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Abstract. In this paper, we will study the relative complexity of the unitary

duals of countable groups. In particular, we will explain that if G and H are

countable amenable non-type I groups, then the unitary duals of G and H are

Borel isomorphic.

1. Introduction

Let G be a countable group. Then the unitary dual Ĝ of G is the set of equiva-

lence classes of irreducible unitary representations of G, equipped with its Mackey

Borel structure. In more detail, for each n ∈ { 1, 2, · · · ,∞}, let Irrn(G) be the

Polish space of all irreducible unitary representations of G in some fixed separable

Hilbert space Hn of dimension n. Then the unitary dual is the quotient of the

disjoint union
⊔

Irrn(G) by the unitary equivalence relation, equipped with the

corresponding quotient Borel structure. Recall that the unitary equivalence rela-

tion on
⊔

Irrn(G) is said to be smooth if and only if the Mackey Borel structure on

the unitary dual Ĝ is countably separated. Of course, this is only problematic for

the restriction of the unitary equivalence relation to Irr∞(G). The following result

combines the main theorems of Glimm [22] and Thoma [47].

Theorem 1.1. If G is a countable group, then the following conditions are equiv-

alent:

(i) G is not abelian-by-finite.

(ii) G has an infinite dimensional irreducible representation.

(iii) The unitary equivalence relation on the space Irr∞(G) of infinite dimen-

sional irreducible unitary representations of G is not smooth.
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Furthermore, by Thoma [47], a countable group G satisfies the conditions of

Theorem 1.1 if and only if G is a non-type I group.1 While Theorem 1.1 shows

that the equivalence classes of irreducible unitary representations of a countable

non-type I group G cannot be parameterized by the points of any Polish space,

this is not enough in itself to rule out a satisfactory classification. For example,

the isomorphism relation on the space of rank 1 torsion-free abelian groups is not

smooth; and yet Baer [3] was able to provide a perfectly satisfactory classification.

However, the following more recent result of Hjorth provides a much more serious

obstruction to the existence of a satisfactory classification.

Theorem 1.2 (Hjorth [25]). If G is a countable non-type I group , then there exists

a U(H∞)-invariant Borel subset X ⊆ Irr∞(G) such that the action of the unitary

group U(H∞) on X is turbulent.

The notion of turbulence was introduced by Hjorth [26], in order to address

the question of which orbit equivalence relations of continuous actions of Polish

groups on Polish spaces are classifiable by countable structures. Here an analytic

equivalence relation E on a Polish space X is said to admit a classification by

countable structures if there exists a Borel map x 7→ Mx from X to the space of

countable structures for some countable language such that

x E y ⇐⇒ Mx
∼=My.

For example, Farah-Toms-Tornquist [15] have verified that Elliott’s classification

[11] of the approximately finite dimensional C∗-algebras by K-theoretic invariants

can be implemented in a Borel manner; and this means that the isomorphism

relation for approximately finite dimensional C∗-algebras admits a classification

by countable structures. On the other hand, Hjorth [26] has shown that if the

continuous action of the Polish group G on the Polish space X is turbulent, then

the corresponding orbit equivalence relation EXG does not admit a classification by

countable structures. In particular, if G is a countable non-type I group , then

1The definition of a type I group can be found in Folland [17, Section 7.2]. This notion will play

no role in this paper, other than to enable us to avoid repeatedly using the term “non-(abelian-

by-finite)”.
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the unitary equivalence relation ≈G does not admit a classification by countable

structures.

However, this is hopefully not the end of the story. While it does not seem feasible

to find a satisfactory classification of the irreducible unitary representations of a

fixed countable non-type I group, there remains the natural question of determining

the relative complexities of the unitary duals of pairs G, H of countable non-type

I groups. For example, let G be the direct sum of infinitely many copies of the

symmetric group Sym(3) and let F∞ be the free group on infinitely many generators.

Then it seems reasonable to conjecture that the unitary dual of F∞ is strictly more

complex than that of G. In order to give a precise formulation of this question,

it is first necessary to recall some of the basic notions from the theory of Borel

equivalence relations.

If X is a Polish space, then an equivalence relation E on X is said to be Borel

if E is a Borel subset of X × X. For example, it is well-known that the unitary

equivalence relation is an Fσ equivalence relation on Irrn(G). Suppose that E, F

are Borel equivalence relations on the Polish spaces X, Y respectively. Then E is

Borel reducible to F , written E ≤B F , if there exists a Borel map f : X → Y such

that for all x, z ∈ X,

x E z ⇐⇒ f(x) F f(z).

E and F are Borel bireducible, written E ∼B F , if both E ≤B F and F ≤B E.

Finally we write E <B F if both E ≤B F and F �B E.

Here the idea is that Borel bireducibility captures the intuitive notion of two

Borel equivalence relations having the same complexity. As we will explain next,

the Borel bireducibility of the unitary equivalence relations of the countable groups

G, H is equivalent to the usual notion in the literature of the Borel isomorphism

of their unitary duals Ĝ, Ĥ. Recall that the unitary duals Ĝ, Ĥ are said to be

Borel isomorphic if there exists a bijection f : Ĝ → Ĥ such that both f and f−1

admit Borel liftings ϕ :
⊔

Irrn(G) →
⊔

Irrn(H) and ψ :
⊔

Irrn(H) →
⊔

Irrn(G)

respectively.

Remark 1.3. Some readers may a little concerned about our apparently strong

requirement that both f and f−1 admit Borel liftings. However, the proof of Gao
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[21, Corollary 5.2.4] shows that if a bijection f : Ĝ → Ĥ admits a Borel lifting,

then its inverse f−1 also admits a Borel lifting.

Next notice, for example, that if the Borel map ϕ is a lifting of f , then for all π,

π′ ∈
⊔

Irrn(G), we have that π, π′ are unitarily equivalent if and only if ϕ(π), ϕ(π′)

are unitarily equivalent; and so ϕ is a Borel reduction from the unitary equivalence

relation of G to the unitary equivalence relation of H. Consequently, if the unitary

duals Ĝ, Ĥ are Borel isomorphic, then the the unitary equivalence relations of G,

H are Borel bireducible. In order to explain why the converse holds, it is useful to

extend the notion of a Borel isomorphism to arbitrary quotients of Polish spaces

by Borel equivalence relations.

Definition 1.4. If E, F are Borel equivalence relations on the Polish spaces X, Y

then the quotients X/E, Y/F are Borel isomorphic, written X/E ' Y/F , if there

exist Borel reductions ϕ : X → Y and ψ : Y → X such that the induced maps

ϕ̂ : X/E → Y/F and ψ̂ : Y/F → X/E are mutually inverse bijections.

There exist examples of Borel equivalence relations E, F such that E, F are

Borel bireducible but not Borel isomorphic. (For example, see Friedman-Motto

Ros [18].) However, the two notions coincide if we restrict our attention to the

class of Borel orbit equivalence relations.

Theorem 1.5 (Motto Ros [40]). If E, F are Borel orbit equivalence relations

arising from Borel actions of Polish groups on the Polish spaces X, Y , then E ∼B F

if and only if X/E ' Y/F .

In particular, it follows that the Borel bireducibility of the unitary equivalence

relations of the countable groups G, H is equivalent to the Borel isomorphism of

their unitary duals Ĝ, Ĥ. Of course, if G is a countable group, then the unitary

equivalence restricted to the space
⊔

1≤n∈N Irrn(G) of finite dimensional irreducible

unitary representations is smooth. Consequently, our focus will be on the space

Irr∞(G) of infinite dimensional irreducible unitary representations of G.

Definition 1.6. If G is a countable non-type I group, then ≈G denotes the unitary

equivalence relation on the space Irr∞(G) of infinite dimensional irreducible unitary

representations of G.
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In summary, the following result is an immediate consequence of Theorem 1.5.

Corollary 1.7. If G, H are countable non-type I groups, then the following are

equivalent:

(1) The unitary equivalence relations ≈G and ≈H are Borel bireducible.

(2) The unitary duals Ĝ and Ĥ are Borel isomorphic.

In the remainder of this section, we will discuss the main results of this paper.

We will begin by considering the countable groups with the most complex unitary

duals.

Definition 1.8. The countable group G is representation universal if whenever H

is a countable group, then ≈H is Borel reducible to ≈G.

For example, the free group F∞ on countably many generators is representation

universal. To see this, let G be any countable group and let p : F∞ → G be a

surjective homomorphism. Then the map π 7→ π ◦ p is clearly a Borel reduction

from ≈G to ≈F∞ . More generally, the same argument shows that if G, H are

countable groups and G is a homomorphic image of H, then ≈G is Borel reducible

to ≈H . On the other hand, the following basic question remains open.

