with the property that for each vertex v ∈ Vi−1,

there exists at least one edge e ∈ Ei such that s(e) = v;

• range maps r : Ei → Vi;

• a labelling d : V (B)→ N+ such that for every vertex v ∈ V (B)

(2.1) d(v) ≥
∑

r(e)=v

d(s(e)).

The Bratteli diagram B is said to be unital if there is an equality in (2.1) for all

but finitely many vertices v ∈ V (B). (This terminology comes from the fact that

B is unital if and only if an associated approximately finite-dimensional C∗-algebra

is unital.)

To each Bratelli diagram B = ( {Vi}, {Ei}, s, r, d ), we associate a corresponding

LDA-group, A(B) =
⋃
i∈NGi, where each Gi =

∏
v∈Vi

Alt(∆v) for some set ∆v

of cardinality d(v) as follows. First we define the sets ∆v inductively by setting

∆v = {αv` | 0 ≤ ` < d(v) } if v ∈ V0, and

∆v = {σ ̂e | e ∈ Ei+1, r(e) = v, σ ∈ ∆s(e) } ∪ {αv` | k(v) ≤ ` < d(v) }
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if v ∈ Vi+1, where k(v) = d(v) −
∑

r(e)=v d(s(e)). Next for each u ∈ Vi, we define

the embedding Alt(∆u) ↪→ Gi+1 by specifying the action of each g ∈ Alt(∆u) on

each z ∈
⊔
v∈Vi+1

∆v as follows:

• if z = σ ̂ e for some σ ∈ ∆u and some edge e with s(e) = u, then

g(σ ̂e) = g(σ)̂e;
• otherwise, g(z) = z.

Clearly these embeddings extend to an embedding Gi ↪→ Gi+1, and we define

A(B) =
⋃
i∈NGi.

Remark 2.2. If (ni |∈ N ) is a strictly increasing sequence of natural numbers,

then we can define an associated Bratelli diagram B′ = ( {V ′i }, {E′i}, s′, r′, d′ ) as

follows:

• V ′i = Vni and d′ = d �
⊔
i∈N V

′
i .

• E′i is the set of paths p = e1 · · · e` in B from Vni−1 to Vni , s′(p) = s(e1) and

r′(p) = r(e`).

The Bratteli diagram B′ is said to be a telescoping of B. Clearly we can identify

A(B′) with
⋃
i∈NGni

and so A(B′) ∼= A(B).

The set P(B) of paths through B consists of the infinite sequences γ of the form

γ = αv` ̂ei+1 ̂ei+2 ̂ · · ·̂ek ̂ek+1 ̂ · · · ,
where v ∈ Vi and k(v) ≤ ` < d(v), s(ei+1) = αv` , and r(ek) = s(ek+1) for all

k ≥ i+ 1. Let A(B) y P(B) be the action defined by

g(γ) = g(αv` ̂ei+1 ̂ei+2 ̂ · · ·̂ek)̂ek+1 ̂ · · · , g ∈ Gk.

For each i ∈ N, v ∈ Vi and σ ∈ ∆v, let P (σ) be the set of paths γ ∈ P(B) of the

form

γ = σ ̂ei+1 ̂ei+2 ̂ · · ·
Then the sets P (σ) form a clopen basis for a locally compact topology on P(B).

Clearly P(B) is compact if and only if B is unital.

Remark 2.3. If B′ is a telescoping of B, then A(B′) y P(B′) is canonically

isomorphic to A(B) y P(B).

Definition 2.4. Let B = ( {Vi}, {Ei}, s, r, d ) be a Bratelli diagram.
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(a) B is thick if for every vertex u ∈ Vi, there exists a vertex v ∈ Vk for some

k > i such that u and v are connected by more than one path.

(b) B is simple if for every path γ ∈ P(B) and vertex v ∈ V (B), there exists a

path starting at v and ending in a vertex on γ.

Remark 2.5. It is easily seen that if B is a simple unital Bratteli diagram, then

for each i ∈ N, there exists j > i such that for every pair of vertices u ∈ Vi and

v ∈ Vj , there exists a path from u to v.

Theorem 2.6 (Lavrenyuk-Nekrashevych [12]). If G is a simple locally finite LDA-

group, then exactly one of the following holds:

(i) G ∼= Alt(N).

(ii) G ∼= A(B) for some simple thick Bratelli diagram B.

By Corollary 1.3, the infinite alternating group Alt(N) has no nontrivial URSs.

Thus we can restrict our attention to the LDA-groups which are isomorphic to

A(B) for some simple thick Bratelli diagram B.

Example 2.7. Suppose that B is a simple thick unital Bratelli diagram and that

G = A(B). Then P(B) compact. Also, since B is simple, it follows easily that

every G-orbit is dense in P(B). Thus Gy P(B) is a minimal G-action. Since the

stabilizer map γ
f7→ Gγ is continuous and 1  Gγ  G for each γ ∈ P(B), it follows

that XP(B) = f(P(B)) is a nontrivial URS of G. We will refer to G y P(B) as

the canonical minimal action of G.

In Section 4, we will prove the following classification theorem.

Theorem 2.8. Suppose that B is a simple thick Bratelli diagram.

(i) If B is unital, then the only nontrivial URS of A(B) is the stabilizer URS

of the canonical minimal action A(B) y P(B).

(ii) A(B) has a nontrivial URS if and only if B is unital.

3. Ergodic theory and normalized permutation characters

In this section, in preparation for the proof of Theorem 2.8, we will discuss the

ergodic theory of countably infinite locally finite groups and present some results

on the normalized permutation characters of finite groups.
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Let G =
⋃
i∈NGi be the union of the strictly increasing chain of finite subgroups

Gi and let G y (Z, µ ) be an ergodic action on a Borel probability space. Then

the following is a special case of more general results of Vershik [22, Theorem 1]

and Lindenstrauss [15, Theorem 1.3].

The Pointwise Ergodic Theorem. With the above hypotheses, if B ⊆ Z is a

µ-measurable subset, then for µ-a.e. z ∈ Z,

µ(B) = lim
i→∞

1

|Gi|
|{ g ∈ Gi | g · z ∈ B }|.

