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ABSTRACT. In this paper, we will study the relative complexity of the unitary
duals of countable groups. In particular, we will explain that if G and H are
countable amenable non-type I groups, then the unitary duals of G and H are

Borel isomorphic.

1. INTRODUCTION

Let G be a countable group. Then the unitary dual G of G is the set of equiva-
lence classes of irreducible unitary representations of G, equipped with its Mackey
Borel structure. In more detail, for each n € {1,2,--- 00}, let Irr,,(G) be the
Polish space of all irreducible unitary representations of G in some fixed separable
Hilbert space H, of dimension n. Then the unitary dual is the quotient of the
disjoint union | |Irr,(G) by the unitary equivalence relation, equipped with the
corresponding quotient Borel structure. Recall that the unitary equivalence rela-
tion on | |Irr, (G) is said to be smooth if and only if the Mackey Borel structure on
the unitary dual G is countably separated. Of course, this is only problematic for
the restriction of the unitary equivalence relation to Irro (G). The following result

combines the main theorems of Glimm [22] and Thoma [47].

Theorem 1.1. If G is a countable group, then the following conditions are equiv-
alent:
(i) G is not abelian-by-finite.
(ii) G has an infinite dimensional irreducible representation.
(iil) The unitary equivalence relation on the space Irtoo (G) of infinite dimen-

sional irreducible unitary representations of G is not smooth.
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Furthermore, by Thoma [47], a countable group G satisfies the conditions of
Theorem 1.1 if and only if G is a non-type I group.! While Theorem 1.1 shows
that the equivalence classes of irreducible unitary representations of a countable
non-type I group G cannot be parameterized by the points of any Polish space,
this is not enough in itself to rule out a satisfactory classification. For example,
the isomorphism relation on the space of rank 1 torsion-free abelian groups is not
smooth; and yet Baer [3] was able to provide a perfectly satisfactory classification.
However, the following more recent result of Hjorth provides a much more serious

obstruction to the existence of a satisfactory classification.

Theorem 1.2 (Hjorth [25]). If G is a countable non-type I group , then there exists
a U(Ho)-invariant Borel subset X C Irroo(G) such that the action of the unitary

group U(Hs) on X is turbulent.

The notion of turbulence was introduced by Hjorth [26], in order to address
the question of which orbit equivalence relations of continuous actions of Polish
groups on Polish spaces are classifiable by countable structures. Here an analytic
equivalence relation E on a Polish space X is said to admit a classification by
countable structures if there exists a Borel map x — M, from X to the space of

countable structures for some countable language such that
By — Myg=M,.

For example, Farah-Toms-Tornquist [15] have verified that Elliott’s classification
[11] of the approximately finite dimensional C*-algebras by K-theoretic invariants
can be implemented in a Borel manner; and this means that the isomorphism
relation for approximately finite dimensional C*-algebras admits a classification
by countable structures. On the other hand, Hjorth [26] has shown that if the
continuous action of the Polish group G on the Polish space X is turbulent, then
the corresponding orbit equivalence relation EX does not admit a classification by

countable structures. In particular, if G is a countable non-type I group , then

IThe definition of a type I group can be found in Folland [17, Section 7.2]. This notion will play
no role in this paper, other than to enable us to avoid repeatedly using the term “non-(abelian-

by-finite)”.
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the unitary equivalence relation ~s does not admit a classification by countable
structures.

However, this is hopefully not the end of the story. While it does not seem feasible
to find a satisfactory classification of the irreducible unitary representations of a
fized countable non-type I group, there remains the natural question of determining
the relative complexities of the unitary duals of pairs G, H of countable non-type
I groups. For example, let G be the direct sum of infinitely many copies of the
symmetric group Sym(3) and let F, be the free group on infinitely many generators.
Then it seems reasonable to conjecture that the unitary dual of F, is strictly more
complex than that of G. In order to give a precise formulation of this question,
it is first necessary to recall some of the basic notions from the theory of Borel
equivalence relations.

If X is a Polish space, then an equivalence relation F on X is said to be Borel
if Eis a Borel subset of X x X. For example, it is well-known that the unitary
equivalence relation is an F, equivalence relation on Irr,(G). Suppose that E, F
are Borel equivalence relations on the Polish spaces X, Y respectively. Then FE is
Borel reducible to F, written E <pg F, if there exists a Borel map f : X — Y such

that for all =, z € X,

FE and F' are Borel bireducible, written £ ~g F, if both £ <g F and F <p E.
Finally we write £ <p F if both £ <p F and F ﬁB E.

Here the idea is that Borel bireducibility captures the intuitive notion of two
Borel equivalence relations having the same complexity. As we will explain next,
the Borel bireducibility of the unitary equivalence relations of the countable groups
G, H is equivalent to the usual notion in the literature of the Borel isomorphism
of their unitary duals @, H. Recall that the unitary duals @, H are said to be
Borel isomorphic if there exists a bijection f : G — H such that both fand f!
admit Borel liftings ¢ : | |Irr,(G) — | |Irr,(H) and ¢ : | |Irr, (H) — || Irr, (G)

respectively.

Remark 1.3. Some readers may a little concerned about our apparently strong

requirement that both f and f~! admit Borel liftings. However, the proof of Gao
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[21, Corollary 5.2.4] shows that if a bijection f : G — H admits a Borel lifting,

then its inverse f~! also admits a Borel lifting.

Next notice, for example, that if the Borel map ¢ is a lifting of f, then for all 7,
7' € | |Irr,(G), we have that 7, 7" are unitarily equivalent if and only if ¢(7), ¢(7’)
are unitarily equivalent; and so ¢ is a Borel reduction from the unitary equivalence
relation of G to the unitary equivalence relation of H. Consequently, if the unitary
duals é, H are Borel isomorphic, then the the unitary equivalence relations of G,
H are Borel bireducible. In order to explain why the converse holds, it is useful to
extend the notion of a Borel isomorphism to arbitrary quotients of Polish spaces

by Borel equivalence relations.

Definition 1.4. If | F are Borel equivalence relations on the Polish spaces X, Y
then the quotients X/E, Y/F are Borel isomorphic, written X/E ~ Y/F, if there
exist Borel reductions ¢ : X — Y and ¢ : Y — X such that the induced maps
¢:X/E —Y/F and ¢ : Y/F — X/E are mutually inverse bijections.

There exist examples of Borel equivalence relations E, F' such that E, F are
Borel bireducible but not Borel isomorphic. (For example, see Friedman-Motto
Ros [18].) However, the two notions coincide if we restrict our attention to the

class of Borel orbit equivalence relations.

Theorem 1.5 (Motto Ros [40]). If E, F are Borel orbit equivalence relations
arising from Borel actions of Polish groups on the Polish spaces X, Y, then E ~g F
if and only if X/E ~Y/F.

In particular, it follows that the Borel bireducibility of the unitary equivalence
relations of the countable groups G, H is equivalent to the Borel isomorphism of
their unitary duals CA}', H. Of course, if G is a countable group, then the unitary
equivalence restricted to the space | |, ., oy Irtn(G) of finite dimensional irreducible
unitary representations is smooth. Consequently, our focus will be on the space

Irroo (G) of infinite dimensional irreducible unitary representations of G.

Definition 1.6. If G is a countable non-type I group, then ~ ¢ denotes the unitary
equivalence relation on the space Irro, (G) of infinite dimensional irreducible unitary

representations of G.
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In summary, the following result is an immediate consequence of Theorem 1.5.

Corollary 1.7. If G, H are countable non-type I groups, then the following are

equivalent:

(1) The unitary equivalence relations =g and =~ gy are Borel bireducible.

(2) The unitary duals G and H are Borel isomorphic.

In the remainder of this section, we will discuss the main results of this paper.
We will begin by considering the countable groups with the most complex unitary

duals.

Definition 1.8. The countable group G is representation universal if whenever H

is a countable group, then =g is Borel reducible to ~¢.