Question 1.9. Suppose that G, H are countable groups such that G 6 H. Does

it necessarily follow that ≈G is Borel reducible to ≈H?

In particular, while F∞ is embeddable in SL(3,Z), it is currently not known

whether or not SL(3,Z) is representation universal. On the other hand, the follow-

ing result which we will prove in Section 3 implies that all countable nonabelian

free groups are representation universal; and, of course, this means that very large

countable groups are also representation universal. (Recall that a group G is said

to be very large if G has a nonabelian free quotient.)

Theorem 1.10. The free group F2 on two generators is representation universal.

Very little is known concerning the closure properties of the class of representa-

tion universal groups. For example, it is not known whether or not a finite extension

of a representation universal group is also representation universal; and, in partic-

ular, it is not known whether countable large groups are representation universal.
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(Recall that a group G is said to be large if G has a very large subgroup of finite

index.)

In Sections 4 through 6, we will mainly focus on the unitary duals of countable

amenable non-type I groups. Here our main result is the following theorem. (As

we will explain, Theorem 1.11 is an easy consequence of results of Elliott [12] and

Sutherland [46].)

Theorem 1.11. If G is a countable non-type I group and H is a countable amenable

group, then ≈H is Borel reducible to ≈G. In particular, if G and H are countable

amenable non-type I groups, then ≈G and ≈H are Borel bireducible.

The main results of this paper can be summarized graphically by the following

diagram.

u
u Amenable non-type I groups

Type I groups

Very large groups

??

u

Here the dotted lines indicate that it is currently not known whether or not the

unitary duals of all countable non-type I groups are Borel isomorphic. In Sections

6 and 7, we will present some evidence that suggests that countable amenable non-

type I groups might not be representation universal. If this is indeed the case,

then this raises the very interesting question of how many distinct unitary duals of

countably infinite groups exist up to Borel isomorphism. Of course, ideally there

should exist uncountably many such unitary duals. Unfortunately, the results of

Section 5 suggest the possibility that perhaps the unitary duals of all countable

non-amenable groups are Borel isomorphic.
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Notation 1.12. If H is a (possibly finite dimensional) separable Hilbert space,

then B(H) denotes the space of bounded linear operators T : H → H and U(H)

denotes the corresponding unitary group.

Remark 1.13. For the convenience of the reader, the definitions of the various

Borel equivalence relations that occur in this paper have been collected together in

an Appendix.

Acknowledgements: I would like to thank Alexander Kechris for some very help-

ful discussions concerning the material in this paper and for explaining that Popa’s

Superrigidity Theorem [43] holds for cocycles taking values in the Banach space

`2 = { (xn ) ∈ RN |
∑
x2
n <∞}

2. Preliminaries

In this section, we will recall some basic notions from the theory of countable

Borel equivalence relations and from the representation theory of separable C∗-

algebras. As expected, C∗-algebras will enter into our study through the canonical

correspondence between the irreducible unitary representations of a countable group

G and the irreducible unitary representations of the associated group C∗-algebra

C∗(G). Countable Borel equivalence relations will enter the picture when we study

the cocycles associated with the irreducible representations of semi-direct products

of countable groups. (It is perhaps worth mentioning that Theorem 1.2 implies

that if G is a countable non-type I group, then the unitary equivalence relation ≈G

is not Borel reducible to any countable Borel equivalence relation.)

2.1. Countable Borel Equivalence Relations and Ergodic theory. Let X be

a standard Borel space; i.e. a Polish space equipped with its associated σ-algebra of

Borel subsets. Then the Borel equivalence relation E on X is said to be countable if

every E-equivalence class is countable. For example, suppose that G is a countable

group and that X is a standard Borel G-space; i.e. a standard Borel space X

equipped with a Borel action (g, x) 7→ g · x of G on X. Then the corresponding

orbit equivalence relation EXG is a countable Borel equivalence relation. Conversely,

by Feldman-Moore [16], if E is an arbitrary countable Borel equivalence relation

on the standard Borel space X, then there exists a countable group G and a Borel

action of G on X such that E = EXG .
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A detailed development of the general theory of countable Borel equivalence

relations can be found in Jackson-Kechris-Louveau [29]. Here we will only recall

those aspects of the theory that will play an essential role in this paper.

With respect to Borel reducibility, the least complex nonsmooth countable Borel

equivalence relation is the Vitali equivalence relation E0, which is defined on 2N by

xE0y ⇐⇒ x(n) = y(n) for almost all n.

More precisely, by Harrington-Kechris-Louveau [23], if E is any (not necessarily

countable) Borel equivalence relation, then E is nonsmooth if and only if E0 ≤B E.

At the other extreme, let E∞ be the orbit equivalence relation arising from the shift

action of the free group F2 on two generators on 2F2 . Then, by Dougherty-Jackson-

Kechris [10], E∞ is a universal countable Borel equivalence relation in the sense

that F ≤B E∞ for every countable Borel equivalence relation F .

If X is a Polish space, then the Polish space of all Borel probability measures

on X is denoted by P(X). If µ, ν ∈ P(X), then µ and ν are said to be equivalent ,

written µ ∼ ν, if for every Borel subset A ⊆ X,

µ(A) = 0 ⇐⇒ ν(A) = 0.

If G is a countable group and X is a standard Borel G-space, then we can define a

corresponding Borel action on P(X) by µ
g7→ g∗µ, where g∗µ is the Borel probability

measure defined by

g∗µ(A) = µ( g−1(A) )

for every Borel subset A ⊆ X. The Borel probability measure µ ∈ P(X) is said to

be invariant if g∗µ = µ for all g ∈ G and is said to be quasi-invariant if g∗µ ∼ µ

for all g ∈ G. If µ ∈ P(X) is quasi-invariant, then µ is said to be ergodic if every

G-invariant Borel subset of X is either null or conull.

Suppose that E is a countable Borel equivalence relation on the standard Borel

probability space (X,µ ). Then E is said to be measure-preserving if Γ preserves µ

for some (equivalently every) countable group Γ acting in a Borel fashion such that

E = EXΓ . In this case, E is said to be ergodic if each such Γ acts ergodically on

(X,µ ). If E is an ergodic measure-preserving countable Borel equivalence relation

on the standard Borel probability space (X,µ ) and A ⊆ X is a Borel subset such
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that µ(A) > 0, then E � A denotes the restriction of E to the standard Borel

probability space (A,µA ), where µA(C) = µ(C)/µ(A).

Suppose that E, F are ergodic measure-preserving countable Borel equivalence

relations on the standard Borel probability spaces (X,µ ), (Y, ν ) respectively. Then

E and F are said to be orbit equivalent if, after possibly deleting measure zero

subsets, there exists a Borel bijection θ : X → Y such that θ∗µ = ν and θ(E) = F .

More generally, E and F are said to be weakly orbit equivalent if there exist Borel

subsets A ⊆ X and B ⊆ Y with µ(A), ν(B) > 0 such that E � A and F � B are

orbit equivalent.

2.2. C∗-algebras. Let A be a separable C∗-algebra. For each n ∈ { 1, 2, · · · ,∞},

let Irrn(A) be the Polish space of all irreducible unitary representations of A in

some fixed separable Hilbert space of dimension n. Then the spectrum Â of A is

the quotient of the disjoint union
⊔

Irrn(A) by the unitary equivalence relation,

equipped with the corresponding quotient Borel structure. By Glimm [22], the

unitary equivalence relation on
⊔

Irrn(A) is smooth if and only if A is a type I C∗-

algebra.2 If A is a non-type I separable C∗-algebra, then ≈A denotes the unitary

equivalence relation on the space Irr∞(A) of infinite dimensional irreducible unitary

representations of A.

Let G be a countable group and let C[G] be the corresponding group algebra.

Then the group C∗-algebra C∗(G) is the completion of C[G] with respect to the

norm

||x ||u = sup
π
||π(x) ||,

where the supremum is taken over all cyclic ∗-representations π : C[G] → B(H).

It is well-known that there is a canonical correspondence between the irreducible

unitary representations of C∗(G) and the irreducible unitary representations of G.

(For example, see Dixmier [9, Section 13.9].) Furthermore, this canonical corre-

spondence witnesses that ≈C∗(G) and ≈G are Borel bireducible.

Remark 2.1. In 1967, Dixmier raised the question of whether the spectra of any

two non-type I separable unital C∗-algebras are Borel isomorphic. In fact, this

question is equivalent to asking whether countable amenable non-type I groups are

2The definition of a type I C∗-algebra can be found in Arveson [2]. Once again, this notion

will play no role in this paper.
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representation universal. To see this, recall that if A is any separable unital C∗-

algebra, then A is generated by a countable sequence of unitaries. It follows that

there exists a surjective unital ∗-homomorphism f : C∗(F∞)→ A and so

≈A ≤B ≈C∗(F∞) ∼B ≈ F∞ .