In particular, the Pointwise Ergodic Theorem applies whenB is the µ-measurable

subset FixZ(g) = { z ∈ Z | g · z = z } for some g ∈ G. For each z ∈ Z and i ∈ N,

let Ωi(z) = { g · z | g ∈ Gi } be the corresponding Gi-orbit. Then, as pointed out in

Thomas-Tucker-Drob [21, Theorem 2.1], the following result is an easy consequence

of the Pointwise Ergodic Theorem.

Theorem 3.1. With the above hypotheses, for µ-a.e. z ∈ Z, for all g ∈ G,

µ( FixZ(g) ) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) |.

Of course, the permutation group Gi y Ωi(z) is isomorphic to Gi y Gi/Hi,

where Gi/Hi is the set of cosets of Hi = {h ∈ Gi | h · z = z } in Gi. The following

simple observation will be used repeatedly in our later applications of Theorem 3.1.

(For example, see Thomas-Tucker-Drob [21, Proposition 2.2].)

Definition 3.2. If K y Ω is an action of a finite group K on a finite set Ω, then

the corresponding normalized permutation character θ is defined by

θ(g) = | FixΩ(g) |/|Ω |, g ∈ K.

Proposition 3.3. If H 6 K are finite groups and θ is the normalized permutation

character corresponding to the action K y K/H, then

θ(g) =
| gK ∩H |
| gK |

=
| {s ∈ K | sgs−1 ∈ H }|

|K|
.

The following consequence of Proposition 3.3 implies that when computing upper

bounds for the normalized permutation characters of actions A y A/H, we can

restrict our attention to those coming from maximal subgroups H < A.
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Corollary 3.4. If H 6 H ′ 6 A are finite groups and θ, θ′ are the normalized

permutation characters corresponding to the actions A y A/H and A y A/H ′,

then θ(g) ≤ θ′(g) for all g ∈ A.

We will next present two easy but useful results on the normalized permutation

characters of finite products of finite groups. Suppose that K =
∏

1≤`≤mK` is a

finite product of finite groups. Let H 6 K and let θ be the normalized permutation

character corresponding to the action K y K/H. For each g ∈ K and 1 ≤ ` ≤ m,

let g` ∈ K` be the element such that g = g1 · · · g` · · · gm. Let H` = {h` | h ∈ H }

and let θ` be the normalized permutation character corresponding to the action

K` y K`/H`.

Proposition 3.5. With the above hypotheses, θ(g) ≤
∏

1≤`≤m θ`(g`) for all g ∈ K.

Proof. Let P =
∏

1≤`≤mH`. Then H 6 P 6 K; and by repeated applications of

Proposition 3.3, we obtain that

θ(g) =
|{ s ∈ K | sgs−1 ∈ H }|

|K|

≤ |{ s ∈ K | sgs
−1 ∈ P }|

|K|

=
|{ s ∈ K | s`g`s−1

` ∈ H` for all 1 ≤ ` ≤ m }|
|K|

=
∏

1≤`≤m

|{ t ∈ K` | tg`t−1 ∈ H` }|
|K`|

=
∏

1≤`≤m
θ`(g`).

�

Next suppose that S1, · · · , Sr are pairwise isomorphic groups and that r ≥ 2.

Then H 6
∏

1≤`≤r S` is said to be a diagonal subgroup if there exist isomorphisms

π` : S1 → S` for 2 ≤ ` ≤ r such that H = { (h, π2(h), · · · , πr(h)) | h ∈ S1 }. In the

degenerate case when r = 1, we will take S1 to be the only diagonal subgroup of S1.

Slightly abusing notation, since none of our arguments depend on the particular

isomorphisms π`, we will write

H = Diag(
∏

1≤`≤r

S` ).
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Lemma 3.6. Let K = S × · · · × S︸ ︷︷ ︸
r times

, where S is a finite group and r ≥ 2, and

let H = Diag(K ) = { (g, · · · , g) | g ∈ S }. If θ is the normalized permutation

character corresponding to the action K y K/H and h = (g, · · · , g) ∈ H, then

θ(h) =
(

1
|gS |

)r−1

.

Proof. Note that

θ(h) = |hK ∩H|/|hK | = |gS |
|gS |r

=

(
1

|gS |

)r−1

.

�

In the proof of Theorem 2.8, we will also make use of the following result on the

subgroups of finite products of simple nonabelian groups.

Proposition 3.7. Suppose that S1, · · · , Sm are simple nonabelian groups and that

H 6 S1 × · · · × Sm is a subgroup such that each of the projections H → S` is

surjective. Then there exists a partition A1 t · · · tAr of { 1, · · · ,m } such that

H =

r∏
k=1

Diag(
∏
`∈Ak

S` ).

Sketch proof. For each h ∈ H, let h = h1h2 · · ·hm, where each h` ∈ S`, and let

s(h) = { ` | h` 6= 1 }. Let P = {A1, · · · , Ar } be the collection of minimal subsets

A ⊆ { 1, · · · ,m } such that there exists 1 6= h ∈ H with s(h) = A. Then it is easily

checked that P is a partition of { 1, · · · ,m } and that

H =

r∏
k=1

Diag(
∏
`∈Ak

S` ).

�

Finally we record two results from Thomas-Tucker-Drob [21, Section 6] on the

normalized permutation characters of finite alternating groups. In the statements

of both of the following lemmas, ∆ denotes a finite set of cardinalty |∆| = n.

Lemma 3.8. For any ε > 0 and 0 < a ≤ 1, there exists an integer ra,ε such that

if ra,ε ≤ r ≤ n/2 and H < Alt(∆) is a subgroup with an H-invariant set Σ ⊆ ∆ of

cardinality |Σ| = r, then for any element g ∈ Alt(∆) satisfying | supp(g)| ≥ an,

|{s ∈ Alt(∆) | sgs−1 ∈ H}|
|Alt(∆)|

< ε.
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Lemma 3.9. For any ε > 0 and 0 < a ≤ 1 and r ≥ 0, there exists an integer da,r,ε

such that if da,r,ε ≤ d ≤ (n− r)/2 and H < Alt(∆) is any subgroup such that

(i) there exists an H-invariant subset Σ ⊆ ∆ of cardinality r, and

(ii) H acts imprimitively on ∆rΣ with a proper system of imprimitivity B of

blocksize d,

then for any element g ∈ Alt(∆) satisfying | supp(g)| ≥ an,

|{ s ∈ Alt(∆) | sgs−1 ∈ H }|
|Alt(∆)|

< ε.