For example, the free group F,, on countably many generators is representation
universal. To see this, let G be any countable group and let p : Fo.e — G be a
surjective homomorphism. Then the map m +— 7 o p is clearly a Borel reduction
from ~¢ to ~p__. More generally, the same argument shows that if G, H are
countable groups and G is a homomorphic image of H, then = ¢ is Borel reducible

to &~ g. On the other hand, the following basic question remains open.

Question 1.9. Suppose that G, H are countable groups such that G < H. Does

it necessarily follow that ~ & is Borel reducible to ~ g?

In particular, while F., is embeddable in SL(3,Z), it is currently not known
whether or not SL(3,Z) is representation universal. On the other hand, the follow-
ing result which we will prove in Section 3 implies that all countable nonabelian
free groups are representation universal; and, of course, this means that very large
countable groups are also representation universal. (Recall that a group G is said

to be very large if G has a nonabelian free quotient.)
Theorem 1.10. The free group Fo on two generators is representation universal.

Very little is known concerning the closure properties of the class of representa-
tion universal groups. For example, it is not known whether or not a finite extension
of a representation universal group is also representation universal; and, in partic-

ular, it is not known whether countable large groups are representation universal.
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(Recall that a group G is said to be large if G has a very large subgroup of finite
index.)

In Sections 4 through 6, we will mainly focus on the unitary duals of countable
amenable non-type I groups. Here our main result is the following theorem. (As
we will explain, Theorem 1.11 is an easy consequence of results of Elliott [12] and

Sutherland [46].)

Theorem 1.11. If G is a countable non-type I group and H is a countable amenable
group, then = g is Borel reducible to ~ . In particular, if G and H are countable

amenable non-type I groups, then ~¢g and =~y are Borel bireducible.

The main results of this paper can be summarized graphically by the following

diagram.

@ Very large groups
77

'® Amenable non-type I groups
Type I groups

Here the dotted lines indicate that it is currently not known whether or not the
unitary duals of all countable non-type I groups are Borel isomorphic. In Sections
6 and 7, we will present some evidence that suggests that countable amenable non-
type I groups might not be representation universal. If this is indeed the case,
then this raises the very interesting question of how many distinct unitary duals of
countably infinite groups exist up to Borel isomorphism. Of course, ideally there
should exist uncountably many such unitary duals. Unfortunately, the results of
Section 5 suggest the possibility that perhaps the unitary duals of all countable

non-amenable groups are Borel isomorphic.
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Notation 1.12. If H is a (possibly finite dimensional) separable Hilbert space,
then B(H) denotes the space of bounded linear operators T' : H — H and U(H)

denotes the corresponding unitary group.

Remark 1.13. For the convenience of the reader, the definitions of the various
Borel equivalence relations that occur in this paper have been collected together in

an Appendix.

Acknowledgements: I would like to thank Alexander Kechris for some very help-
ful discussions concerning the material in this paper and for explaining that Popa’s
Superrigidity Theorem [43] holds for cocycles taking values in the Banach space
P ={(z,) eRY | Y22 <0}

2. PRELIMINARIES

In this section, we will recall some basic notions from the theory of countable
Borel equivalence relations and from the representation theory of separable C*-
algebras. As expected, C*-algebras will enter into our study through the canonical
correspondence between the irreducible unitary representations of a countable group
G and the irreducible unitary representations of the associated group C*-algebra
C*(G). Countable Borel equivalence relations will enter the picture when we study
the cocycles associated with the irreducible representations of semi-direct products
of countable groups. (It is perhaps worth mentioning that Theorem 1.2 implies
that if G is a countable non-type I group, then the unitary equivalence relation ~

is not Borel reducible to any countable Borel equivalence relation.)

2.1. Countable Borel Equivalence Relations and Ergodic theory. Let X be
a standard Borel space; i.e. a Polish space equipped with its associated o-algebra of
Borel subsets. Then the Borel equivalence relation £ on X is said to be countable if
every E-equivalence class is countable. For example, suppose that G is a countable
group and that X is a standard Borel G-space; i.e. a standard Borel space X
equipped with a Borel action (g,z) — g -2 of G on X. Then the corresponding
orbit equivalence relation Eé is a countable Borel equivalence relation. Conversely,
by Feldman-Moore [16], if F is an arbitrary countable Borel equivalence relation
on the standard Borel space X, then there exists a countable group G and a Borel

action of G on X such that E = Eé
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A detailed development of the general theory of countable Borel equivalence
relations can be found in Jackson-Kechris-Louveau [29]. Here we will only recall
those aspects of the theory that will play an essential role in this paper.

With respect to Borel reducibility, the least complex nonsmooth countable Borel

equivalence relation is the Vitali equivalence relation Ey, which is defined on 2% by
zEyy <= x(n)=y(n) for almost all n.

More precisely, by Harrington-Kechris-Louveau [23], if F is any (not necessarily
countable) Borel equivalence relation, then E is nonsmooth if and only if Eqy <p E.
At the other extreme, let F, be the orbit equivalence relation arising from the shift
action of the free group F3 on two generators on 2¥2. Then, by Dougherty-Jackson-
Kechris [10], E is a universal countable Borel equivalence relation in the sense
that F <p F, for every countable Borel equivalence relation F'.

If X is a Polish space, then the Polish space of all Borel probability measures
on X is denoted by P(X). If u, v € P(X), then p and v are said to be equivalent,

written p ~ v, if for every Borel subset A C X,
pA)=0 = v(l4)=0.

If G is a countable group and X is a standard Borel G-space, then we can define a
corresponding Borel action on P(X) by u EN g« b, Where g, p is the Borel probability

measure defined by
g«1i(A) = p(g~(4))

for every Borel subset A C X. The Borel probability measure p € P(X) is said to
be invariant if g,u = p for all g € G and is said to be quasi-invariant if g.u ~ p
for all g € G. If p € P(X) is quasi-invariant, then p is said to be ergodic if every
G-invariant Borel subset of X is either null or conull.

Suppose that F is a countable Borel equivalence relation on the standard Borel
probability space ( X, x). Then F is said to be measure-preserving if I’ preserves
for some (equivalently every) countable group I' acting in a Borel fashion such that
FE = Eli( In this case, E is said to be ergodic if each such I' acts ergodically on
(X,p). If E is an ergodic measure-preserving countable Borel equivalence relation

on the standard Borel probability space (X, ) and A C X is a Borel subset such
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that u(A) > 0, then E | A denotes the restriction of E to the standard Borel
probability space (A, pa ), where pa(C) = p(C)/u(A).

Suppose that E, F' are ergodic measure-preserving countable Borel equivalence
relations on the standard Borel probability spaces ( X, ), (Y, v ) respectively. Then
FE and F are said to be orbit equivalent if, after possibly deleting measure zero
subsets, there exists a Borel bijection 6 : X — Y such that 6,y = v and §(E) = F.
More generally, E and F' are said to be weakly orbit equivalent if there exist Borel
subsets A C X and B C Y with u(A), v(B) > 0 such that £ | A and F | B are

orbit equivalent.

2.2. C*-algebras. Let A be a separable C*-algebra. For each n € {1,2,--- ,00},
let Trr,,(A) be the Polish space of all irreducible unitary representations of A in
some fixed separable Hilbert space of dimension n. Then the spectrum Aof Ais
the quotient of the disjoint union | |Irr,,(A) by the unitary equivalence relation,
equipped with the corresponding quotient Borel structure. By Glimm [22], the
unitary equivalence relation on | |Irr, (A) is smooth if and only if A is a type I C*-
algebra.? If A is a non-type I separable C*-algebra, then ~ 4 denotes the unitary
equivalence relation on the space Irro (A) of infinite dimensional irreducible unitary
representations of A.

Let G be a countable group and let C[G] be the corresponding group algebra.
Then the group C*-algebra C*(G) is the completion of C[G] with respect to the
norm

[l [l = supl| ()],
where the supremum is taken over all cyclic *-representations 7 : C[G] — B(H).
It is well-known that there is a canonical correspondence between the irreducible
unitary representations of C*(G) and the irreducible unitary representations of G.
(For example, see Dixmier [9, Section 13.9].) Furthermore, this canonical corre-

spondence witnesses that ~¢«(g) and ~¢ are Borel bireducible.