On the other hand, combining Theorem 4.2 and Corollary 6.2, it follows that if G

is a countable amenable non-type I group and A is any non-type I separable unital

C∗-algebra, then

≈G ∼B ≈C∗(G) ≤B ≈A .

Thus the following statements are equivalent:

• ≈G is Borel bireducible with ≈ F∞ for some (equivalently every) countable

amenable non-type I group G.

• Â is Borel isomorphic with Ĉ∗(F∞) for every non-type I separable unital

C∗-algebra A.

3. The representation universality of F2

In this section, we will prove that the free group F2 on the two generators { a, b }

is representation universal. We have already noted that the free group F∞ on

infinitely many generators is representation universal. Thus it is enough to show

that ≈ F∞ is Borel reducible to ≈ F2
.

Notation 3.1. If H 6 G are countable groups and π is a unitary representation

of H, then indGH(π) denotes the corresponding induced representation of G.

We will make use of the following well-known irreducibility criterion for repre-

sentations induced from normal subgroups of countable groups. (For example, see

the discussion in Quigg [44, Section 1].)

Definition 3.2. Suppose that G is a countable group and that N E G is a normal

subgroup. If π is a unitary representation of N and g ∈ G, then πg denotes the

unitary representation of N defined by πg(x) = π(g x g−1).

Theorem 3.3. Let G be a countable group and let N E G be a normal subgroup.

If π is an irreducible unitary representation of N , then the following are equivalent:

(i) indGN (π) is an irreducible unitary representation of G.
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(ii) πg is not unitarily equivalent to π for all g ∈ GrN .

Let H = kerh E F2, where h : F2 → Z is the homomorphism such that h(a) = 1

and h(b) = 0 . Then T = { an | n ∈ Z } is a set of coset representatives of H in F2;

and hence, by Schreier’s Theorem, it follows that S = { anba−n | n ∈ Z } is a basis

of H. (For example, see Serre [45, Proposition 16].) From now on, let bn = anba−n,

so that abna
−1 = bn+1 for each n ∈ Z. Let f : N → N be the function defined

inductively by:

• f(0) = 0;

• f(n+ 1) = 1 +
∑n
i=0 f(i);

and let K = { f(n) | n ∈ N }. Then it is easily checked that |( `+K ) ∩K| ≤ 1 for

all 0 6= ` ∈ Z. Hence, letting cn = bf(n), the infinite subset C = { cn | n ∈ N } ⊆ S

satisfies |a`C a−` ∩ C| ≤ 1 for all 0 6= ` ∈ Z. From now on, we will identify F∞
with the subgroup 〈 cn | n ∈ N 〉 of H and we will identify Irr∞(F∞) with the

corresponding subspace of Irr∞(H); i.e. we will identify each π ∈ Irr∞(F∞) with

the corresponding representation π ∈ Irr∞(H) obtained by setting π(s) = 1 for all

s ∈ S r C. Of course, with this identification, if π, σ ∈ Irr∞(F∞), then

π ≈ F∞ σ ⇐⇒ π ≈H σ.

Let θ : Irr∞(F∞) → Rep(F2) be the Borel map defined by π 7→ θπ = indF2

H (π).

Then we will show that θ is a Borel reduction from ≈ F∞ to ≈ F2
.

Lemma 3.4. If π ∈ Irr∞(F∞), then θπ ∈ Irr∞(F2).

Proof. By Theorem 3.3, it is enough to show that if ` ∈ Z r {0}, then πa
`

is not

unitarily equivalent to π. So suppose that πa
`

and π are unitarily equivalent. Then

since a`Sa−` = S and |a`C a−` ∩ C| ≤ 1, it follows that there exists at most one

basis element s ∈ S such that π(s) 6= 1. But this means that π is a 1-dimensional

representation of H, which is a contradiction. �

Lemma 3.5. θ is a Borel reduction from ≈ F∞ to ≈ F2
.

Proof. First note that if π, σ ∈ Irr∞(F∞) and π ≈ F∞ σ, then θπ ≈ F2
θσ. (For

example, see Folland [17, Proposition 6.9].) Conversely, suppose that θπ ≈ F2
θσ.
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Then θπ � H = ⊕`∈Z πa
`

and θσ � H = ⊕`∈Z σa
`

are unitarily equivalent represen-

tations of H. Arguing as in the proof of Lemma 3.4, it follows that if ` ∈ Z r {0},

then π is not unitarily equivalent to σa
`

. Hence π ≈H σ and so π ≈ F∞ σ. �

4. Representations of locally finite groups

In this section, we will derive the following weak form of Theorem 1.11 from a

more general theorem of Elliott [12] on the Mackey Borel structures of the spectra

of approximately finite-dimensional C∗-algebras.

Theorem 4.1. If G is a countable non-type I group and H is a countable locally

finite group, then ≈H is Borel reducible to ≈G.

Recall that a C∗-algebra A is said to be approximately finite dimensional if A is

the closure of the union
⋃
n∈NAn of an increasing chain A0 ⊆ A1 ⊆ · · · ⊆ An ⊆ · · ·

of finite dimensional C∗-subalgebras. For example, let H be a countable locally

finite group and express H =
⋃
n∈NHn as the union of an increasing chain of finite

subgroupsHn. Then the group C∗-algebra C∗(H) is the closure of the group algebra

C[H] =
⋃
n∈N C[Hn] and hence C∗(H) is approximately finite-dimensional. Also

recall that if G is any countable group, then ≈C∗(G) and ≈G are Borel bireducible.

Consequently, Theorem 4.1 is an immediate consequence of the following result of

Elliott [12].

Theorem 4.2 (Elliott [12]). If A is an approximately finite-dimensional C∗-algebra

and B is a non-type I separable C∗-algebra, then ≈A is Borel reducible to ≈B.

In the remainder of this section, we will point out a curious result concerning the

asymptotic representation theory of finite groups, which follows easily from Thoma’s

Theorem [47], together with the theory of approximately finite-dimensional C∗-

algebras.

Notation 4.3. If K 6 L are finite groups and π, σ are irreducible representations

of K, L respectively, then multπ(σ � K ) denotes the multiplicity with which π

occurs in the representation σ � K.

Theorem 4.4. If G =
⋃
n∈NGn is the union of the strictly increasing chain of

finite subgroups Gn, then the following statements are equivalent:
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(i) G is not abelian-by-finite.

(ii) There exists a subsequence ( `n | n ∈ N ) and irreducible representations

πn ∈ Irr(G`n) such that for all n ∈ N, multπn
(πn+1 � G`n ) > 1.

Proof. To see that (ii) implies (i), suppose that G contains an abelian subgroup A

such that [G : A ] = d <∞. Then An = Gn ∩A is an abelian subgroup of Gn such

that [Gn : An ] ≤ d; and a simple application of the Frobenius reciprocity theorem

shows that deg π ≤ [Gn : An ] for all π ∈ Irr(Gn). (For example, see Remark

17.12 in Huppert [28].) Of course, if n < m and π ∈ Irr(Gn), χ ∈ Irr(Gm) satisfy

multπ(χ � Gn ) > 1, then degχ > deg π. Hence statement (ii) fails.

Conversely, suppose that G is not abelian-by-finite. Then, by Thoma [47], G

is not of type I and so the corresponding group C∗-algebra C∗(G) is a non-type

I approximately finite-dimensional C∗-algebra. Notice that the Bratteli diagram

associated with the increasing chain

C[G0] ⊆ C[G1] ⊆ · · · ⊆ C[Gn] ⊆ · · ·

of finite dimensional C∗-subalgebras is precisely the branching diagram of the irre-

ducible representations of the groups Gn in the corresponding increasing chain

G0 ⊆ G1 ⊆ · · · ⊆ Gn ⊆ · · ·

of finite subgroups of G. Thus statement (ii) is immediate consequence of the

Lazar-Taylor characterization [38, Theorem 3.13] of type I approximately finite-

dimensional C∗-algebras in terms of the multiplicities of paths through their Bratteli

diagrams. �

Question 4.5. Is there an “elementary” proof of Theorem 4.4? In other words,

is Theorem 4.4 a consequence of some result concerning the branching diagrams of

pairs K 6 L of finite groups?

5. Cocycles and representations

Suppose that G = Ao Γ is a semidirect product of the countable groups A and

Γ, where A is an infinite abelian group. Then it is well-known that the irreducible

representations of G are determined by the Γ-quasi-invariant ergodic measures on

the unitary dual Â, together with the “irreducible” cocycles for the dual action of

Γ on Â. Furthermore, the unitary equivalence relation ≈G is determined by:
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• the measure equivalence relation on the space of Γ-quasi-invariant ergodic

measures; together with

• the cocycle equivalence relation on the space of “irreducible” cocycles.