4. The proof of Theorem 2.8

In this section, we will present the proof of Theorem 2.8. We will first prove

that if B is a unital simple thick Bratelli diagram, then the only nontrivial URS

of A(B) is the stabilizer URS of the canonical minimal action A(B) y P(B). So

suppose that B is a unital simple thick Bratelli diagram. Then, after replacing B

by a suitable telescoping if necessary, we can suppose that

k(v) = d(v)−
∑

r(e)=v

d(s(e)) = 0

for every vertex v ∈ V (B) r V0. Similarly, by Remark 2.5, we can suppose that

for every i ∈ N, every vertex u ∈ Vi is joined by an edge to every vertex v ∈ Vi+1.

Let G = A(B) =
⋃
i∈NGi be the corresponding LDA-group, where each Gi =∏

v∈Vi
Alt(∆v).

Lemma 4.1. lim min{ |∆v| : v ∈ Vi } =∞.

Proof. Let v ∈ Vi+1. Since every u ∈ Vi is joined to v by an edge, we have that

|∆v| ≥
∑
u∈Vi

|∆u|,

and the result follows. �

Lemma 4.2. lim inf min{ | supp∆v
(g)|/|∆v| : v ∈ Vi } > 0 for all 1 6= g ∈ G.

Proof. Suppose that ( ki | i ∈ N ) is a strictly increasing sequence of natural numbers

and that vi ∈ Vki for each i ∈ N. Then it is easily checked that

N = { g ∈ G | lim
i→∞

| supp∆vi
(g)|/|∆vi | = 0 }
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is a normal subgroup of G. On the other hand, let h ∈ G0 be such that h � ∆u

is fixed-point-free for all u ∈ V0. Then for all i ≥ 0, regarding h as an element of

Gi, we have that h � ∆v is fixed-point-free for all v ∈ Vi and so h /∈ N . Since G is

simple, the result follows. �

Suppose that X ⊆ SubG is a nontrivial URS. Since G is amenable, there exists

a G-invariant ergodic Borel probability measure ν on SubG which concentrates on

X. Applying Creutz-Peterson [3, Proposition 3.3.1], we can suppose that ν is the

stabilizer distribution of an ergodic action G y (Z, µ ). Let χ(g) = µ( FixZ(g) );

and for each z ∈ Z and i ∈ N, let Ωi(z) = { g · z | g ∈ Gi }. Then, by Theorem 3.1,

for µ-a.e. z ∈ Z, for all g ∈ G, we have that

χ(g) = µ( FixZ(g) ) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) |.

Fix such an element z ∈ Z and let H = { g ∈ G | g · z = z } be the corresponding

point stabilizer. Then we can suppose that χ(g) > 0 for all g ∈ H. For each i ∈ N,

let Hi = H ∩ Gi. Then Gi y Ωi(z) is isomorphic to Gi y Gi/Hi. Let θi be the

normalized permutation character corresponding to the action Gi y Gi/Hi.

For each i ∈ N, v ∈ Vi and g ∈ Gi, let gv ∈ Alt(∆v) be such that g =
∏
v∈Vi

gv;

and for each v ∈ Vi, let Hv = {hv | h ∈ Hi } and let θv be the normalized

permutation character corresponding to the action Alt(∆v) y Alt(∆v)/Hv. Then,

applying Proposition 3.5, we obtain:

Lemma 4.3. θi(g) ≤
∏
v∈Vi

θv(gv) for all g ∈ Gi.

For each i ∈ N and v ∈ Vi, let nv = |∆v| and let ni =
∑
v∈Vi

nv. (Of course,

using the notation introduced earlier, we have that nv = |∆v| = d(v), where d is

the labelling function of the Bratelli diagram B. We have introduced the extra

notation nv in order to make the calculations in this section a little more readable.)

Lemma 4.4. There exist constants s ≥ 0, d ≥ 1 such that for all but finitely

many i ∈ N, for all v ∈ Vi, there exists a unique Hv-invariant subset Σv ⊆ ∆v of

cardinality 0 ≤ |Σv| ≤ s such that:

• Hv acts transitively on ∆v r Σv; and

• there exists a maximal system of imprimitivity Bv of blocksize 1 ≤ dv ≤ d

for the action Hv y ∆v r Σv and Hv induces at least Alt(Bv) on Bv.
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Remark 4.5. Note that we allow the possibility that dv = 1, in which case Hv

induces at least Alt(∆v r Σv) on ∆v r Σv.

Proof of Lemma 4.4. Let 1 6= g ∈ H be an element of prime order p; say, g ∈ Hi0 .

Then, applying Lemma 4.3, since

0 < χ(g) = lim
i→∞

| FixΩi(z)(g) |/|Ωi(z) | = lim
i→∞

θi(g),

it follows that

lim inf min{ θv(gv) : v ∈ Vi } > 0.

Also, by Lemma 4.2, there exists a constant 0 < a ≤ 1 such that for all i ≥ i0 and

v ∈ Vi, we have that | supp∆v
(gv)| ≥ apnv. For each i ≥ i0 and v ∈ Vi, let

rv = max{ |Σ| : Σ ⊆ ∆v is Hv-invariant and |Σ| ≤ 1
2 |∆v| }.

Then, applying Lemma 3.8, we see that there exists s such that 0 ≤ rv ≤ s for all

v ∈ Vi with i ≥ i0. Furthermore, choosing i0 so that |∆v| ≥ 4s for all v ∈ Vi0 ,

it follows that for all i ≥ i0 and v ∈ Vi, there exists a unique Hv-invariant subset

Σv ⊆ ∆v of cardinality rv and that Hv acts transitively on ∆v r Σv. Similarly,

applying Lemma 3.9, there exists an integer d ≥ 1 such that for all i ≥ i0 and

v ∈ Vi, there exists a maximal system of imprimitivity Bv of blocksize 1 ≤ dv ≤ d

for the transitive action of Hv y ∆v r Σv.