Remark 2.1. In 1967, Dixmier raised the question of whether the spectra of any
two non-type I separable unital C*-algebras are Borel isomorphic. In fact, this
question is equivalent to asking whether countable amenable non-type I groups are

2The definition of a type I C*-algebra can be found in Arveson [2]. Once again, this notion

will play no role in this paper.
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representation universal. To see this, recall that if A is any separable unital C*-
algebra, then A is generated by a countable sequence of unitaries. It follows that

there exists a surjective unital x-homomorphism f : C*(F,) — A and so
RA SB RO Fs) ~B R, -
On the other hand, combining Theorem 4.2 and Corollary 6.2, it follows that if G
is a countable amenable non-type I group and A is any non-type I separable unital
C*-algebra, then
~aqg ~B %C*(G) SB ~A -

Thus the following statements are equivalent:

e = is Borel bireducible with ~p_ for some (equivalently every) countable

amenable non-type I group G.

e A is Borel isomorphic with C*(Fo) for every non-type I separable unital

C*-algebra A.

3. THE REPRESENTATION UNIVERSALITY OF [Fy

In this section, we will prove that the free group Fy on the two generators { a, b }
is representation universal. We have already noted that the free group F., on
infinitely many generators is representation universal. Thus it is enough to show

that ~p_ is Borel reducible to ~p,.

Notation 3.1. If H < G are countable groups and 7 is a unitary representation

of H, then indg () denotes the corresponding induced representation of G.

We will make use of the following well-known irreducibility criterion for repre-
sentations induced from normal subgroups of countable groups. (For example, see

the discussion in Quigg [44, Section 1].)

Definition 3.2. Suppose that G is a countable group and that N < G is a normal
subgroup. If 7 is a unitary representation of N and g € G, then 79 denotes the

unitary representation of N defined by 79(x) = w(gz g1).

Theorem 3.3. Let G be a countable group and let N < G be a normal subgroup.

If  is an irreducible unitary representation of N, then the following are equivalent:

(i) ind§ (n) is an irreducible unitary representation of G.
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(ii) 79 is not unitarily equivalent to 7 for allg € G\ N.

Let H = ker h < Fy, where h : F3 — Z is the homomorphism such that h(a) =1
and h(b) =0. Then T = {a" | n € Z} is a set of coset representatives of H in Fy;
and hence, by Schreier’s Theorem, it follows that S = {a™ba™" | n € Z } is a basis
of H. (For example, see Serre [45, Proposition 16].) From now on, let b, = a"ba™",

so that ab,a=! = b, for each n € Z. Let f : N — N be the function defined

inductively by:

e f(0)=0;

o fln+1)=14+27f(i);
and let K = { f(n) | n € N}. Then it is easily checked that |(£{+ K )N K| <1 for
all 0 # ¢ € Z. Hence, letting ¢, = bs(y), the infinite subset C = {¢, [n € N} C S
satisfies [a’Ca=* N C| < 1 for all 0 # ¢ € Z. From now on, we will identify F.,
with the subgroup (¢, | n € N) of H and we will identify Irro(Fs) with the
corresponding subspace of Irro (H); i.e. we will identify each 7 € Irroo(Foo) with
the corresponding representation 7 € Irro,(H) obtained by setting 7(s) =1 for all

s € S~ C. Of course, with this identification, if 7, 0 € Irroo (Foo ), then

TRFE,_ O <~ TR HgOo.

oo

Let 0 : Irroo(Fo,) — Rep(Fy) be the Borel map defined by 7 + 6, = ind}?(n).

Then we will show that 0 is a Borel reduction from ~p_ to ~y,.
Lemma 3.4. If 7 € Irroo (Foo ), then 0, € Irroo (Fa).

Proof. By Theorem 3.3, it is enough to show that if £ € Z ~ {0}, then 7" is not
unitarily equivalent to w. So suppose that 7" and 7 are unitarily equivalent. Then
since a‘Sa=* = S and |a’C a=* N C| < 1, it follows that there exists at most one
basis element s € S such that 7(s) # 1. But this means that 7 is a 1-dimensional

representation of H, which is a contradiction. (I
Lemma 3.5. 0 is a Borel reduction from ~y_ to ~p,.

Proof. First note that if 7, 0 € Irroo(Fs) and © =y o, then 0, ~p, 0,. (For

example, see Folland [17, Proposition 6.9].) Conversely, suppose that 0, ~p, 0.
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Then 6, | H = @y, 7 and 0, | H= PBey o are unitarily equivalent represen-
tations of H. Arguing as in the proof of Lemma 3.4, it follows that if £ € Z ~ {0},

. . . ¢
then 7 is not unitarily equivalent to o® . Hence m =~ g 0 and so 7w ~p_, 0. [l

4. REPRESENTATIONS OF LOCALLY FINITE GROUPS

In this section, we will derive the following weak form of Theorem 1.11 from a
more general theorem of Elliott [12] on the Mackey Borel structures of the spectra

of approximately finite-dimensional C*-algebras.

Theorem 4.1. If G is a countable non-type I group and H is a countable locally

finite group, then ~ g is Borel reducible to ~ .

Recall that a C*-algebra A is said to be approxzimately finite dimensional if A is
the closure of the union (J,, .y An of an increasing chain 4g C Ay C--- C A, C---
of finite dimensional C*-subalgebras. For example, let H be a countable locally

finite group and express H = H,, as the union of an increasing chain of finite

neN
subgroups H,,. Then the group C*-algebra C*(H) is the closure of the group algebra
ClH] = U, enC[Hy] and hence C*(H) is approximately finite-dimensional. Also
recall that if G is any countable group, then ~¢-(g) and ~¢ are Borel bireducible.

Consequently, Theorem 4.1 is an immediate consequence of the following result of

Elliott [12].

Theorem 4.2 (Elliott [12]). If A is an approxzimately finite-dimensional C*-algebra

and B is a non-type I separable C*-algebra, then =4 is Borel reducible to ~pg.

In the remainder of this section, we will point out a curious result concerning the
asymptotic representation theory of finite groups, which follows easily from Thoma’s
Theorem [47], together with the theory of approximately finite-dimensional C*-

algebras.

Notation 4.3. If K < L are finite groups and m, o are irreducible representations
of K, L respectively, then mult,(o | K ) denotes the multiplicity with which 7

occurs in the representation o [ K.

Theorem 4.4. If G = |, ey Gn is the union of the strictly increasing chain of

finite subgroups G, then the following statements are equivalent:
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(i) G is not abelian-by-finite.
(ii) There exists a subsequence (£n | n € N) and irreducible representations

7, € Itt(Gy,,) such that for alln € N, mult, (7,11 | Gy, ) > 1.

Proof. To see that (ii) implies (i), suppose that G' contains an abelian subgroup A
such that [G: A] =d < co. Then A,, = G,, N A is an abelian subgroup of G,, such
that [G,, : A,,] < d; and a simple application of the Frobenius reciprocity theorem
shows that degm < [G, : A4,] for all 7 € Irr(G,,). (For example, see Remark
17.12 in Huppert [28].) Of course, if n < m and 7 € Irr(G,,), x € Irr(G,,) satisfy
mult,(x [ G ) > 1, then deg x > deg . Hence statement (ii) fails.