In his remarkable paper [46], Sutherland proved that if Γ is amenable and acts

freely and ergodically on Â, then the unitary equivalence relation ≈H of every

countable amenable group H is Borel reducible to the cocycle equivalence relation

on the space of “irreducible” cocycles σ : Γ × Â → U(H), where H is an infinite

dimensional separable Hilbert space. As we will see, in combination with Elliott’s

work [12], this easily implies that the unitary duals of any two countable amenable

non-type I groups are Borel isomorphic. In this section, we will begin our account

of Sutherland’s work, slightly expanded and generalized so that it is also applicable

to non-amenable groups.

If G is a countable group and H is a (possibly finite dimensional) separable

Hilbert space, then Rep(G,H) denotes the Polish space of all unitary representa-

tions of G in H and Irr(G,H) denotes the subspace of irreducible representations.

For each pair π, σ ∈ Rep(G,H), let

CG(π, σ) = {S ∈ B(H) | S ◦ π(g) = σ(g) ◦ S for all g ∈ G },

Recall that, by Schur’s Lemma, if π ∈ Rep(G,H), then π is irreducible if and

only if CG(π, π) is the vector space of scalar multiples of the identity operator.

Furthermore, if π, σ ∈ Rep(G,H) are both irreducible and 0 6= T ∈ CG(π, σ),

then T is a non-zero scalar multiple of a unitary operator and so π, σ are unitarily

equivalent.

We are now ready to begin our discussion of cocycles and the associated unitary

representations. Suppose that the countable group Γ acts freely and ergodically via

measure-preserving Borel maps on the standard probability space (X,µ ). Then a

Borel map σ : Γ×X → U(H) is said to be a cocycle if for all γ, γ′ ∈ Γ,

σ(γγ′, x) = σ(γ, γ′ · x)σ(γ′, x) µ-a.e. x ∈ X.

Let Z1(Γ × X,U(H)) be the standard Borel space of Borel cocycles, where we

identify two such maps σ, σ′ if for all γ ∈ Γ,

σ(γ, x) = σ′(γ, x) µ-a.e. x ∈ X.
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Then for each cocycle σ ∈ Z1(Γ×X,U(H)), we can define a corresponding unitary

representation πσ of Γ on the Hilbert space L2(X,H) by setting

(5.2) (πσ(γ) · f)(x) = σ(γ−1, x)−1f(γ−1 · x)

for each γ ∈ Γ, x ∈ X and f ∈ L2(X,H).

Definition 5.1 (Sutherland [46]). If σ, τ ∈ Z1(Γ × X,U(H)), then HomΓ(σ, τ)

consists of the bounded Borel maps T : X → B(H) such that for all γ ∈ Γ,

σ(γ, x)T (x) = T (γ · x) τ(γ, x) µ-a.e. x ∈ X,

where we again identify two such maps if they agree µ-a.e.

Here a Borel map T : X → B(H) is bounded if ess supx∈X ||T (x) || <∞. In this

case, we can define a corresponding bounded linear operator
∫ ⊕

T =
∫ ⊕

T (x) dµ(x)

on L2(X,H) by [ (
∫ ⊕

T )f ](x) = T (x)f(x).

Lemma 5.2. If σ, τ ∈ Z1(Γ × X,U(H)) and T : X → B(H) is a bounded Borel

map, then T ∈ HomΓ(σ, τ) if and only if
∫ ⊕

T ∈ CΓ(πσ, πτ ).

Proof. A routine calculation. �

Next, by passing from Γ to a suitable semidirect product G = A o Γ and then

extending each πσ to a corresponding unitary representation of G, we will ensure

that for every S ∈ CG(πσ, πτ ), there exists a bounded Borel map T : X → B(H)

such that S =
∫ ⊕

T . In more detail, suppose that A is a countably infinite abelian

group and that γ 7→ ϕγ is a homomorphism from Γ to Aut(A). Then we can define

an induced action of Γ on the unitary dual X = Irr1(A) of A by γ · x = x ◦ ϕ−1
γ .

Next suppose that µ is a Γ-invariant probability measure on X such that the action

of Γ on (X,µ ) is essentially free and ergodic. Let G = AoϕΓ be the corresponding

semi-direct product defined by

( a, γ ) ( a′, γ′ ) = ( aϕγ(a′), γ γ′ ).

Then for each cocycle σ ∈ Z1(Γ ×X,U(H)), we can extend the unitary represen-

tation πσ of Γ on L2(X,H) to a unitary representation of G = Aoϕ Γ by setting

(5.3) (πσ(a) · f)(x) = x(a) f(x).



16 SIMON THOMAS

Notice that the direct integral decomposition of π0 = πσ � A as π0 =
∫ ⊕

x dµ(x)

on L2(X,H) =
∫ ⊕Hx dµ(x), where each Hx = H, is the canonical direct integral

decomposition of π0 into primary representations. It follows that if S ∈ CA(π0, π0),

then there exists a bounded Borel map T : X → B(H) such that S =
∫ ⊕

T . (For

example, see Nielsen [41].)

Proposition 5.3. With the above hypotheses, if σ, τ ∈ Z1(Γ×X,U(H)), then the

map T 7→
∫ ⊕

T is an vector space isomorphism between HomΓ(σ, τ) and CG(πσ, πτ ).

Proof. If S ∈ CG(πσ, πτ ), then S ∈ CA(π0, π0), where π0 = πσ � A = πτ , and so

there exists a bounded Borel map T : X → B(H) such that S =
∫ ⊕

T . Hence the

result follows from Lemma 5.2. �

In particular, by Schur’s Lemma, if σ ∈ Z1(Γ×X,U(H)), then the corresponding

unitary representation πσ of G = A o Γ is irreducible if and only if HomΓ(σ, σ)

consists of the constant µ-a.e. maps T : X → B(H) taking values in the vector

space of scalar multiples of the identity. In this case, we say that σ is an irreducible

cocycle. Let Irr(Γ×X,U(H)) ⊆ Z1(Γ×X,U(H)) be the set of irreducible cocycles.

Since Irr(Γ×X,U(H)) is the inverse image of the set of irreducible representations

under the Borel map σ 7→ πσ, it follows that Irr(Γ×X,U(H)) is a Borel subset of

Z1(Γ×X,U(H)) and hence Irr(Γ×X,U(H)) is a standard Borel space.

Next suppose that σ, τ ∈ Irr(Γ × X,U(H)) are irreducible cocycles. Then

Proposition 5.3 implies that πσ and πτ are unitarily equivalent if and only if there

exists 0 6= T ∈ HomΓ(σ, τ) such that S =
∫ ⊕

T satisfies

S ◦ πσ(g) = πτ (g) ◦ S for all g ∈ G.

Furthermore, in this case, once again by Schur’s Lemma, S is a nonzero scalar

multiple of a unitary operator. Hence, replacing T by a suitable scalar multiple,

we can assume that S is a unitary operator. By Nielsen [41, Proposition 6.1(d)], it

follows that T (x) ∈ U(H) for µ-a.e. x ∈ X and so we can regard T as an element

of the Polish group L(X,U(H)). Here L(X,U(H)) is the space of Borel maps

T : X → U(H) equipped with the group operation of pointwise multiplication,

where we identify two such maps if they agree µ-a.e. (For more details, see Kechris
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[34, Section 19].) The group L(X,U(H)) acts on Z1(Γ×X,U(H)) by

(T · σ)(γ, x) = T (γ · x)σ(γ, x)T (x)−1;

and it is easily checked that Irr(Γ×X,U(H)) is invariant under this action. Sum-

ming up, we now see that the map σ 7→ πσ is a Borel reduction from the orbit

equivalence relation for the action of L(X,U(H)) on Irr(Γ ×X,U(H)) to the uni-

tary equivalence relation on Irr(G,L2(X,U(H)) ).

Conversely, the following result will enable us to reduce the unitary equivalence

relations ≈H for various countable groups H to suitable cocycle equivalence rela-

tions.

Proposition 5.4. Let Γ, H be countable groups and let ρ : Γ→ H be a surjective

homomorphism. Suppose that:

(i) Γ acts freely and ergodically via measure-preserving Borel maps on the stan-

dard probability space (X,µ ).

(ii) ker ρ acts ergodically on (X,µ ).

Let π 7→ σπ be the Borel map from Rep(H,H) to Z1(Γ×X,U(H)) defined by

σπ(γ, x) = (π ◦ ρ)(γ) γ ∈ Γ, x ∈ X.

If σ, θ ∈ Rep(H,H), then HomΓ(σπ, σθ) is the vector space of constant maps taking

values in CH(π, θ).

Proof. Clearly if T ∈ CH(π, θ), then the constant map x 7→ T lies in HomΓ(σπ, σθ).