Clearly we can also suppose that i0 has been chosen so that anv ≥ 2 for v ∈ Vi
with i ≥ i0. Fix such a vertex v and let n = nv. Suppose that gv ∈ Alt(∆v) is a

product of b p-cycles. Since b ≥ an ≥ 2, it follows that the conjugacy classes of gv

in Alt(∆v) and Sym(∆v) coincide and hence

|gAlt(∆v)
v | = n!

pbb!(n− bp)!
.

Applying Stirling’s Approximation and the fact that b ≥ an, it follows that there

exist constants c, k > 0 such that

|gAlt(∆v)
v | > ckn

nn

bb(n− bp)n−bp
> ckn

nn

nbnn−bp
≥ c kn(nn)(p−1)a.

Let m = |Bv| and let Kv 6 Sym(Bv) be the group induced by the action Hv y Bv.

Suppose that Alt(Bv) 66 Kv Then, by Praeger-Saxl [19], it follows that

|Kv| < 4m ≤ 4n;
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and since Hv is isomorphic to a subgroup of Sym(Σv)×( Sym(dv) wrKv ), it follows

that |Hv| ≤ s!(d!)n4n. Thus

θv(gv) =
|gAlt(∆v)
v ∩Hv|
|gAlt(∆v)
v |

<
|Hv|

|gAlt(∆v)
v |

<
s!(d!)n4n

c kn(nn)(p−1)a
.

It follows that there exist only finitely many i ≥ i0 such that Alt(Bv) 66 Kv for

some v ∈ Vi. �

Next we prove the following strengthening of Lemma 4.4.

Lemma 4.6. There exist constants s, t ≥ 1 such that for all but finitely many

i ∈ N, there exists a subset Ti ⊆ Vi of cardinality 0 ≤ |Ti| ≤ t such that for all

v ∈ Vi,

• if v /∈ Ti, then Hv = Alt(∆v);

• if v ∈ Ti, then there exists a unique Hv-invariant subset ∅ 6= Σv ⊆ ∆v of

cardinality at most s such that Hv induces at least Alt(∆vrΣv) on ∆vrΣv.

Proof. Throughout, let p be an odd prime such that p > max{ 5, s, d }, where s, d

are the constants given by Lemma 4.4. We will first show that we can take d = 1

in the statement of Lemma 4.4.

Since lim min{ |∆v| : v ∈ Vi } = ∞ and p, d are fixed, there exists i0 such that

|∆v| ≥ p(p + 1)(d + 1) and |Bv| ≥ 7 for all v ∈ Vi0 . Furthermore, we can suppose

that i0 has been chosen so that Hi0 satisfies the conclusion of Lemma 4.4. Let

ϕ : Hi0 →
∏
v∈Vi0

Sym(Bv)

be the homomorphism induced by the actions Hv y Bv and let K = ϕ(Hi0). Then,

by Lemma 4.4, K projects onto either Alt(Bv) or Sym(Bv) for every v ∈ Vi0 . It

follows easily that K0 = K∩
∏
v∈Vi0

Alt(Bv) projects onto Alt(Bv) for every v ∈ Vi0 .

Hence, applying Proposition 3.7, there exists a partition P of Vi0 such that

K0 =
∏
S∈P

Diag(
∏
v∈S

Alt(Bv)).

Notice that since each |Bv| ≥ 7, if u, v ∈ S ∈ P and π : Alt(Bu) → Alt(Bv) is

the isomorphism associated with the corresponding diagonal factor of K0, then π

preserves the cycle structure of the permutations. Consequently, there exists an

element k =
∏
v∈Vi0

kv ∈ K0 such that each kv is an element of order p which



UNIFORMLY RECURRENT SUBGROUPS 19

fixes at most p− 1 blocks of Bv. Since p > max{ s, d }, it follows that kerϕ has no

elements of order p, and this means that there exists an element g ∈ Hi0 of order

p such that ϕ(g) = k. Let v ∈ Vi0 and let av ∈ [ 0, 1 ] be such that gv be a product

of avnv p-cycles. Since

| supp(gv)| ≥ nv − [s+ (p− 1)d] > nv − (d+ 1)p,

it follows that

av =
| supp(gv)|

pnv
>

1

p
− (d+ 1)

nv
≥ 1

(p+ 1)
.

Now suppose that i ≥ i0 and u ∈ Vi. Then, regarding g as an element of Hi, it

follows that gu is a product of more than nu/(p + 1) p-cycles. Arguing as in the

proof of Lemma 4.4, it follows that there exists constants c, k > 0 such that

|gAlt(∆u)
u | > cknu(nnu

u )(p−1)/(p+1).

On the other hand, by another application of Stirling’s Approximation, there also

exist constants C, K > 0 such that

|Hu| ≤ |Sym(Σu)× (Sym(du) wr Sym(n/du))| < CKnunnu/du
u .

If du ≥ 2, then (p− 1)/(p+ 1) ≥ 4/6 > 1/2 ≥ 1/du. Since

θu(gu) =
|gAlt(∆u)
u ∩Hu|
|gAlt(∆u)
u |

<
|Hu|

|gAlt(∆u)
u |

<
CKnu(nnu

u )1/du

cknu(nnu
u )(p−1)/(p+1)

,

it follows that there exist only finitely many i ≥ i0 such that du ≥ 2 for some

u ∈ Vi. Thus we can assume that d = 1.

For each i ≥ i0, let Ti = { v ∈ Vi | Σv 6= ∅ }. Let p be a prime such that p > s.

Then, arguing as with the element g above, we can suppose that there exists an

element h ∈ Hi0 of order p such that |Fix∆v
(hv)| ≤ nv/2 for all v ∈ Vi0 . It follows

that if i ≥ i0 and we regard h as an element of Hi, then |Fix∆u
(hu)| ≤ nu/2 for

all u ∈ Vi. Fix an i ≥ i0 and suppose that u ∈ Ti. Let Ku be the setwise stabilizer

of Σu in Alt(∆u) and let θ′u be the normalized permuation character of the action

Alt(∆u) y Alt(∆u)/Ku. Applying Corollary 3.4, since Hu 6 Ku, it follows that

θu(hu) ≤ θ′u(hu) =
|{ s ∈ Alt(∆u) | shus−1 ∈ Ku }|

|Alt(∆u)|
.
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Let x ∈ Σu. Since p > |Σu|, it follows that if shus
−1 ∈ Ku, then shus

−1 acts

trivially on Σu and so shus
−1(x) = x. Thus

θu(hu) ≤ |{ s ∈ Alt(∆u) | s−1(x) ∈ Fix∆u
(hu) }|

|Alt(∆u)|
=
|Fix∆u

(hu)|
|∆u|

≤ 1

2
.