Conversely, suppose that G is not abelian-by-finite. Then, by Thoma [47], G
is not of type I and so the corresponding group C*-algebra C*(G) is a non-type
I approximately finite-dimensional C*-algebra. Notice that the Bratteli diagram

associated with the increasing chain

C[Go] SCIGi] S+~ CC[Gy] C -+

of finite dimensional C*-subalgebras is precisely the branching diagram of the irre-

ducible representations of the groups G,, in the corresponding increasing chain
GoCG C---CGC -

of finite subgroups of G. Thus statement (ii) is immediate consequence of the
Lazar-Taylor characterization [38, Theorem 3.13] of type I approximately finite-
dimensional C*-algebras in terms of the multiplicities of paths through their Bratteli

diagrams. O

Question 4.5. Is there an “elementary” proof of Theorem 4.47 In other words,
is Theorem 4.4 a consequence of some result concerning the branching diagrams of

pairs K < L of finite groups?
5. COCYCLES AND REPRESENTATIONS

Suppose that G = A x T is a semidirect product of the countable groups A and
I', where A is an infinite abelian group. Then it is well-known that the irreducible
representations of G are determined by the I'-quasi-invariant ergodic measures on
the unitary dual E, together with the “irreducible” cocycles for the dual action of

T on A. Furthermore, the unitary equivalence relation = ¢ is determined by:
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e the measure equivalence relation on the space of I'-quasi-invariant ergodic
measures; together with

e the cocycle equivalence relation on the space of “irreducible” cocycles.

In his remarkable paper [46], Sutherland proved that if I' is amenable and acts
freely and ergodically on ;1\, then the unitary equivalence relation ~ g of every
countable amenable group H is Borel reducible to the cocycle equivalence relation
on the space of “irreducible” cocycles o : I' X A— U(H), where H is an infinite
dimensional separable Hilbert space. As we will see, in combination with Elliott’s
work [12], this easily implies that the unitary duals of any two countable amenable
non-type I groups are Borel isomorphic. In this section, we will begin our account
of Sutherland’s work, slightly expanded and generalized so that it is also applicable
to non-amenable groups.

If G is a countable group and H is a (possibly finite dimensional) separable
Hilbert space, then Rep(G,H) denotes the Polish space of all unitary representa-
tions of G in ‘H and Irr(G,H) denotes the subspace of irreducible representations.

For each pair 7, o € Rep(G,H), let
Co(myo)={Se€B(H)|Son(g)=0c(g)oSforallge G},

Recall that, by Schur’s Lemma, if # € Rep(G,#H), then 7 is irreducible if and
only if Cg(m,m) is the vector space of scalar multiples of the identity operator.
Furthermore, if m, 0 € Rep(G,H) are both irreducible and 0 # T € Cg(w,0),
then T is a non-zero scalar multiple of a unitary operator and so 7, o are unitarily
equivalent.

We are now ready to begin our discussion of cocycles and the associated unitary
representations. Suppose that the countable group I' acts freely and ergodically via
measure-preserving Borel maps on the standard probability space ( X, ). Then a

Borel map o : ' x X — U(H) is said to be a cocycle if for all vy, 4/ € T,

U('y’y/,x) =o(, z - ) 0(7/7x) p-a.e. x € X.

Let ZY(T x X,U(H)) be the standard Borel space of Borel cocycles, where we

identify two such maps o, ¢’ if for all y € T,

o(v,x) =0'(v,x)  p-ae x € X.
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Then for each cocycle o € Z1(T' x X, U(H)), we can define a corresponding unitary

representation 7, of I on the Hilbert space L?(X,H) by setting

(5.2) (me(7) - F)(x) =0y 2) " f (7 - 2)

for each y € T, z € X and f € L*(X,H).

Definition 5.1 (Sutherland [46]). If o, 7 € Z}(I' x X,U(H)), then Homr (o, T)
consists of the bounded Borel maps T': X — B(#) such that for all v € T,

o(v,2)T(x) =T(y-z)7(v,2) pae zeX,
where we again identify two such maps if they agree u-a.e.

Here a Borel map T': X — B(H) is bounded if esssup,¢x || T(z) || < co. In this

case, we can define a corresponding bounded linear operator f@ T = f@ T(x) du(z)

on LX(X,H) by [([* T)f](x) = T(x)f(x).

Lemma 5.2. Ifo, 7€ ZY (' x X,U(H)) and T : X — B(H) is a bounded Borel
map, then T € Homy (o, 7) if and only if [€ T € Cp(ny, 7).

Proof. A routine calculation. O

Next, by passing from I' to a suitable semidirect product G = A x I and then
extending each 7, to a corresponding unitary representation of G, we will ensure
that for every S € Cg(m,,m,), there exists a bounded Borel map T : X — B(H)
such that S = [ © 7. In more detail, suppose that A is a countably infinite abelian
group and that v — ¢, is a homomorphism from I" to Aut(A). Then we can define
an induced action of T' on the unitary dual X = Irry(A) of A by vz =z o'
Next suppose that p is a I'-invariant probability measure on X such that the action
of T"on (X, p1) is essentially free and ergodic. Let G = A x, T be the corresponding
semi-direct product defined by

(a,7)(d',v") = (ap,(a),v7").

Then for each cocycle ¢ € Z}(I' x X,U(H)), we can extend the unitary represen-

tation 7, of I' on L?(X,H) to a unitary representation of G = A X, I' by setting

(5-3) (1o (a) - f)(x) = x(a) f(z).
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Notice that the direct integral decomposition of 7o = 7, | A as mop = [ @ x du(x)
on L?(X,H) = f® H, dp(x), where each H, = H, is the canonical direct integral
decomposition of 1y into primary representations. It follows that if S € C (g, o),
then there exists a bounded Borel map T : X — B(H) such that S = f@ T. (For

example, see Nielsen [41].)

Proposition 5.3. With the above hypotheses, if o, 7 € Z* (T x X,U(H)), then the

map T f® T is an vector space isomorphism between Homr (o, 7) and Cq(7y, 7, ).

Proof. It S € Cq(my,mr), then S € Cx(mg, 7o), where mg = 7, | A = 7, and so
there exists a bounded Borel map T : X — B(H) such that S = f@ T. Hence the

result follows from Lemma 5.2. O

In particular, by Schur’s Lemma, if o € Z1(I' x X, U(H)), then the corresponding
unitary representation m, of G = A x T is irreducible if and only if Homr(o, o)
consists of the constant p-a.e. maps T : X — B(H) taking values in the vector
space of scalar multiples of the identity. In this case, we say that o is an irreducible
cocycle. Let Irr(I'x X, U(H)) C Z1(I' x X, U(H)) be the set of irreducible cocycles.
Since Irr(I" x X, U(H)) is the inverse image of the set of irreducible representations
under the Borel map o — 7, it follows that Irr(T' x X, U(H)) is a Borel subset of
Z1 T x X,U(H)) and hence Irr(I' x X,U(H)) is a standard Borel space.

Next suppose that o, 7 € Irr(I' x X,U(#)) are irreducible cocycles. Then
Proposition 5.3 implies that 7, and 7, are unitarily equivalent if and only if there

exists 0 # T € Homyr (o, 7) such that S = fEB T satisfies
Soms(g) =7mr(g)0 8 for all g € G.

Furthermore, in this case, once again by Schur’s Lemma, S is a nonzero scalar
multiple of a unitary operator. Hence, replacing T' by a suitable scalar multiple,
we can assume that S is a unitary operator. By Nielsen [41, Proposition 6.1(d)], it
follows that T'(z) € U(H) for p-a.e. x € X and so we can regard T as an element
of the Polish group L(X,U(H)). Here L(X,U(H)) is the space of Borel maps
T : X — U(H) equipped with the group operation of pointwise multiplication,

where we identify two such maps if they agree p-a.e. (For more details, see Kechris
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[34, Section 19].) The group L(X,U(H)) acts on Z}(T' x X,U(H)) by
(T-0)(y,2) =T(v-x)o(y,z) T(x) ™"

and it is easily checked that Irr(T' x X, U(H)) is invariant under this action. Sum-
ming up, we now see that the map o — m, is a Borel reduction from the orbit
equivalence relation for the action of L(X,U(H)) on Irr(T" x X, U(H)) to the uni-
tary equivalence relation on Irr( G, L?(X,U(H)) ).

Conversely, the following result will enable us to reduce the unitary equivalence
relations = g for various countable groups H to suitable cocycle equivalence rela-

tions.