Conversely, if T ∈ HomΓ(σπ, σθ), then for all γ ∈ Γ,

σπ(γ, x)T (x) = T (γ · x)σθ(γ, x) µ-a.e. x ∈ X.

In particular, for each γ ∈ ker ρ, we have that

T (x) = T (γ · x) µ-a.e. x ∈ X.

Since ker ρ acts ergodically on X, it follows that T is µ-a.e. constant; and since the

homomorphism ρ : Γ→ H is surjective, it follows that the µ-a.e. constant value of

T lies in CH(π, θ). �

Following Kechris [34, Section 20(B)], we can reformulate the notion of a cocycle

for an arbitrary countable ergodic measure-preserving equivalence relation E on
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the standard Borel probability space (X,µ ) as follows. First let M be the σ-finite

Borel measure defined on E by

M(A) =

∫
|Ax| dµ(x),

where Ax = { y ∈ X | (x, y) ∈ A }. (For example, see Kechris [34, Section 6.B].)

Then Z1(E,U(H)) denotes the standard Borel space of Borel maps σ : E → U(H)

such that

σ(x, z) = σ(y, z)σ(x, y)

for all x E y E z in some E-invariant Borel subset of X of µ-measure 1, where we

identify two such maps σ, σ′ if

σ(x, z) = σ′(x, z) M -a.e. (x, z) ∈ E.

If σ, τ ∈ Z1(E,U(H)), then we define HomE(σ, τ) to consist of the bounded Borel

maps T : X → B(H) such that

σ(x, z)T (x) = T (z) τ(x, z) M -a.e. (x, z) ∈ E,

where we identify two such maps if they agree µ-a.e.

Of course, if E = EXΓ is the orbit equivalence relation arising from a free ergodic

measure-preserving action on (X,µ ), then for each σ ∈ Z1(Γ ×X,U(H)), we can

define a corresponding cocycle σ′ ∈ Z1(E,U(H)) by

σ′(x, z) = σ(g, x),

where g ∈ Γ is the unique g ∈ Γ such that g · x = z; and for each τ ∈ Z1(E,U(H)),

we can define a corresponding cocycle τ ′ ∈ Z1(Γ×X,U(H)) by

τ ′(g, x) = τ(x, g · x).

Notice that if σ1, σ2 ∈ Z1(Γ ×X,U(H)) and σ′1, σ′2 ∈ Z1(E,U(H)) are the corre-

sponding cocycles as above, then for all bounded Borel maps T : X → B(H),

T ∈ HomΓ(σ1, σ2) ⇐⇒ T ∈ HomE(σ′1, σ
′
2).

Definition 5.5. A cocycle σ ∈ Z1(E,U(H)) is said to be irreducible if HomE(σ, σ)

consists of the constant µ-a.e. maps T : X → B(H) taking values in the vector

space of scalar multiples of the identity.
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For each (possibly finite dimensional) separable Hilbert spaceH, let Irr(E,U(H))

be the set of irreducible cocycles.

Definition 5.6. Let H be an infinite dimensional separable Hilbert space. Then

≡E denotes the orbit equivalence relation arising from the action of L(X,U(H))

on Irr(E,U(H)) defined by

(f · σ)(x, z) = f(z)σ(x, z) f(x)−1

for each f ∈ L(X,U(H)) and σ ∈ Irr(E,U(H)).

If E = EXΓ , then we will often identify Z1(E,U(H)) with Z1(Γ×X,U(H)) and

Irr(E,U(H)) with Irr(Γ×X,U(H)).

It is well-known that if two ergodic measure-preserving actions of countable

groups are orbit equivalent, then the associated cocycle machineries are isomorphic.

(See Feldman-Moore [16].) In fact, as observed by Kechris [34, Section 20(G)], the

same is true when the actions are weakly orbit equivalent.

Lemma 5.7. Suppose that E and F are countable ergodic measure-preserving equiv-

alence relations on the standard Borel probability spaces (X,µ ), (Y, ν ) respectively.

If E and F are weakly orbit equivalent, then ≡E and ≡F are Borel bireducible.

Proof. It is enough to prove Lemma 5.7 for the special case where (Y, ν ) = (A,µA )

for some Borel a.e.-complete section A ⊆ X; i.e. A is a Borel subset which meets

µ-a.e. E-class and µA is the Borel probability measure defined on A by µA(Z) =

µ(Z)/µ(A). For each σ ∈ Z1(E,U(H)), let σ � A ∈ Z1(E � A,U(H)) be the

restriction of σ to A. By Kechris [34, Section 20(G)], if σ1, σ2 ∈ Z1(E,U(H)), then

σ1 ≡E σ2 ⇐⇒ σ1 � A ≡E�A σ2 � A.

Next let fA : X → A be a Borel map such that fA(x) E x for µ-a.e. x ∈ X and

such that fA � A = IdA. Then for each τ ∈ Z1(E � A,U(H)), we can define

a corresponding cocycle τA ∈ Z1(E,U(H)) by τA(x, z) = τ(fA(x), fA(z)). It is

easily seen that if τ1, τ2 ∈ Z1(E � A,U(H)), then

τ1 ≡E�A τ2 ⇐⇒ τA1 ≡E τA2 .

Furthermore, by Kechris [34, Section 20(G)], for each σ ∈ Z1(E,U(H)),

σ ≡E (σ � A )A.
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Thus it is enough to show that if τ ∈ Z1(E � A,U(H)), then

τ ∈ Irr(E � A,U(H)) ⇐⇒ τA ∈ Irr(E,U(H)).

First suppose that τ /∈ Irr(E � A,U(H)). Then there exists T ∈ HomE�A(τ, τ)

such that T is not a scalar multiple of the identity ν-a.e. Let TA : X → B(H) be

the bounded Borel map defined by TA(x) = T (fA(x)). Then TA ∈ HomE(τA, τA)

witnesses that τA /∈ Irr(E,U(H)). Conversely, suppose that τ ∈ Irr(E � A,U(H))

and let T ∈ HomE(τA, τA). Then

τ(x, z)T (x) = T (z) τ(x, z) M -a.e. (x, z) ∈ E � A,

and hence there exists λ ∈ C such that T (x) = λ IdH for µ-a.e. x ∈ A. Since

τA(x, fA(x))T (x) = T (fA(x)) τA(x, fA(x)) µ-a.e. x ∈ X,

it follows that T (x) = λ IdH for µ-a.e. x ∈ X. Thus τA ∈ Irr(E,U(H)). �

In the next section, following Sutherland [46], we will use the flexibility inherent

in Lemma 5.7 to compare the unitary duals of countable amenable non-type I

groups. For now, we will just record the following result.

Theorem 5.8. ≈ F2
is Borel bireducible with ≡E∞ .

Proof. In order to see that ≡E∞ is Borel reducible to ≈ F2 , let µ is the usual product

probability measure on 2F2 and identify Irr(E∞, U(H)) with Irr(F2 × 2F2 , U(H)) .

Let C2 be the cyclic group of order 2 and let

G = C2 wr F2 = Ao F2,

where A is the base group of the wreath product. Then the induced action of F2 on

the unitary dual of A is isomorphic to the shift action of F2 on ( 2F2 , µ ). Consider

the Borel map σ 7→ πσ from Z1(F2 × 2F2 , U(H)) to Rep(G,L2(2F2 ,H) ) defined by

equations (5.2) and (5.3). Applying Proposition 5.3 and Schur’s Lemma,

(i) Irr(F2 × 2F2 , U(H)) is mapped to Irr(G,L2(2F2 ,H) ); and

(ii) if σ, τ ∈ Irr(F2 × 2F2 , U(H)), then σ ≡E∞ τ if and only if πσ ≈G πτ .

Thus ≡E∞ is Borel reducible to ≈G; and applying Theorem 1.10, it follows that

≡E∞ is Borel reducible to ≈ F2
.
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In order to see that ≈ F2 is Borel reducible to ≡E∞ , let ν be the usual product

probability measure on 2F3 and consider the shift action of F3 on ( 2F3 , ν ). Let

ρ : F3 → F2 be a surjective homomorphism. Since the shift action of F3 on ( 2F3 , ν )

is strongly mixing, it follows that ker ρ acts ergodically on ( 2F3 , ν ). It follows that

the Borel map π 7→ σπ from Rep(F2,H) to Z1(F3×2F3 , U(H)) given by Proposition

5.4 induces a Borel reduction from ≈ F2
to ≡E , where E = E2F3

F3
. By Bowen [5], E

is weakly orbit equivalent with E∞ = E2F2
F2

; and hence, by Lemma 5.7, ≡E is Borel

bireducible with ≡E∞ . �

Remark 5.9. As we mentioned earlier, it is currently not known whether every

countable group containing a nonabelian free subgroup is representation universal.