Applying Lemma 4.3, we see that θi(h) ≤ (1/2)ti , where ti = |Ti|. Since

χ(h) = limi→∞ θi(h) > 0,

it follows that there exists a constant t such that |Ti| ≤ t for all i ≥ i0. �

In order to simplify notation, we will suppose that the conclusion of Lemma 4.6

holds for all i ∈ N. For those i ∈ N such that Ti 6= ∅, let πi : Hi →
∏
v∈Ti

Sym(Σv)

be the homomorphism such that g 7→
∏
v∈Ti

g � Σv and let Ki = kerπi; and for

those i ∈ N such that Ti = ∅, let Ki = Hi. For each v ∈ Vi, let Kv = { gv | g ∈ Ki }.

Then Kv 6 Alt(∆v r Σv) if v ∈ Ti; and, of course, Kv 6 Alt(∆v) if v /∈ Ti. Since

there is a constant c such that each Ki is a normal subgroup of Hi of index at most

c, it follows that there exists i0 such that for all i ≥ i0,

• if v /∈ Ti, then Kv = Alt(∆v);

• if v ∈ Ti, then Kv = Alt(∆v r Σv).

Applying Proposition 3.7, for each i ≥ i0, there exists a partition Pi of Vi such that

Ki =
∏
S∈Pi

Diag(
∏
v∈S

Alt(Ωv)),

where

Ωv =

∆v r Σv if v ∈ Ti;

∆v if v /∈ Ti.

In particular, it follows that each Ki is isomorphic to a product of alternating

groups. Since [Hi+1 : Ki+1] ≤ c, it follows that Ki ∩Ki+1 is a normal subgroup of

Ki of index at most c, and this implies that Ki 6 Ki+1. Let K =
⋃
i≥i0 Ki.

Claim 4.7. There exists i1 ≥ i0 such that Pi is the partition of Vi into singleton

sets for all i ≥ i1.

Proof. Let I be the set of i ≥ i0 such that there exists Si ∈ Pi with |Si| ≥ 2.

Suppose that I is infinite. Let 1 6= g ∈ Ki0 be an element of prime order p,

where p > s. For each i > i0 and v ∈ Vi, let gv ∈ Alt(∆v) be the corresponding
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element when g is regarded as an element of Gi. Then, since each vertex in the

Bratelli diagram B is joined by an edge to every vertex on the next level, it follows

that each such gv 6= 1; and since lim min{ |∆v| : v ∈ Vi } = ∞, it follows that

lim min{ |gAlt(∆v)
v | : v ∈ Vi } =∞. Also note that since g has prime order p > s, it

follows that gGi ∩Hi = gGi ∩Ki for all i ≥ i0.

For each i ∈ I, choose some v ∈ Si. Applying Proposition 3.5 and Lemma 3.6,

it follows that

θi(g) = |gGi ∩Hi|/|gGi | = |gGi ∩Ki|/|gGi | ≤
(

1/|gAlt(∆v)
v |

)|Si|−1

.

But this means that χ(g) = limi→∞ θi(g) = 0, which is a contradiction. �

Thus we obtain that for all i ≥ i1,

Ki =
∏
v∈Ti

Alt(∆v r Σv)×
∏

v∈VirTi

Alt(∆v).

Since K 6 H and H 6= G, we can suppose that i1 has been chosen so that Ti 6= ∅

for all i ≥ i1. Note that for all i ≥ i1,∑
v∈Ti

|Σv| ≤
∑

u∈Ti+1

|Σu|.

Hence there exist an integer r ≥ 1 such that
∑
v∈Ti
|Σv| = r for all but finitely

many i ∈ N.

Claim 4.8. X = {Gγ | γ ∈ P(B) }.

Proof. Let γ = α ̂ e1 ̂ e2 ̂ · · ·̂ ei ̂ ei+1 ̂ · · · be any path through B, where

α ∈ ∆x for some x ∈ V0. Fix some i ≥ i1 and let γi = α ̂ e1 ̂ e2 ̂ · · ·̂ ei. Then

γi ∈ ∆u for some u ∈ Vi; and there exists j > i with
∑
v∈Tj

|Σv| = r such that for

all v ∈ Vj , there are at least r paths between u and v. It follows that there exists

gi ∈ Gj such that each element β ∈ gi(
⋃
v∈Tj

Σv) has the form γi ̂ ei+1 ̂ · · ·̂ ej
for some edges ei+1, · · · , ej , and this implies that

giHg
−1
i ∩Gi > giKjg

−1
i ∩Gi = Alt(∆u r { γi })×

∏
w∈Vir{u }

Alt(∆w) = (Gi)γi .

As (Gi)γi is a maximal proper subgroup of Gi, it follows that giHg
−1
i ∩Gi = (Gi)γi

for all but finitely many i ∈ N, and this implies that Gγ ∈ X. By the minimality

of X, we must have that X = {Gγ | γ ∈ P(B) }. �
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Remark 4.9. The above argument shows that if ν is any ergodic IRS of G, then

ν concentrates on the stabilizers of the r-subsets F ∈ [P(B) ]r for some r ≥ 1. Of

course, in order to classify the ergodic IRS of G, it is first necessary to classify the

G-invariant ergodic measures on [P(B) ]r.

Conjecture 4.10. If B is simple thick Bratelli unital diagram and ν is an er-

godic IRS of A(B), then there exist A(B)-invariant ergodic probability measures

µ1, · · · , µr on P(B) such that ν is the stabilizer distribution of

A(B) y (P(B)r, µ1 × · · · × µr ).

Finally, in order to complete the proof of Theorem 2.8, it only remains to prove

that if B = ( {Vi}, {Ei}, s, r, d ) is a non-unital simple thick Bratelli diagram, then

A(B) has no nontrivial URSs. After replacing B by a suitable telescoping if neces-

sary, we can suppose that for every i ∈ N+, there exists v ∈ Vi such that

k(v) = d(v)−
∑

r(e)=v

d(s(e)) > 0.