Proposition 5.4. Let I, H be countable groups and let p : I' — H be a surjective

homomorphism. Suppose that:
(i) T acts freely and ergodically via measure-preserving Borel maps on the stan-
dard probability space (X, ).
(i) ker p acts ergodically on (X, p).
Let m+— o5 be the Borel map from Rep(H,H) to Z*(T x X,U(H)) defined by
ox(v,2) = (mop)(v) vyel,z e X.
Ifo, 6 € Rep(H, M), then Homr (o, 09) is the vector space of constant maps taking

values in Cg(m, 6).

Proof. Clearly if T € Cy (m,0), then the constant map x +— T lies in Homr (o, 09).

Conversely, if T' € Homr (o, 09), then for all v € T,
on(v,2)T(x) =T(v-x)oe(7, ) p-a.e. € X.
In particular, for each v € ker p, we have that
T(x)=T(vy-x) p-a.e. ¢ € X.

Since ker p acts ergodically on X, it follows that T" is u-a.e. constant; and since the
homomorphism p : I' — H is surjective, it follows that the p-a.e. constant value of

T lies in Cy (m, 6). O

Following Kechris [34, Section 20(B)], we can reformulate the notion of a cocycle

for an arbitrary countable ergodic measure-preserving equivalence relation E on
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the standard Borel probability space (X, u) as follows. First let M be the o-finite
Borel measure defined on E by

M) = [ 14, dute),

where A, = {y € X | (z,y) € A}. (For example, see Kechris [34, Section 6.B].)
Then Z!(E,U(H)) denotes the standard Borel space of Borel maps o : E — U(H)
such that

o(z,2) = o(y,z)o(z,y)

for all z F y E z in some E-invariant Borel subset of X of p-measure 1, where we

identify two such maps o, o’ if
o(z,2) =o'(z,2) M-a.e. (z,z) € E.

If o, 7 € ZY(E,U(H)), then we define Hompg(o, 7) to consist of the bounded Borel
maps T : X — B(H) such that

o(x,2)T(x) =T(2) 7(x, 2) M-ae. (z,2) € E,

where we identify two such maps if they agree u-a.e.

Of course, if E = E is the orbit equivalence relation arising from a free ergodic
measure-preserving action on ( X, ), then for each o € Z4(T" x X,U(H)), we can
define a corresponding cocycle o’ € Z'(E,U(H)) by

o'(z,2) = o(g, ),

where g € T is the unique g € " such that g-z = z; and for each 7 € Z*(E,U(H)),
we can define a corresponding cocycle 7/ € Z*(T' x X,U(H)) by

(g,7) = 7(2,9 - T).
Notice that if o1, 09 € Z1(I' x X,U(H)) and o}, o € Z*(E,U(H)) are the corre-
sponding cocycles as above, then for all bounded Borel maps T : X — B(H),

T € Homr(o1,02) <= T € Homg(o},0}).

Definition 5.5. A cocycle o € Z'(E,U(H)) is said to be irreducible if Homg (o, o)
consists of the constant p-a.e. maps T : X — B(H) taking values in the vector

space of scalar multiples of the identity.
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For each (possibly finite dimensional) separable Hilbert space H, let Irr(E, U(H))

be the set of irreducible cocycles.

Definition 5.6. Let H be an infinite dimensional separable Hilbert space. Then
=g denotes the orbit equivalence relation arising from the action of L(X,U(H))

on Irr(E,U(H)) defined by

(f - 0)(z,2) = f(2) oz, 2) f(a) 7!
for each f € L(X,U(H)) and o € Irr(E,U(H)).

If E = E¥, then we will often identify Z1(FE,U(H)) with Z(T' x X,U(H)) and
Irr(E,U(H)) with Irr(T x X, U(H)).

It is well-known that if two ergodic measure-preserving actions of countable
groups are orbit equivalent, then the associated cocycle machineries are isomorphic.
(See Feldman-Moore [16].) In fact, as observed by Kechris [34, Section 20(G)], the

same is true when the actions are weakly orbit equivalent.

Lemma 5.7. Suppose that E and F are countable ergodic measure-preserving equiv-
alence relations on the standard Borel probability spaces (X, ), (Y,v) respectively.

If E and F are weakly orbit equivalent, then =g and =g are Borel bireducible.

Proof. Tt is enough to prove Lemma 5.7 for the special case where (Y,v) = (A, ua)
for some Borel a.e.-complete section A C X; i.e. A is a Borel subset which meets
p-a.e. E-class and p4 is the Borel probability measure defined on A by pa(Z) =
w(Z)/u(A). For each 0 € ZY(E,U(H)), let o | A € ZY(E | A, U(H)) be the
restriction of o to A. By Kechris [34, Section 20(G)], if o1, 02 € Z*(E,U(H)), then

01 =E 02 < 01[14 =ErA O'QfA.

Next let fa : X — A be a Borel map such that fa(z) E x for p-a.e. z € X and
such that f4 [ A = Id4. Then for each 7 € ZY(E | A,U(H)), we can define
a corresponding cocycle 74 € ZY(E,U(H)) by 74(z,2) = 7(fa(z), fa(2)). It is
easily seen that if 71, 7o € Z1(E | A,U(H)), then

TI =ElA T2 <= TfEETf.
Furthermore, by Kechris [34, Section 20(G)], for each o € ZY(E,U(H)),

oc=p (o] A4
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Thus it is enough to show that if 7 € ZY(E | A,U(H)), then
rel(E | A UH)) <+ 14chn(BE,UMH)).

First suppose that 7 ¢ Irr(E | A,U(H)). Then there exists T' € Hom gja(7,7)
such that T is not a scalar multiple of the identity v-a.e. Let T4 : X — B(H) be
the bounded Borel map defined by T4(x) = T(fa(z)). Then T4 € Hom g(74, 74)
witnesses that 74 ¢ Irr(E, U(H)). Conversely, suppose that 7 € Irr(E | A, U(H))
and let T € Hom g(74,74). Then

T(z,2)T(x) =T(2) 7(x, 2) M-ae. (z,z) € E | A,
and hence there exists A € C such that T'(z) = AIdy for p-a.e. z € A. Since
(@, fa(@) T(x) = T(fa(@) T4z, fa(z))  pae z€X,
it follows that T'(z) = AIdy for p-a.e. x € X. Thus 74 € Irr(E,U(H)). O

In the next section, following Sutherland [46], we will use the flexibility inherent
in Lemma 5.7 to compare the unitary duals of countable amenable non-type I

groups. For now, we will just record the following result.
Theorem 5.8. ~y, is Borel bireducible with =g__ .

Proof. In order to see that = __ is Borel reducible to ~,, let p is the usual product
probability measure on 22 and identify Irr(Ey, U(H)) with Irr(Fg x 252, U(H)) .
Let C5 be the cyclic group of order 2 and let

G=CowrFy=AxTFy,

where A is the base group of the wreath product. Then the induced action of Fy on
the unitary dual of A is isomorphic to the shift action of Fy on (22, 11). Consider
the Borel map o + 7, from Z1(Fy x 252, U(H)) to Rep(G, L*(2"2,H)) defined by
equations (5.2) and (5.3). Applying Proposition 5.3 and Schur’s Lemma,

(i) Trr(Fy x 2¥2, U(H)) is mapped to Irr( G, L?(2F2,H) ); and

(ii) if o, 7 € Irr(Fy x 272, U(H)), then o =p__ 7 if and only if 7, ~¢ 7.
Thus =g_, is Borel reducible to ~¢; and applying Theorem 1.10, it follows that

=p_ is Borel reducible to ~p,.
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In order to see that ~p, is Borel reducible to =g__, let v be the usual product
probability measure on 22 and consider the shift action of F3 on (22 ,v). Let
p : F3 — I3 be a surjective homomorphism. Since the shift action of F3 on (273, 1)
is strongly mixing, it follows that ker p acts ergodically on (23, 1). It follows that
the Borel map 7 +— o, from Rep(Fa, H) to Z1(F5 x 23, U(H)) given by Proposition
5.4 induces a Borel reduction from ~p, to =, where E = E]%zs. By Bowen [5], £
is weakly orbit equivalent with F, = Eﬂz; and hence, by Lemma 5.7, = g is Borel

bireducible with =g __ . O

Remark 5.9. As we mentioned earlier, it is currently not known whether every
countable group containing a nonabelian free subgroup is representation universal.
On the other hand, the methods of this section, together with the “measurable-
group-theoretical solution to von Neumann’s problem” of Gaboriau-Lyons [19],
suggest the possibility that perhaps every countable non-amenable group is rep-

resentation universal. (Cf. Epstein [13].)