On the other hand, the methods of this section, together with the “measurable-

group-theoretical solution to von Neumann’s problem” of Gaboriau-Lyons [19],

suggest the possibility that perhaps every countable non-amenable group is rep-

resentation universal. (Cf. Epstein [13].)

6. Representations of amenable groups

In the first part of this section, combining the results of Elliott [12] and Suther-

land [46], we will prove that if G and H are countable amenable non-type I groups,

then the unitary equivalence relations ≈G and ≈H are Borel bireducible. Then,

in the remainder of this section, we will discuss a possible (albeit very optimistic)

strategy for showing that countable amenable non-type I groups are not represen-

tation universal.

Theorem 6.1. If H is a countable amenable non-type I group, then ≈H is Borel

bireducible with ≡E0
.

Corollary 6.2. If G and H are countable amenable non-type I groups, then ≈G
and ≈H are Borel bireducible.

�

Corollary 6.3. If G is a countable non-type I group and H is any countable

amenable group, then ≈H is Borel reducible to ≈G.

Proof. If H is a type I group, then ≈H is smooth and hence ≈H is Borel reducible

to ≈G. Thus we can suppose that H is a countable amenable non-type I group. Let
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K be a countable locally finite non-type I group. Then by Theorem 6.1, ≈H and

≈K are Borel bireducible; and by Theorem 4.1, ≈K is Borel reducible to ≈G. �

It should be stressed that the following is essentially just a slight reformulation of

the argument in Sutherland [46]. In particular, the key idea of using the Ornstein-

Weiss Theorem in this setting is due to Sutherland.

Proof of Theorem 6.1. To see that ≈H is Borel reducible to ≡E0 , let Γ = H × Z

and let ρ : Γ → H be the canonical surjective homomorphism. Let ν be the usual

product probability measure on X = 2Γ and let E = E2Γ

Γ . Then, arguing as in

the proof of Theorem 5.8, it follows that the Borel map π 7→ σπ from Rep(H,H)

to Z1(Γ× 2Γ, U(H)) given by Proposition 5.4 induces a Borel reduction from ≈H

to ≡E . Recall that E0 is the orbit equivalence relation arising from the natural

free ergodic action of the direct sum D of countably many copies of the cyclic

group of order 2 on the Cantor space 2N. By Ornstein-Weiss [42], since D and Γ

are both amenable, the essentially free ergodic actions of Γ on 2Γ and D on 2N

are orbit equivalent. Applying Lemma 5.7, it follows that ≡E and ≡E0
are Borel

bireducible, and hence ≈H is Borel reducible to ≡E0
.

Next let G =
⊕

n∈NGn, where each Gn is isomorphic to Sym(3). Applying

Theorem 4.1, since G is locally finite, it follows that ≈G is Borel reducible to ≈H .

Hence, in order to show that ≡E0
is Borel reducible to ≈H , it is enough to show

that ≡E0
is Borel reducible to ≈G. Express G = A o H, where A = ⊕n∈NAn

is the direct sum of countably many copies of the cyclic group of order 3 and

H = ⊕n∈NHn is the direct sum of countably many copies of the cyclic group of

order 2. Then the unitary dual Z = Irr1(A) of A is the direct product of countably

many copies of the cyclic group C3 = { 1, ξ, ξ2 } of order 3. Let

X = { ξ, ξ2 }N ⊆ CN
3 = Z

and let µ be the product probability measure on X. Then the conjugation action

of H on A induces a free ergodic action of H on (X,µ ) and the corresponding

orbit equivalence relation E = EXH is clearly orbit equivalent to E0. Hence, by

Lemma 5.7, it follows that ≡E and ≡E0
are Borel bireducible. Let σ

π7→ πσ be the

Borel map from Z1(H ×X,U(H)) to Rep(G,L2(X,H) ) given by equations (5.2)
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and (5.3). Then, applying Proposition 5.3 and Schur’s Lemma, π induces a Borel

reduction from ≡E to ≈G and hence ≡E0
is Borel reducible to ≈H . �

In the remainder of this section, we will discuss the relationship between ≡E0

and some more commonly studied Borel equivalence relations. We will begin by

considering the measure equivalence relation on a suitably restricted subspace of

the Polish space P(2N) of probability measures on 2N. Once again, let D be the

direct sum of countably many copies of the cyclic group of order 2, equipped with

its natural action on the Cantor space 2N. Then we can define an associated action

of D on P(2N) by µ
g7→ g∗µ. Recall that a probability measure µ ∈ P(2N) is said

to be quasi-invariant if g∗µ ∼ µ for all g ∈ D; and if µ ∈ P(2N) is quasi-invariant,

then µ is said to be ergodic if every D-invariant Borel subset of 2N is either null or

conull. It is easily checked that the set QE(2N) of quasi-invariant ergodic probability

measures on 2N is a Borel subset of P(2N) and hence QE(2N) is a standard Borel

space.

Definition 6.4. ∼qe is the measure equivalence relation on QE(2N).

The following result is implicitly contained in Mackey [39].

Theorem 6.5. ∼qe is Borel reducible to ≡E0 .

Proof. Once again, let G =
⊕

n∈NGn, where each Gn is isomorphic to Sym(3); and

express G = AoH, where A = ⊕n∈NAn is the direct sum of countably many copies

of the cyclic group of order 3 and H = ⊕n∈NHn is the direct sum of countably

many copies of the cyclic group of order 2. Then it is enough to show that ∼qe is

Borel reducible to ≈G. As above, let Z = Irr1(A) be the unitary dual of A and let

X = { ξ, ξ2 }N ⊆ CN
3 = Z.

Then the induced action of H on X is isomorphic to the natural action of D on 2N.

If the probability measure µ on X is quasi-invariant and ergodic with respect to the

action of H, then we can define a corresponding irreducible unitary representation

πµ of G on L2(X,µ) by setting:

(πµ(g) · f)(x) =


√

d(g∗µ)
dµ (x) f(g−1x) if g ∈ H;

x(g) f(x) if g ∈ A;
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for each f ∈ L2(X,µ). Suppose that ν is another probability measure on X which

is quasi-invariant and ergodic with respect to the action of H. If µ ∼ ν, then the

unitary isomorphism U : L2(X,µ)→ L2(X, ν), defined by f 7→
√
dµ/dν f , satisfies

U−1 πν(g)U = πµ(g)

for each g ∈ G and hence πν , πµ are unitarily equivalent. Conversely, if πν , πµ are

unitarily equivalent, then πν � A and πµ � A are unitarily equivalent representations

of A, and it is well-known that this implies that µ ∼ ν. Thus ∼qe is Borel reducible

to ≈G. �

Next, following Kechris-Sofronidis [35], we will discuss the relationship between

the Borel equivalence relations ∼qe and E`2 .

Definition 6.6. E`2 is the Borel equivalence relation on RN defined by

( an ) E`2 ( bn ) ⇐⇒
∑

( an − bn )2 <∞.

In other words, E`2 is the orbit equivalence relation arising from the additive

action of the Banach space `2 = { (xn ) ∈ RN |
∑
x2
n <∞} on RN. It is well-known

that E`2 is Borel bireducible with E`2 � ( 0, 1 )N. (For example, see the proof of

Kanovei [31, Lemma 6.2.2].) As pointed out by Kechris-Sofronidis [35], the classical

theorem of Kakutani [30] on equivalence of infinite product measures implies that

E`2 is Borel reducible to ∼qe. In more detail, for each sequence α = (αn ) ∈ ( 0, 1 )N,

let µα be the product measure defined on 2N by

µα =
∏

(αnδ0 + (1− αn)δ1 ),

where δi denotes the Dirac measure on { 0, 1 }. Then it is well-known that each µα

is quasi-invariant and ergodic; and, by Kakutani [30], if α, β ∈ ( 0, 1 )N, then the

following are equivalent:

(i) µα ∼ µβ .

(ii)
∑∞
n=0(

√
αn −

√
βn )2 + (

√
1− αn −

√
1− βn )2 <∞.

Furthermore, if there exists ε > 0 such that ε ≤ αn, βn ≤ 1− ε for all n ∈ N, then

condition (ii) is equivalent to:

(iii)
∑∞
n=0(αn − βn )2 <∞.
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It follows easily that E`2 is Borel bireducible with the restriction of ∼qe to the space

{ µα | α ∈ ( 0, 1 )N } of quasi-invariant ergodic product measures. In particular, it

is now clear that the following result holds.

Corollary 6.7. E`2 is Borel reducible to ≡E0 .
�

Remark 6.8. Suppose that G is a countable non-type I group. Then the results

in this section imply that E`2 is Borel reducible to ≈G. By Kechris-Sofronidis

[35], E`2 does not admit classification by countable structures; and hence we obtain

yet another proof of Hjorth’s theorem that ≈G does not admit classification by

countable structures. (See also Farah [14] and Kerr-Li-Pichot [36].)