(Of course, it is possible that there are no edges e with r(e) = v.) Next we will define

a sequence of unital simple thick Bratelli diagrams Bn = ( {V ni }, {Eni }, sn, rn, dn )

such that:

• P(B) =
⋃
n∈N P(Bn);

• A(B) =
⋃
n∈NA(Bn).

Fix some n ∈ N. First for each i ≤ n, we define:

• V ni = Vi and dn � V ni = d � V ni ;

and then we define V nj+1 and dn � V nj+1 for j ≥ i inductively by:

• V nj+1 is the set of vertices v ∈ Vj+1 such that there exists an edge e ∈ Ej+1

with r(e) = v and s(e) ∈ V nj ;

• if v ∈ V nj+1, then dn(v) =
∑
{ dn(s(e)) | s(e) ∈ V nj , r(e) = v }.

Finally, Eni is the set of edges e ∈ Ei such that s(e) ∈ V ni−1 and r(e) ∈ V ni ; and sn,

rn are the restrictions of s, r to
⋃
i∈N+ Eni . It is easily checked that each Bn is a

unital simple thick Bratelli diagram and that P(B) =
⋃
n∈N P(Bn). Note that

A(Bn) =
⋃
i∈N

∏
v∈V n

i

Alt(∆n
v ),
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where ∆n
v = ∆v if v ∈ V ni = Vi for some i ≤ n, and

∆n
v = {σ ̂e | r(e) = v, σ ∈ ∆n

s(e) }

if v ∈ V ni for some i > n. Thus A(B) =
⋃
n∈NA(Bn).

Note that if γ = αv` ̂ei+1 ̂ei+2 ̂ · · · ∈ P(B), where v ∈ Vi and k(v) ≤ ` < d(v),

then γ ∈ P(Bn) if and only if n ≥ i. Also if γ /∈ P(Bn), then A(Bn) 6 A(B)γ .

Now suppose that X ⊆ SubA(B) is a nontrivial URS. As usual, let A(B) =⋃
i∈NGi, where each Gi =

∏
v∈Vi

Alt(∆v). For each n, let

fn : X → SubA(Bn)

be the A(Bn)-equivariant continuous map defined by H 7→ H ∩ A(Bn) and let

Xn = fn(X). Then Xn is a compact subspace of SubA(Bn) and A(Bn) y Xn.

Suppose that 1 ∈ Xn for infinitely many n ∈ N. Then for infinitely many n ∈ N,

there exists Hn ∈ X such that

Hn ∩Gn 6 Hn ∩A(Bn) = 1;

and it follows that 1 ∈ X, which is a contradiction. Thus we can suppose that

1 /∈ Xn for all but finitely many n ∈ N. Similary, we can suppose that A(Bn) /∈ Xn

for all but finitely many n ∈ N. Let n0 ∈ N be such that 1 /∈ Xn and A(Bn) /∈ Xn

for all n ≥ n0.

For each n ≥ n0, let Yn ⊆ SubA(Bn) be the stabilizer URS of the canonical

minimal action A(Bn) y P(Bn). Then the minimal A(Bn)-invariant closed subsets

of SubA(Bn) are precisely { 1 }, {A(Bn) } and Yn. In particular, Yn is the unique

minimal A(Bn)-invariant closed subset of Xn. Let ϕn : SubA(Bn+1) → SubA(Bn) be

the A(Bn)-equivariant continuous map defined by K 7→ K∩A(Bn). Then ϕn(Yn+1)

is an A(Bn)-invariant closed subset of Xn and thus Yn ⊆ ϕn(Yn+1). Hence we can

inductively define subgroups Hn ∈ Yn for n ≥ n0 such that Hn+1∩A(Bn) = Hn. It

follows easily that H =
⋃
n≥n0

Hn ∈ X. Furthermore, by Theorem 2.8(i), if n ≥ n0,

then Hn is the stabilizer of a path γn ∈ P(Bn). Recall that if γn /∈ P(Bn0
), then

A(Bn0) 6 A(B)γ . It follows easily that there exists a fixed path γ ∈ P(Bn0) such

that γn = γ for all n ≥ n0 and hence H is the stabilizer of γ with respect to the

action A(B) y P(B). However, there exists g ∈ A(B) such that g(γ) /∈ P(Bn0
),
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and this means that

A(Bn0
) 6 A(B)g(γ) = gA(B)γg

−1 = gHg−1,

which contradicts the fact that A(Bn0
) /∈ Xn0

.

5. The nonlinear finitary linear groups

In this section, we will classify the URSs of the nonlinear finitary linear simple

locally finite groups. These groups have been explicitly classified by Hall as follows.

(In [8], Hall classified all of the nonlinear finitary linear simple locally finite groups,

including also the uncountable ones. If κ is an uncountable cardinal, then it is not

true that there exists a unique group of cardinality κ of each geometric type over

each locally finite field K.)

Theorem 5.1 (Hall [8]). A countable nonlinear simple locally finite group G that

has a faithful representation as a finitary linear group is isomorphic to one of:

(i) the infinite alternating group Alt(N);

(ii) the stable special linear group SL0
∞(K) over some locally finite field K;

(iii) the stable symplectic group FSp(K) over some locally finite field K;

(iv) the stable special unitary group FSU(K) over some locally finite field K;

(v) the stable orthogonal group FΩ(K) over some locally finite field K.

For a clear introduction to the classical finitary linear groups SL0
∞(K), FSp(K),

FSU(K), FΩ(K) and their associated geometries, see Hall [7].

Recall that, by Corollary 1.3, the infinite alternating group Alt(N) has no non-

trivial URSs. Also, Theorem 1.8 implies that if G has a nontrivial URS and G is

isomorphic to SL0
∞(K), FSp(K), FSU(K) or FΩ(K), then K is a finite field.

5.1. The stable special linear group. For the rest of this section, let V =⊕
n∈N+ Ken be an infinite dimensional vector space over the finite field K and

let V ∗ be the corresponding dual space. For each ϕ ∈ V ∗ and x ∈ V such that

ϕ(x) = 0, let tϕ,x be the corresponding transvection defined by

tϕ,x(v) = v + ϕ(v)x.
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Let B∗ = { e∗n | n ∈ N+ } be the set of elements of the dual space V ∗ corresponding

to the basis B = { en | n ∈ N+ } and let T 6 V ∗ be the subspace generated by B∗.