6. REPRESENTATIONS OF AMENABLE GROUPS

In the first part of this section, combining the results of Elliott [12] and Suther-
land [46], we will prove that if G and H are countable amenable non-type I groups,
then the unitary equivalence relations ~ and ~ g are Borel bireducible. Then,
in the remainder of this section, we will discuss a possible (albeit very optimistic)
strategy for showing that countable amenable non-type I groups are not represen-

tation universal.

Theorem 6.1. If H is a countable amenable non-type I group, then = g is Borel

bireducible with = g, .

Corollary 6.2. If G and H are countable amenable non-type I groups, then ~g
and ~g are Borel bireducible.

O
Corollary 6.3. If G is a countable non-type I group and H is any countable

amenable group, then = g is Borel reducible to ~ .

Proof. If H is a type I group, then = p is smooth and hence =~ g is Borel reducible

to ~ . Thus we can suppose that H is a countable amenable non-type I group. Let
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K be a countable locally finite non-type I group. Then by Theorem 6.1, =~ and

~ are Borel bireducible; and by Theorem 4.1, ~ g is Borel reducible to ~¢. 0O

It should be stressed that the following is essentially just a slight reformulation of
the argument in Sutherland [46]. In particular, the key idea of using the Ornstein-

Weiss Theorem in this setting is due to Sutherland.

Proof of Theorem 6.1. To see that ~ g is Borel reducible to =g, let I' = H x Z
and let p : I' — H be the canonical surjective homomorphism. Let v be the usual
product probability measure on X = 2' and let £ = EI%F. Then, arguing as in
the proof of Theorem 5.8, it follows that the Borel map 7 — o, from Rep(H, H)
to Z1(I' x 2" U(H)) given by Proposition 5.4 induces a Borel reduction from a
to =g. Recall that Ej is the orbit equivalence relation arising from the natural
free ergodic action of the direct sum D of countably many copies of the cyclic
group of order 2 on the Cantor space 2. By Ornstein-Weiss [42], since D and T
are both amenable, the essentially free ergodic actions of I' on 2 and D on 2V
are orbit equivalent. Applying Lemma 5.7, it follows that =g and =g, are Borel
bireducible, and hence ~ g is Borel reducible to = g,.

Next let G = @, cy Gn, where each G, is isomorphic to Sym(3). Applying
Theorem 4.1, since G is locally finite, it follows that ~ ¢ is Borel reducible to ~ g.
Hence, in order to show that = g, is Borel reducible to =~ p, it is enough to show
that =g, is Borel reducible to ~¢g. Express G = A x H, where A = $pen An
is the direct sum of countably many copies of the cyclic group of order 3 and
H = ®,cn Hy, is the direct sum of countably many copies of the cyclic group of
order 2. Then the unitary dual Z = Irr;(A) of A is the direct product of countably
many copies of the cyclic group C3 = {1,£,£2} of order 3. Let

X={¢eWccel=2

and let p be the product probability measure on X. Then the conjugation action
of H on A induces a free ergodic action of H on (X, ) and the corresponding
orbit equivalence relation £ = E;{( is clearly orbit equivalent to Ey. Hence, by
Lemma 5.7, it follows that =g and =g, are Borel bireducible. Let o 7, be the

Borel map from Z'(H x X,U(H)) to Rep(G,L?*(X,H)) given by equations (5.2)
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and (5.3). Then, applying Proposition 5.3 and Schur’s Lemma, 7 induces a Borel

reduction from =g to ~¢ and hence =g, is Borel reducible to ~p. O

In the remainder of this section, we will discuss the relationship between =g,
and some more commonly studied Borel equivalence relations. We will begin by
considering the measure equivalence relation on a suitably restricted subspace of
the Polish space P(2") of probability measures on 2V. Once again, let D be the
direct sum of countably many copies of the cyclic group of order 2, equipped with
its natural action on the Cantor space 2V. Then we can define an associated action
of D on P(2V) by u % g,u. Recall that a probability measure p € P(2V) is said
to be quasi-invariant if g.u ~ p for all g € D; and if u € P(2V) is quasi-invariant,
then p is said to be ergodic if every D-invariant Borel subset of 2V is either null or
conull. It is easily checked that the set QE(2Y) of quasi-invariant ergodic probability
measures on 2" is a Borel subset of P(2V) and hence QE(2") is a standard Borel

space.

Definition 6.4. ~. is the measure equivalence relation on QE(2Y).
The following result is implicitly contained in Mackey [39].

Theorem 6.5. ~,. is Borel reducible to =g, .

Proof. Once again, let G = @, . G, where each G, is isomorphic to Sym(3); and

neN
express G = Ax H, where A = @,,cn A4, is the direct sum of countably many copies
of the cyclic group of order 3 and H = @,y Hy, is the direct sum of countably
many copies of the cyclic group of order 2. Then it is enough to show that ~g is

Borel reducible to ~¢g. As above, let Z = Irr1(A) be the unitary dual of A and let
X={&&Y o =2

Then the induced action of H on X is isomorphic to the natural action of D on 2N.
If the probability measure p on X is quasi-invariant and ergodic with respect to the
action of H, then we can define a corresponding irreducible unitary representation
7, of G on L?(X, i) by setting:

Heettd (2) f(g™") if g € H;

(mulg) - f)(@) =
z(g) f(x) if g € A;
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for each f € L?(X, ). Suppose that v is another probability measure on X which
is quasi-invariant and ergodic with respect to the action of H. If y ~ v, then the

unitary isomorphism U : L?(X, u) — L*(X,v), defined by f +— +/du/dv f, satisfies

U, (9)U = mu(g)

for each g € G and hence 7, 7, are unitarily equivalent. Conversely, if 7, 7, are
unitarily equivalent, then 7, [ A and 7, | A are unitarily equivalent representations
of A, and it is well-known that this implies that p ~ v. Thus ~ is Borel reducible

to =g. U

Next, following Kechris-Sofronidis [35], we will discuss the relationship between

the Borel equivalence relations ~g. and Ej2.

Definition 6.6. E2 is the Borel equivalence relation on RY defined by
(an) B (by) == > (an—by)* < oo

In other words, Ey2 is the orbit equivalence relation arising from the additive
action of the Banach space /2 = { (z,,) € RY | Y22 < 0o} on RY. Tt is well-known
that Ey» is Borel bireducible with Ep2 [ (0,1)N. (For example, see the proof of
Kanovei [31, Lemma 6.2.2].) As pointed out by Kechris-Sofronidis [35], the classical
theorem of Kakutani [30] on equivalence of infinite product measures implies that
Ey2 is Borel reducible to ~c. In more detail, for each sequence o = (v, ) € (0,1)N,

let o be the product measure defined on 2" by

Ha = H(an50 + (1 - an>§1 )7

where §; denotes the Dirac measure on { 0,1 }. Then it is well-known that each p,,
is quasi-invariant and ergodic; and, by Kakutani [30], if o, 8 € (0,1)Y, then the

following are equivalent:

(i) Ha ~ pp-
(i) Yolo(vVan = VB )2+ (VI—an = V1= 5,)* <o

Furthermore, if there exists € > 0 such that ¢ < a,,, 3, <1 —¢ for all n € N, then

condition (ii) is equivalent to:

(iif) >0 o(am — Bn)? < 0.



A DESCRIPTIVE VIEW OF UNITARY GROUP REPRESENTATIONS 25

It follows easily that Fy2 is Borel bireducible with the restriction of ~ . to the space
{ pta | @ € (0,1)N} of quasi-invariant ergodic product measures. In particular, it

is now clear that the following result holds.