Question 6.9. Is ∼qe Borel bireducible with E`2?

Question 6.10. Is ≡E0
Borel bireducible with E`2?

While there is currently no reason to expect a positive answer to Question 6.10,

a positive answer would enable us to separate ≡E0 and ≡E∞ . In more detail, the

following result will be proved in Section 7.

Theorem 6.11. E∞ is Borel reducible to ≡E∞ .

On the other hand, as was pointed out to me by Alexander Kechris, the following

result is a straightforward consequence of Popa’s Superrigidity Theorem [43].

Theorem 6.12. E∞ is not Borel reducible to E`2 .

Proof. Suppose that E∞ is Borel reducible to E`2 . Let Γ be a countably infinite

perfect Kazhdan group (e.g. we could take Γ = SL(3,Z)) and consider the action

of Γ on ( 2Γ, µ ), where µ is the usual product probability measure. Then the

corresponding orbit equivalence relation E = E2Γ

Γ is a countable Borel equivalence

relation and so E is Borel reducible to E∞. Hence there exists a Borel reduction

f : 2Γ → RN from E to E`2 . Let α : Γ×2Γ → `2 be the corresponding Borel cocycle

defined by

α(γ, x) = the unique ā ∈ `2 such that f(γ · x) = f(x) + ā.

By Ando-Matsuzawa [1, Example 2.18], `2 is a Polish group of finite type. Hence,

applying Popa [43], it follows that α is equivalent to a group homomorphism; i.e.
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there exists a Borel map b : 2Γ → `2 and a group homomorphism ϕ : Γ → `2 such

that for all γ ∈ Γ,

ϕ(γ) = b(γ · x) + α(γ, x)− b(x)

= b(γ · x) + f(γ · x)− ( b(x) + f(x) ) µ-a.e. x ∈ 2Γ.

Since Γ is perfect, it follows that ϕ is the trivial homomorphism which sends every

element of Γ to the identity element 0̄ ∈ `2; and so for all γ ∈ Γ,

b(γ · x) + f(γ · x) = b(x) + f(x) µ-a.e. x ∈ 2Γ.

Clearly the Borel map f ′ : 2Γ → RN defined by f ′(x) = b(x) + f(x) is also a Borel

reduction from E to E`2 . However, we have just seen that f ′ is Γ-invariant µ-a.e.;

and since Γ acts ergodically on ( 2Γ, µ ), this implies that f ′ is constant µ-a.e., which

is a contradiction. �

7. Quasi-regular representations of F2

In this section, we will prove that the universal countable Borel equivalence

relation E∞ is Borel reducible to the unitary equivalence relation ≈F2
on the space

of infinite dimensional irreducible unitary representations of the free group F2 on

the two generators { a, b }. Of course, combined with Theorem 5.8, this implies that

E∞ is Borel reducible to ≡E∞ . We will begin by recalling Mackey’s theorem on

quasi-regular representations of countable groups.

Let G be a countable group and let H 6 G be a subgroup. Then λG/H denotes

the corresponding quasi-regular representation of G on the Hilbert space `2(G/H).

Recall that two subgroups H0, H1 of a group G are said to be commensurable if

H0 ∩H1 is of finite index in both H0 and H1. The commensurator of H0 in G is

defined to be

ComG(H0) = { g ∈ G | H0 and gH0g
−1 are commensurable }.

The subgroup H0 is said to be self-commensurating if ComG(H0) = H0. It is easily

seen that if H0 and H1 are self-commensurating subgroups of G, then H0 and H1

are conjugate in G if and only if there exists an element g ∈ G such that gH0g
−1

and H1 are commensurable. Thus the following result is an immediate consequence
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of Corollary 1 and Corollary 2 in Mackey [39, Section 3.4]. (The formulation of

Theorem 7.1 is a slight variant of Theorem 2.1 in Burger and de la Harpe [7].)

Theorem 7.1 (Mackey). Let G be a countable group and let H0, H1 be subgroups

of G.

(a) λG/H0
is irreducible if and only if H0 is a self-commensurating subgroup.

(b) If H0 and H1 are self-commensurating subgroups, then λG/H0
is unitarily

equivalent to λG/H1
if and only if H0 and H1 are conjugate in G.

Remark 7.2. Suppose that G is a countable group and that H 6 G is a self-

commensurating subgroup. Extending the results of Mackey [39, Section 3.4] on

inducing 1-dimensional representations of H, Corwin [8] and Kleppner [37] proved

that if π, σ are finite dimensional irreducible representations of H, then:

(i) indGH(π) is an irreducible representation of G; and

(ii) π ≈H σ if and only if indGH(π) ≈G indGH(σ).

For many years, it was unknown whether or not the analogous statements were also

true for infinite dimensional irreducible representations π, σ ∈ Irr∞(H). However,

Bekka-Curtis [4] have recently shown that there exists a self-commensurating sub-

group H 6 G = Z2oSL(2,Z) and an infinite dimensional irreducible representation

π ∈ Irr∞(H) such that the induced representation indGH(π) is not irreducible. It

would be very interesting to find sufficient conditions on pairs H 6 G of countable

groups which ensure that the map π 7→ indGH(π) is a Borel reduction from ≈H to

≈G.

Definition 7.3. If G is a countable group, then

C(G) = {H ≤ G | H is a self-commensurating subgroup }

and EC(G) denotes the conjugacy relation on C(G).

The following result is an immediate consequence of Theorem 7.1.

Lemma 7.4. E C(F2) is Borel reducible to ≈ F2
.

Thus, in order to show that E∞ is Borel reducible to ≈F2
, it is enough to prove

the following result.
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Theorem 7.5. E C(F2) is a universal countable Borel equivalence relation.

Let F3 be the free group on the three generators { a, b, c }. Then the following

easy observation shows that it is enough to prove that E C(F3) is a universal countable

Borel equivalence relation.

Lemma 7.6. E C(F3) is Borel reducible to E C(F2).

Proof. By Karrass-Solitar [32, p. 950], the set { aba, a2b2a2, a3b3a3 } freely gener-

ates a malnormal subgroup K of F2. (Recall that a subgroup K of a group G is said

to be malnormal if gKg−1∩K = 1 for all g ∈ GrK.) In particular, it follows that

each H ∈ C(K) is also self-commensurating in F2. Furthermore, if H0, H1 ∈ C(K)

and g ∈ F2 satisfies gH0g
−1 = H1, then g ∈ K. Thus the identity map is a Borel

reduction from E C(K) to E C(F2). �

From now on, let P∞(F2) be the standard Borel space of infinite subsets of F2.

Then it is easily seen that (E∞ � P∞(F2)) ∼B E∞ and thus E∞ � P∞(F2) is also

a universal countable Borel equivalence relation. For each A ∈ P∞(F2), let K(A)

and S(A) be the subgroups of F3 defined by:

• K(A) = 〈wcw−1 | w ∈ A 〉; and

• S(A) = { g ∈ F2 | g A = A }.

Let C = 〈 c 〉. Then it is easily checked that

K(A) = ∗
w∈A

wCw−1

is the free product of the subgroups {wCw−1 | w ∈ A }. In particular, it follows

that K(A) ∩ F2 = 1. It is also clear that if g ∈ S(A), then g K(A)g−1 = K(A).

Hence the subgroup H(A) 6 F3 generated by K(A) ∪ S(A) decomposes into a

semi-direct product:

• H(A) = K(A)o S(A).

Proposition 7.7. The map A 7→ H(A) is a Borel reduction from E∞ � P∞(F2) to

E C(F3).

The proof of Proposition 7.7 will be broken down into a sequence of lemmas. We

will begin with the following easy observation.

Lemma 7.8. If A ∈ P∞(F2) and g ∈ F2, then gH(A)g−1 = H(g A).
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Proof. Clearly g K(A)g−1 = K(g A) and g S(A)g−1 = S(g A). �

Most of our efforts will go into proving the following somewhat technical result.

Lemma 7.9. Suppose that A, B ∈ P∞(F2) and that γ ∈ F3. If H(A) and

γ H(B)γ−1 are commensurable, then there exist elements g ∈ F2 and u ∈ K(B)

such that γ = gu.

Before presenting the proof of Lemma 7.9, we will show how to complete the

proof of Proposition 7.7.

Lemma 7.10. If A ∈ P∞(F2), then H(A) ∈ C(F3).

Proof. Suppose that γ ∈ Com F3
(H(A) ). Then, by Lemma 7.9, there exist g ∈ F2

and u ∈ K(A) such that γ = gu. Thus it is enough to show that g ∈ S(A). To see

this, first note that

γ H(A)γ−1 = g H(A)g−1 = H(g A).