If ϕ =
∑m
i=1 kie

∗
ni
∈ T , then we will write ϕ∗ =

∑m
i=1 kieni

.

Definition 5.2. The stable special linear group SL0
∞(K) is the subgroup of GL(V )

generated by { tϕ,x | ϕ ∈ T, x ∈ V, ϕ(x) = 0 }.

For each n ∈ N+, let Vn be the subspace of V generated by { e1, e2, · · · , en } and

let V ∗n be the subspace of V ∗ generated by { e∗1, e∗2, · · · , e∗n }. Then we can identify

SL(Vn) with the subgroup of SL0
∞(K) generated by

{ tϕ,x | ϕ ∈ V ∗n , x ∈ Vn, ϕ(x) = 0 };

and we have that SL0
∞(K) =

⋃
n∈N+ SL(Vn), where the corresponding embedding

SL(Vn) ↪→ SL(Vn+1) is given by

A 7−→

 A 0

0 1

 .

In [13], Leinen-Puglisi classified the confined subgroups of SL0
∞(K) as follows.

Here, by definition, if S 6 T and U 6 V are subspaces, then

annS(U) = {ϕ ∈ S | ϕ(u) = 0 for all u ∈ U },

and similarly for annU (S).

Theorem 5.3 (Leinen-Puglisi [13]). If K is a finite field, then a subgroup H of

SL0
∞(K) is confined if and only if there exist subspaces S 6 T and U 6 V of finite

codimensions such that:

• annS(U) = 0 and annU (S) = 0;

• TK(S,U) = 〈 tϕ,x | ϕ ∈ S, x ∈ U,ϕ(x) = 0 〉 6 H.

This classification theorem easily implies the following result.

Theorem 5.4. The stable special linear group SL0
∞(K) has no nontrivial URSs.

Proof. Let G = SL0
∞(K) and suppose that X ⊆ SubG is a nontrivial URS. Let

H 6 G be a subgroup such that H ∈ X. Then H is confined and hence there exist

subspaces S 6 T and U 6 V of finite codimensions such that:

• annS(U) = 0 and annU (S) = 0;
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• TK(S,U) = 〈 tϕ,x | ϕ ∈ S, x ∈ U,ϕ(x) = 0 〉 6 H.

Let R = {ϕ∗ ∈ V | ϕ ∈ S } and let W = R∩U . Then W also has finite codimension;

say, codimW = d. For each n ∈ N+, let Wn = W ∩ Vn. Then for each n ≥ d + 2,

we have that dimWn ≥ n− d and that

SL(Wn) = 〈 tϕ,x | ϕ∗, x ∈Wn, ϕ(x) = 0 〉 6 SL(Vn) ∩H.

But then there exists gn ∈ SL(Vn) such that SL(Vn−d) 6 gnH g−1
n and so G =

SL0
∞(K) lies in the closure of { gHg−1 | g ∈ G }, which contradicts the assumption

that X is a nontrivial URS. �

5.2. The classical finitary linear groups of isometries. Once again, let V =⊕
n∈N+ Ken be an infinite dimensional vector space over the finite field K and let

SL0
∞(K) be the stable special linear group. Then the classical finitary linear groups

of isometries FSp(K), FSU(K) and FΩ(K) are defined as follows.

First let σ be the canonical nondegenerate symplectic form on V such that

σ(e2`+1, e2`+2) = −σ(e2`+2, e2`+1) = 1

for all ` ∈ N; and otherwise σ(ei, ej) = 0. Let Sp(K) be the corresponding sym-

plectic group; i.e. the group of all σ-preserving elements g ∈ GL(V ).

Definition 5.5. The stable symplectic group is FSp(K) = Sp(K) ∩ SL0
∞(K).

Next suppose that the finite field K admits an automorphism α of order 2. Let

σ be the canonical nondegenerate unitary form on V such that σ(ei, ej) = δij ; and

let GU(K) be the corresponding unitary group; i.e. the group of all σ-preserving

elements g ∈ GL(V ).

Definition 5.6. The stable special unitary group is FSU(K) = GU(K)∩SL0
∞(K).

Finally let Q : V → K be the quadratic form such that

V = H1 ⊥ H2 ⊥ · · · ⊥ Hn ⊥ · · ·

is the direct sum of the pairwise orthogonal hyperbolic 2-spaces Hn = 〈 e2n−1, e2n 〉,

where Q(αe2n−1 +βe2n) = αβ. Let GO(K) be the corresponding orthogonal group;

i.e. the group of all Q-preserving elements g ∈ GL(V ).
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Definition 5.7. The stable orthogonal group is FΩ(K) = (GO(K) ∩ SL0
∞(K) )′;

i.e. FΩ(K) is the commutator subgroup of GO(K) ∩ SL0
∞(K).

We next need to recall some features of the quadratic geometry associated with

each finite field of characteristic 2. So suppose that K has characteristic 2 and that

σ is the canonical nondegenerate symplectic form on V =
⊕

n∈N+ Ken. Recall that

a quadratic form q : V → K is said to be associated with σ if for all x, y ∈ V ,

σ(x, y) = q(x+ y) + q(x) + q(y).

Let Q be the compact space of the quadratic forms associated with σ. Then we

can define an action of the stable symplectic group FSp(K) as a group of homeo-

morphisms of Q by (g · q)(x) = q(g−1(x)).

Proposition 5.8. FSp(K) y Q is a minimal action.

Proof. For each m ≥ 1, let σm be the restriction of σ to V2m =
⊕2m

n=1Ken and let

Qm be the set of quadratic forms qm : V2m → K associated with σm. Then the

finite symplectic group Sp(2m,K) has two orbits under its action on Qm; namely,

Qεm = { qm ∈ Qm | 〈V2m, qm 〉 is an Oε-geometry },

where ε ∈ {+,−}. Here 〈V2m, qm 〉 is an O+-geometry if V2m is an othogonal sum

of m hyperbolic 2-spaces; and 〈V2m, qm 〉 is an O−-geometry if V2m is an othogonal

sum of m− 1 hyperbolic 2-spaces and one anisotropic 2-space. Note that the sets

Q(qm) = { q ∈ Q | q � V2m = qm }, qm ∈ Qm,m ∈ N+,

form a clopen basis for the compact topology on Q.