Corollary 6.7. Ey2 is Borel reducible to =g, .
O

Remark 6.8. Suppose that G is a countable non-type I group. Then the results
in this section imply that Ey2 is Borel reducible to = ¢. By Kechris-Sofronidis
[35], Ep2 does not admit classification by countable structures; and hence we obtain
yet another proof of Hjorth’s theorem that ~ & does not admit classification by

countable structures. (See also Farah [14] and Kerr-Li-Pichot [36].)
Question 6.9. Is ~,. Borel bireducible with F2?
Question 6.10. Is =g, Borel bireducible with E?

While there is currently no reason to expect a positive answer to Question 6.10,
a positive answer would enable us to separate =, and =g_. In more detail, the

following result will be proved in Section 7.
Theorem 6.11. E, is Borel reducible to =g__ .

On the other hand, as was pointed out to me by Alexander Kechris, the following

result is a straightforward consequence of Popa’s Superrigidity Theorem [43].
Theorem 6.12. E, is not Borel reducible to Ep.

Proof. Suppose that F, is Borel reducible to Fy2. Let I' be a countably infinite
perfect Kazhdan group (e.g. we could take I' = SL(3,Z)) and consider the action
of T on (2%, 1), where p is the usual product probability measure. Then the
corresponding orbit equivalence relation £ = E%F is a countable Borel equivalence
relation and so F is Borel reducible to F,. Hence there exists a Borel reduction
f:2 5 RN from E to Ep2. Let o : T’ x 2I' — £2 be the corresponding Borel cocycle

defined by

a(y,x) = the unique @ € ¢% such that f(y-z) = f(x) + a.

By Ando-Matsuzawa [1, Example 2.18], £2 is a Polish group of finite type. Hence,

applying Popa [43], it follows that « is equivalent to a group homomorphism; i.e.
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there exists a Borel map b : 2U' — ¢2 and a group homomorphism ¢ : I' — ¢2 such

that for all v € T,

p(7) = by - 2) + aly, x) - b(x)

=b(y-x) + f(y-2) = (b(x) + f(x)) p-ae z 2"

Since T is perfect, it follows that ¢ is the trivial homomorphism which sends every

element of T to the identity element 0 € ¢2; and so for all vy € T,
b(y-z)+ f(y-z) =b(z) + f(z) p-ae xc2'.

Clearly the Borel map f : 2I' — RY defined by f’(z) = b(x) + f(z) is also a Borel
reduction from E to E,2. However, we have just seen that f’ is [-invariant p-a.e.;
and since I acts ergodically on (21, i), this implies that f’ is constant y-a.e., which

is a contradiction. O

7. QUASI-REGULAR REPRESENTATIONS OF [Fy

In this section, we will prove that the universal countable Borel equivalence
relation E, is Borel reducible to the unitary equivalence relation ~, on the space
of infinite dimensional irreducible unitary representations of the free group Fs on
the two generators { a,b}. Of course, combined with Theorem 5.8, this implies that

FE is Borel reducible to =g_. We will begin by recalling Mackey’s theorem on

quasi-regular representations of countable groups.

Let G be a countable group and let H < G be a subgroup. Then A\g /g denotes
the corresponding quasi-regular representation of G' on the Hilbert space £2(G/H).
Recall that two subgroups Hy, Hy of a group G are said to be commensurable if

Hy N Hj is of finite index in both Hy and Hy. The commensurator of Hy in G is
defined to be

Comg(Hy) = {g € G | Hy and gHyg™* are commensurable }.

The subgroup Hj is said to be self-commensurating if Comg(Hy) = Hp. It is easily
seen that if Hy and H; are self-commensurating subgroups of G, then Hy and H;
are conjugate in G if and only if there exists an element g € G such that gHpg ™!

and H; are commensurable. Thus the following result is an immediate consequence
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of Corollary 1 and Corollary 2 in Mackey [39, Section 3.4]. (The formulation of
Theorem 7.1 is a slight variant of Theorem 2.1 in Burger and de la Harpe [7].)

Theorem 7.1 (Mackey). Let G be a countable group and let Hy, Hy be subgroups
of G.
(a) Ag/m, is irreducible if and only if Hy is a self-commensurating subgroup.
(b) If Hy and Hy are self-commensurating subgroups, then \g,m, is unitarily

equivalent to Ag g, if and only if Hy and Hy are conjugate in G.

Remark 7.2. Suppose that G is a countable group and that H < G is a self-
commensurating subgroup. Extending the results of Mackey [39, Section 3.4] on
inducing 1-dimensional representations of H, Corwin [8] and Kleppner [37] proved
that if 7, o are finite dimensional irreducible representations of H, then:

(i) ind%(7) is an irreducible representation of G; and

(i) 7~y o if and only if ind% () ~¢ ind% (o).
For many years, it was unknown whether or not the analogous statements were also
true for infinite dimensional irreducible representations m, o € Irro, (H). However,
Bekka-Curtis [4] have recently shown that there exists a self-commensurating sub-
group H < G = Z?xSL(2,7) and an infinite dimensional irreducible representation
7 € Irroo (H) such that the induced representation ind% () is not irreducible. It
would be very interesting to find sufficient conditions on pairs H < G of countable
groups which ensure that the map 7 — indg(w) is a Borel reduction from ~ g to

~g.
Definition 7.3. If (G is a countable group, then
C(G) ={H <G| H is a self-commensurating subgroup }
and E¢ () denotes the conjugacy relation on C(G).
The following result is an immediate consequence of Theorem 7.1.
Lemma 7.4. E¢,) is Borel reducible to ~F,.

Thus, in order to show that E. is Borel reducible to ~,, it is enough to prove

the following result.
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Theorem 7.5. E¢,) is a universal countable Borel equivalence relation.

Let F3 be the free group on the three generators {a,b,c}. Then the following
easy observation shows that it is enough to prove that F¢(r,) is a universal countable

Borel equivalence relation.
Lemma 7.6. E¢(r,) is Borel reducible to Ec¢,)-

Proof. By Karrass-Solitar [32, p. 950], the set { aba,a?b?a?,a®b3a3} freely gener-
ates a malnormal subgroup K of Fo. (Recall that a subgroup K of a group G is said
to be malnormal if gKg='NK = 1 for all g € G\ K.) In particular, it follows that
each H € C(K) is also self-commensurating in Fy. Furthermore, if Hy, H; € C(K)
and g € Fy satisfies gHpg~' = Hj, then g € K. Thus the identity map is a Borel

reduction from F¢ (k) to Ecr,). [l

From now on, let P (IF3) be the standard Borel space of infinite subsets of Fo.
Then it is easily seen that (Ex | Poo(F2)) ~p Ex and thus E | Pso(F2) is also
a universal countable Borel equivalence relation. For each A € P, (F2), let K(A)
and S(A) be the subgroups of F3 defined by:

o K(A) = (wew™! |we A); and
o S(A)={gelF|gA=A}
Let C = (c). Then it is easily checked that

K(A) = % wCw™*'
weA

is the free product of the subgroups {wCw™! | w € A}. In particular, it follows
that K(A) NFy = 1. It is also clear that if g € S(A), then g K(A)g~! = K(A).
Hence the subgroup H(A) < F3 generated by K(A) U S(A) decomposes into a

semi-direct product:

o H(A)=K(A) x S(A4).
Proposition 7.7. The map A — H(A) is a Borel reduction from E | Pso(F2) to
EC(]FS) .

The proof of Proposition 7.7 will be broken down into a sequence of lemmas. We

will begin with the following easy observation.

Lemma 7.8. If A € P (F2) and g € Fa, then gH(A)g™! = H(g A).
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Proof. Clearly g K(A)g™ = K(g A) and g S(A)g~! = S(g A). O
Most of our efforts will go into proving the following somewhat technical result.

Lemma 7.9. Suppose that A, B € P (F2) and that v € Fs. If H(A) and
v H(B)y~! are commensurable, then there exist elements g € Fy and u € K(B)

such that v = gu.

Before presenting the proof of Lemma 7.9, we will show how to complete the

proof of Proposition 7.7.
Lemma 7.10. If A € Pso(F2), then H(A) € C(F3).