Thus H(A) and H(gA) are commensurable; and this easily implies that H(A)

and H(g−1A) are also commensurable. Now suppose that g A 6= A. Then, after

replacing g by g−1 if necessary, we can suppose that there exists w0 ∈ g A r A.

Since H(A) and H(g A) are commensurable, there exists n ≥ 1 such that

w0c
nw−1

0 ∈ H(A) = K(A)o S(A).

Thus there exist w1, · · · , w` ∈ A, m1, · · · ,m` ∈ Z r {0} and h ∈ S(A) such that

(7.10) w0 c
n w−1

0 = w1 c
m1 w−1

1 · · ·w` cm` w−1
` h.

By considering the homomorphism F3 → F2 such that a 7→ a, b 7→ b and c 7→ 1,

we see that h = 1. But then equation (7.10) contradicts the fact that K(F2) is the

free product of the subgroups {wCw−1 | w ∈ F2 }. �

Lemma 7.11. Suppose that A, B ∈ P∞(F2). If H(A) and H(B) are conjugate in

F3, then there exists g ∈ F2 such that A = g B.

Proof. Suppose that γ ∈ F3 and that H(A) = γ H(B)γ−1. Then, by Lemma 7.9,

there exist g ∈ F2 and u ∈ K(B) such that γ = gu. Thus H(A) = H(g B); and

arguing as in the proof of Lemma 7.10, we see that A = g B. �
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Proof of Proposition 7.7. By Lemma 7.10, if A ∈ P∞(F2), then H(A) ∈ C(F3).

Suppose that A, B ∈ P∞(F2). By Lemma 7.8, if there exists g ∈ F2 such that

g A = B, then g H(A) g−1 = H(B). Conversely, by Lemma 7.11, if H(A) and

H(B) are conjugate in F3, then there exists g ∈ F2 such that A = g B. Thus the

map A 7→ H(A) is a Borel reduction from E∞ � P∞(F2) to E C(F3). �

The following argument is closely based upon the proof of Gao [20, Lemma 2].

Proof of Lemma 7.9. Suppose that A, B ∈ P∞(F2) and that γ ∈ F3 is such that

H(A) and γ H(B)γ−1 are commensurable. Since

[K(A) : K(A) ∩ γ H(B)γ−1 ] <∞,

it follows that for each x ∈ A, there exists nx ≥ 1 such that

(7.9) x cnx x−1 = γ wx g γ
−1

for some wx ∈ K(B) and g ∈ S(B). Notice that x cnx x−1 is a freely reduced word

in a, b, c. In considering the right-hand side of equation (7.9), we will initially

suppose that:

(i) γ, γ−1 and g are freely reduced words in a, b, c ; and

(ii) wx ∈ K(B) is written as a reduced word with respect to the decomposition

of K(B) as the free product of the subgroups { b c b−1 | b ∈ B } ; say,

wx = y1 · · · yt,

where each yi = bi c
`i b−1

i for some bi ∈ B and `i ∈ Z r {0}.

Then after freely reducing the initial expression of γ wx g γ
−1 through successive

cancellations of terms of the form z z−1 or z−1 z for some z ∈ { a, b, c }, we must

eventually obtain the reduced word x cnx x−1. From now on, for each x ∈ A, we

will fix such a cancellation procedure. Note that for each x ∈ A, there exists an

occurrence of c in the initial expression of γ wx g γ
−1 which is preserved throughout

the cancellation procedure and gives rise to the first occurrence of c in the reduced

word x cnx x−1. This occurrence of c in γ wx g γ
−1 will be called the first preserved

occurrence.

We claim that there exists at most one x ∈ A such that the corresponding first

preserved occurrence of c is a letter in γ. To see this, suppose that x1, x2 ∈ A both
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have this property. Since γ is freely reduced, the first preserved occurrence must

be the first c in γ. Thus writing γ = k c u, where k ∈ F2 and u ∈ F3, we have that

x1 c
nx1 x−1

1 = k c uwx1 g γ
−1

x2 c
nx2 x−1

2 = k c uwx2 g γ
−1,

which implies that x1 = k = x2. Similarly, we claim there exists at most one

x ∈ A such that the corresponding first preserved occurrence of c is a letter in γ−1.

To see this, note if the first preserved occurrence of c is a letter in γ−1, then the

last preserved occurrence of c must also be a letter in γ−1; and since γ−1 is freely

reduced, this last preserved occurrence must be the last c in γ−1. Arguing as above,

the claim now follows easily.

Thus there exists x ∈ A such that the corresponding first preserved occurrence

of c is a letter in wx g. Of course, since g ∈ S(B) 6 F2, this means that the

corresponding first preserved occurrence of c is actually a letter in wx; say, the first

preserved occurrence is one of the letters in yi = bi c
`i b−1

i . Then

x = γ b1 c
`1 b−1

1 · · · bi−1 c
`i−1 b−1

i−1 bic
r

for some r ≥ 0. Let u = b1 c
`1 b−1

1 · · · bi−1 c
`i−1 b−1

i−1. Then u ∈ K(B). If r = 0,

then γ = x b−1
i u−1 has the required form, since x b−1

i ∈ F2 and u−1 ∈ K(B). So

suppose that r > 0. Then we can write x = γ z bi, where z = u bi c
r b−1
i ∈ K(B);

and, once again, γ has the required form. �

8. Unitary equivalence of arbitrary representations

In the previous sections of this paper, we have focused our attention on the

unitary equivalence relation ≈G on the space of irreducible unitary representations

of the countable group G on the infinite dimensional separable Hilbert space H. In

this final section, we will point out a basic open question concerning the unitary

equivalence relation ≈+
G on the space Rep(G,H) of arbitrary unitary representations

of G on H. By a recent result of Hjorth-Törnquist [27], ≈+
G is a Borel equivalence

relation; in fact, ≈+
G is an Fσδ equivalence relation.

Let ∼ be the measure equivalence relation on the space P(2N) of arbitrary prob-

ability measures on 2N. (Of course, we could replace 2N with any uncountable
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standard Borel space X.) Then, as pointed out by Kechris [34, Section 5], the spec-

tral theorem for unitary operators implies that the unitary equivalence relation ≈+
Z

on the space Rep(Z,H) is Borel bireducible with ∼. In particular, it follows that

≈+
Z is not smooth and hence ≈Z <B ≈+

Z . More generally, the following result is a

straightforward consequence of Kanovei’s theory [31, Chapter 17] of pinned Borel

equivalence relations.

Theorem 8.1 (Hjorth-Törnquist [27]). If G is a countably infinite group, then

≈G <B ≈+
G.

However, the following basic problem remains open.

Question 8.2. Is ≈+
F∞ Borel bireducible with ≈+

Z? Equivalently, is ≈+
F∞ Borel

bireducible with the measure equivalence relation ∼?

Here it is probably worth pointing out that E∞ is Borel reducible to ∼ and hence

E∞ is Borel reducible to ≈+
Z. In fact, I am currently not aware of any even vaguely

plausible strategy for separating ≈+
Z and ≈+

F∞ .

Appendix A. List of equivalence relations

In this appendix, we collect together the definitions of the various Borel equiva-

lence relations that occur in this paper.

• ≈G is the unitary equivalence relation on the space Irr∞(G) of infinite

dimensional irreducible unitary representations of the countable non-type

I group G.

• ≈+
G is the unitary equivalence relation on the space Rep(G,H) of arbitrary

unitary representations of the countable group G on the infinite dimensional

separable Hilbert space H.

• ≈A is the unitary equivalence relation on the space Irr∞(A) of infinite

dimensional irreducible unitary representations of the non-type I separable

C∗-algebra A.

• EXG is the orbit equivalence relation of the countable group G acting on the

standard Borel G-space X.

• E0 is the eventual equality relation on 2N.

• E∞ is the orbit equivalence relation of the shift action of F2 on 2F2 .
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• ≡E is the orbit equivalence relation of the action of L(X,U(H)) on the

space Irr(E,U(H)) of irreducible cocycles.

• ∼ is the measure equivalence relation on the space P(X) of probability

measures on the uncountable Polish space X.

• ∼qe is the measure equivalence relation on the space QE(2N) of quasi-

invariant ergodic probability measures on 2N.

• E`2 is the orbit equivalence relation arising from the additive action of

`2 = { (xn ) ∈ RN |
∑
x2
n <∞} on RN.

• EC(G) is the conjugacy relation on the space C(G) of self-commensurating

subgroups of the countable group G.
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(1964), 111–138.

Mathematics Department, Rutgers University, 110 Frelinghuysen Road, Piscataway,

New Jersey 08854-8019, USA

E-mail address: sthomas@math.rutgers.edu