Let q ∈ Q; and for each m ∈ N+, let qm = q � V2m. Let Q(q′m) be any

basic clopen subset of Q, where q′m ∈ Qm. Recall that the orthogonal sum of two

hyperbolic 2-spaces is isometric to the orthogonal sum of two anisotropic 2-spaces.

(For example, see Aschbacher [1, 21.2].) It follows that q′m can be extended to a

quadratic form q′m+1 ∈ Qm+1 such that q′m+1, qm+1 lie in the same Sp(2m+ 2,K)-

orbit; and hence there exists g ∈ FSp(K) such that g · q ∈ Q(q′m+1) ⊆ Q(q′m). �

For later use, we also record the following result, which is an easy consequence

of Parker-Rowley [18, Theorem 1.1].
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Lemma 5.9. Suppose that K is a finite field of characteristic 2 and that m ≥ 3.

Let V (2m,K) be a 2m-dimensional vector space over K, let σ be a nondegen-

erate symplectic form on V (2m,K) and let q be an associated quadratic form.

Let GO(2m,K) 6 Sp(2m,K) be the orthogonal group corresponding to q and let

Ω(2m,K) = GO(2m,K)′. Then the only subgroups H of Sp(2m,K) satisfying

Ω(2m,K) 6 H 6 Sp(2m,K).

are Ω(2m,K), GO(2m,K) and Sp(2m,K).

In the remainder of this section, we will prove that if G is a finitary linear

simple locally finite group and X ⊆ SubG is a nontrivial URS, then G is the

stable symplectic group FSp(K) over a finite field K of characteristic 2, and either

X = {FGO(q,K) | q ∈ Q} or X = {FΩ(q,K) | q ∈ Q}. Our proof makes use of

the following classification of the confined subgroups of the classical finitary linear

groups of isometries.

Notation 5.10. If q ∈ Q, then GO(q,K) denotes the corresponding orthogonal

group and FΩ(q,K) = (GO(q,K) ∩ SL0
∞(K) )′.

Notation 5.11. If G is a subgroup of GL(V ) and W is a subspace of V , then

NG(W ) = { g ∈ G | g(W ) = W }

is the setwise stabilizer of W in G and

CG(W ) = { g ∈ G | g(w) = w for all w ∈W }

is the pointwise stabilizer of W in G.

Theorem 5.12 (Leinen-Puglisi [13]). Suppose that G is a classical finitary linear

group of isometries relative to a non-degenerate symplectic, unitary, or quadratic

form on the vector-space V over the finite field K and that H 6 G is a confined

subgroup. Then there exists a unique minimal H-invariant subspace W of finite

codimension in V such that one of the following holds:

(a) If char(K) = 2 and G is a stable symplectic group, then there exists a

quadratic form q associated with the symplectic form σ with the property that

H ∩Γ has finite index in NΓ(W ), where Γ = FΩ(q,K) is the corresponding

stable orthogonal subgroup of G.
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(b) In all other cases, H has finite index in NG(W ).

Lemma 5.13. Suppose that G is a classical finitary linear group of isometries

relative to a non-degenerate symplectic, unitary, or quadratic form on the vector-

space V over the finite field K and that H 6 G is a confined subgroup. If there

exists an H-invariant subspace W of finite codimension in V such that H has finite

index in NG(W ), then G lies in the closure of { gHg−1 | g ∈ G }.

Proof. We will just consider the case when G = FSp(K) is the stable symplectic

group. (The other cases are very similar.) Suppose that H 6 G is a confined

subgroup and that there exists an H-invariant subspace W of finite codimension d

in V such that H has finite index in NG(W ). Let [NG(W ) : H] = ` and let m ≥ 3 be

such that |PSp(2m,K)| > `!. Since dimW ∩V2(d+m) ≥ 2m+d, it follows that there

exists a nondegenerate subspace U 6 W ∩ V2(d+m) such that dimU = 2m. Since

U is nondegenerate, it follows that V = U ⊕ U⊥. Let Sp(U) = NG(U) ∩ CG(U⊥).

Then, since Sp(U) acts trivially on V/U , it follows that Sp(U) 6 NG(W ). Also

[Sp(U) : Sp(U)∩H] ≤ ` and hence Sp(U) 6 H. Finally, since U , V2m 6 V2(d+m) are

nondegenerate subspaces of dimension 2m, it follows that there exists an element

g ∈ Sp(2(d+m),K) such that

Sp(2m,K) = g Sp(U) g−1 6 g H g−1.

Thus G =
⋃
m≥1 Sp(2m,K) lies in the closure of { gHg−1 | g ∈ G }. �

Proof of Theorem 1.5. Suppose that G is a classical finitary linear group and that

X ⊆ SubG is a nontrivial URS. Let H ∈ X. Then H is a confined subgroup of G.

Applying Theorem 5.12 and Lemma 5.13, since G /∈ X, it follows that G = FSp(K)

is the stable symplectic group over a finite field K of characteristic 2 and that there

exists:

• a unique minimal H-invariant subspace W of finite codimension in V ;

• a quadratic form q on V associated with the symplectic form σ;

such that H ∩ Γ has finite index in NΓ(W ), where Γ = FΩ(q,K). For each m ≥ 3,

let Γm = FΩ(q,K)∩Sp(2m,K). Then, arguing as in the proof of Lemma 5.13, for

each m ≥ 3, there exists gm ∈ Γ such that Γm 6 gmH g−1
m . Thus

Γm 6 gmH g−1
m ∩ Sp(2m,K) 6 Sp(2m,K).



30 SIMON THOMAS

Since G /∈ X, it follows that for all but finitely many m,

gmH g−1
m ∩ Sp(2m,K) 6= Sp(2m,K).

Applying Lemma 5.9, it follows that for all but finitely many m, either

gmH g−1
m ∩ Sp(2m,K) = FΩ(q,K) ∩ Sp(2m,K)

or else

gmH g−1
m ∩ Sp(2m,K) = FGO(q,K) ∩ Sp(2m,K).

This implies that either FΩ(q,K) ∈ X or FGO(q,K) ∈ X, and the result follows.

�
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