Proof. Suppose that v € Comyp, ( H(A)). Then, by Lemma 7.9, there exist g € Fy
and u € K(A) such that v = gu. Thus it is enough to show that g € S(A). To see
this, first note that

YH(A)y ' =gH(A)g ' =H(gA).

Thus H(A) and H(gA) are commensurable; and this easily implies that H(A)
and H(g~'A) are also commensurable. Now suppose that g A # A. Then, after
replacing g by g~! if necessary, we can suppose that there exists wy € g A \ A.

Since H(A) and H(g A) are commensurable, there exists n > 1 such that
woc"wy ' € H(A) = K(A) x S(A).

Thus there exist wq,--- ,wy € A, my,--- ,my € Z~ {0} and h € S(A) such that

1

(7.10) wo " wy = wy M wyt e wp ™ wy ! b

By considering the homomorphism F3 — Fy such that a — a, b — b and ¢ +— 1,
we see that h = 1. But then equation (7.10) contradicts the fact that K (Fz) is the

free product of the subgroups {w Cw™! | w € Fy }. O

Lemma 7.11. Suppose that A, B € P (Fa). If H(A) and H(B) are conjugate in
Fs, then there exists g € Fo such that A =g B.

Proof. Suppose that v € F3 and that H(A) = v H(B)y~!. Then, by Lemma 7.9,
there exist g € Fo and u € K(B) such that v = gu. Thus H(A) = H(g B); and
arguing as in the proof of Lemma 7.10, we see that A = g B. ]
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Proof of Proposition 7.7. By Lemma 7.10, if A € P (F3), then H(A) € C(Fs).
Suppose that A, B € Py (F3). By Lemma 7.8, if there exists g € Fo such that
gA = B, then gH(A)g~' = H(B). Conversely, by Lemma 7.11, if H(A) and
H(B) are conjugate in F3, then there exists g € Fy such that A = g B. Thus the
map A~ H(A) is a Borel reduction from E, [ Ps(F2) to F¢r,)- O

The following argument is closely based upon the proof of Gao [20, Lemma 2].

Proof of Lemma 7.9. Suppose that A, B € Py (F2) and that v € F3 is such that

H(A) and v H(B)y~! are commensurable. Since

[K(A4): K(A)ny H(B)y™] < o0,
it follows that for each x € A, there exists n, > 1 such that
(7.9) Tl =yw, gyt

for some w, € K(B) and g € S(B). Notice that x ¢"= z71 is a freely reduced word
in a, b, ¢. In considering the right-hand side of equation (7.9), we will initially

suppose that:

(i) 7, 7~! and g are freely reduced words in a, b, ¢ ; and
(ii) w, € K(B) is written as a reduced word with respect to the decomposition

of K(B) as the free product of the subgroups {bcb~! | b€ B} ; say,
Wy = Y1 Yt,

where each y; = b; ¢t bi_1 for some b; € B and ¢; € Z ~ {0}.

Then after freely reducing the initial expression of yw, g~ ~' through successive

1

cancellations of terms of the form zz~! or 27! 2 for some z € {a,b,c}, we must

-1

eventually obtain the reduced word x ¢ 7. From now on, for each z € A, we

will fix such a cancellation procedure. Note that for each z € A, there exists an

1

occurrence of ¢ in the initial expression of v w, gy~ which is preserved throughout

the cancellation procedure and gives rise to the first occurrence of ¢ in the reduced

I will be called the first preserved

word z ¢™ !, This occurrence of ¢ in v wg gy~
occurrence.
We claim that there exists at most one x € A such that the corresponding first

preserved occurrence of c¢ is a letter in . To see this, suppose that z1, zo € A both
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have this property. Since 7 is freely reduced, the first preserved occurrence must

be the first ¢ in . Thus writing v = k cu, where k € Fy and u € F3, we have that

zp M xl_l =kcuwy, gyt

Toc™ 2zt = keuwy, gy,

which implies that ;1 = k = z5. Similarly, we claim there exists at most one
x € A such that the corresponding first preserved occurrence of ¢ is a letter in v~ 1.

To see this, note if the first preserved occurrence of ¢ is a letter in v~ !, then the

1 1

last preserved occurrence of ¢ must also be a letter in v~*; and since v~ is freely
reduced, this last preserved occurrence must be the last ¢ in v~!. Arguing as above,
the claim now follows easily.

Thus there exists £ € A such that the corresponding first preserved occurrence
of ¢ is a letter in w, g. Of course, since g € S(B) < Fy, this means that the
corresponding first preserved occurrence of ¢ is actually a letter in w,; say, the first

preserved occurrence is one of the letters in y; = b; ¢t b;” ! Then
r="vb h b1_1 cobig bt bi__ll b;c”

for some r > 0. Let u = by c® b1_1 ceebyq ctit bi__ll. Then v € K(B). If r = 0,
then v = xb;l u~! has the required form, since xb;l € Fy and u=! € K(B). So
suppose that » > 0. Then we can write © = v zb;, where z = ub; c” b;l € K(B);

and, once again, y has the required form. O

8. UNITARY EQUIVALENCE OF ARBITRARY REPRESENTATIONS

In the previous sections of this paper, we have focused our attention on the
unitary equivalence relation =g on the space of irreducible unitary representations
of the countable group G on the infinite dimensional separable Hilbert space H. In
this final section, we will point out a basic open question concerning the unitary
equivalence relation %g on the space Rep(G, H) of arbitrary unitary representations
of G on H. By a recent result of Hjorth-T6rnquist [27], %g is a Borel equivalence
relation; in fact, %5 is an F,4 equivalence relation.

Let ~ be the measure equivalence relation on the space P(2") of arbitrary prob-

ability measures on 2. (Of course, we could replace 2 with any uncountable
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standard Borel space X.) Then, as pointed out by Kechris [34, Section 5], the spec-
tral theorem for unitary operators implies that the unitary equivalence relation %2
on the space Rep(Z,H) is Borel bireducible with ~. In particular, it follows that
z'Z" is not smooth and hence ~7 <p z% . More generally, the following result is a
straightforward consequence of Kanovei’s theory [31, Chapter 17] of pinned Borel

equivalence relations.

Theorem 8.1 (Hjorth-Térnquist [27]). If G is a countably infinite group, then

~ag <B m"jg
However, the following basic problem remains open.

Question 8.2. Is zﬁ;w Borel bireducible with ~%? Equivalently, is %ﬁ; Borel

oo

bireducible with the measure equivalence relation ~7

Here it is probably worth pointing out that F. is Borel reducible to ~ and hence
F is Borel reducible to %E. In fact, I am currently not aware of any even vaguely

plausible strategy for separating z; and %ﬁl;oo

APPENDIX A. LIST OF EQUIVALENCE RELATIONS

In this appendix, we collect together the definitions of the various Borel equiva-

lence relations that occur in this paper.

e ~ is the unitary equivalence relation on the space Irry (G) of infinite
dimensional irreducible unitary representations of the countable non-type
I group G.

° %g is the unitary equivalence relation on the space Rep(G, H) of arbitrary
unitary representations of the countable group G on the infinite dimensional
separable Hilbert space H.

e ~ 4 is the unitary equivalence relation on the space Irro(A) of infinite
dimensional irreducible unitary representations of the non-type I separable
C*-algebra A.

) Eé is the orbit equivalence relation of the countable group G acting on the
standard Borel G-space X.

e [ is the eventual equality relation on 2.

e F is the orbit equivalence relation of the shift action of Fy on 272,
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e = is the orbit equivalence relation of the action of L(X,U(#)) on the
space Irr(E,U(H)) of irreducible cocycles.

e ~ is the measure equivalence relation on the space P(X) of probability
measures on the uncountable Polish space X.

® ~, is the measure equivalence relation on the space QE(2Y) of quasi-
invariant ergodic probability measures on 2.

e FE,2 is the orbit equivalence relation arising from the additive action of
2 ={(z,)eRV|Y 22 <0} on RN,

e E¢ () is the conjugacy relation on the space C(G) of self-commensurating

subgroups of the countable group G.
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