THE CLASSIFICATION PROBLEM FOR p-LOCAL
TORSION-FREE ABELIAN GROUPS OF FINITE RANK

SIMON THOMAS

ABSTRACT. Let n > 3. We prove that if p # ¢ are distinct primes, then the
classification problems for p-local and g-local torsion-free abelian groups of

rank n are incomparable with respect to Borel reducibility.

1. INTRODUCTION

This paper is a contribution to the project [10, 9, 2, 12, 19, 20] of trying to
understand the complexity of the classification problem for the torsion-free abelian
groups of finite rank. Recall that, up to isomorphism, the torsion-free abelian
groups of rank n are exactly the additive subgroups of the n-dimensional vector
space Q™ which contain n linearly independent elements. In 1937, Baer [3] solved
the classification problem for the torsion-free abelian groups of rank 1. Since then,
despite the efforts of such mathematicians as Kurosh [13] and Malcev [14], no
satisfactory solution of the classification problem has been found for the torsion-free
abelian groups of rank n > 2. Thus it was natural to ask whether the classification
problem was genuinely more difficult for the groups of rank n > 2. In 1999, Hjorth
[9] proved that the classification problem for the rank 2 groups was strictly harder
than that for the rank 1 groups. A little later, building on work of Adams-Kechris
[2], Thomas [20] proved that the complexity of the classification problem increases
strictly with the rank n.

In this paper, we shall consider the complexity of the classification problem for
the p-local torsion-free abelian groups of finite rank. (Recall that an abelian group
A is said to be p-local iff A is g¢-divisible for every prime ¢ # p.) In Thomas
[20], it was shown that the complexity of the classification problem for the p-local
torsion-free abelian groups also increases strictly with the rank n. However, this
left open the more natural question of whether the classification problem for the
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p-local torsion-free abelian groups of a fized rank n was strictly easier than the
classification problem for arbitrary torsion-free abelian groups of rank n. In this
paper, we shall use Zimmer’s superrigidity theorem [22], together with Ratner’s
measure classification theorem [17], to prove that if n > 3 and p # ¢ are distinct
primes, then the classification problems for p-local and ¢-local torsion-free abelian
groups of rank n have incomparable complexities. This easily implies that the
classification problem for the p-local torsion-free abelian groups of rank n is indeed
strictly easier than that for arbitrary torsion-free abelian groups of rank n. In
order to give a precise formulation of our results, we need to make use of the notion
of Borel reducibility. (Here we follow the example of Friedman-Stanley [5] and
Hjorth-Kechris [10].)

Let X be a standard Borel space; i.e. a Polish space equipped with its associated
o-algebra of Borel subsets. Then a Borel equivalence relation on X is an equivalence
relation E C X? which is a Borel subset of X2. If E, F are Borel equivalence
relations on the standard Borel spaces X, Y respectively, then we say that E is
Borel reducible to F' and write E <p F' if there exists a Borel function f: X — Y
such that zFEy iff f(z)Ff(y). We say that E and F' are Borel bireducible and
write £ ~p F if both £ <p F and F <p FE. Finally we write £ <p F if both
E < F and F ﬁ B E. Most of the Borel equivalence relations that we shall
consider in this paper arise from group actions as follows. Let G be a lcsc group;
i.e. a locally compact second countable group. Then a standard Borel G-space is a
standard Borel space X equipped with a Borel action (g,z) — g.z of G on X. The
corresponding G-orbit equivalence relation on X, which we shall denote by Eé ,is
a Borel equivalence relation. In fact, by Kechris [11], Eéf is Borel bireducible with
a countable Borel equivalence relation; i.e. a Borel equivalence relation £ such that
every E-class is countable.

Throughout this paper, we shall identify the class of torsion-free abelian groups
of rank n with the set R(Q™) of subgroups of Q™ of rank n. Notice that R(Q™) is
a Borel subset of the Polish space P(Q™) of all subsets of Q™ and hence R(Q™) can
be regarded as a standard Borel space. (Here we are identifying P(Q") with the
space 22" of all functions h : Q" — {0, 1} equipped with the product topology.)
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Furthermore, the natural action of GL, (Q) on the vector space Q™ induces a cor-
responding Borel action on R(Q™); and it is easily checked that if A, B € R(Q"),
then A = B iff there exists an element ¢ € GL,,(Q) such that ¢(A) = B. Similarly,
we shall identify the class of p-local torsion-free abelian groups of rank n with the

standard Borel space R®) (Q") of p-local subgroups of Q" of rank n.

Definition 1.1. For each n > 1 and prime p, the isomorphism relations on R(Q")

and R (Q") will be denoted by 2, and ~(P) respectively.

With this notation, the main results of Thomas [20] say that (2,) <p (Zn+1)
and (%%’)) <B (%Jgﬁl) for each n > 1 and each prime p. We are now also able to

state the main results of this paper.

Theorem 1.2. Ifn > 3 and p # q are distinct primes, then zﬁf” and %%q) are

incomparable with respect to Borel reducibility.

Corollary 1.3. If n >3 and p is a primes, then (%%p)) <p (&,).

Proof. If ¢ # p is another prime, then (%%Q)) <p (%,) and (%%q)) £B (g%’)). O

Of course, it is trivially the case that (ggp )) <p (&) for each prime p, since

there only exist two p-local torsion-free abelian groups of rank 1 up to isomorphism.

However, the following problem remains open.

Conjecture 1.4. (éép)) <p (%) for each prime p.

This paper is organised as follows. In Section 2, we shall recall some basic notions
and results from ergodic theory. In Section 4, we shall use the Kurosh-Malcev p-
adic localisation technique [13, 14] to show that the quasi-isomorphism relation on
R®) (Q™) is essentially identical to the orbit equivalence relation induced by the
action of GL,(Q) on the standard Borel space S,,(Q,) of vector subspaces of the
n-dimensional vector space Q) over the p-adic field. (Recall that two groups A,
B € RP)(Q") are said to be quasi-isomorphic iff there exists ¢ € GL,(Q) such
that ¢(A) N B has finite index in both ¢(A) and B.) In Section 3, we shall prove
two basic results concerning the dynamical properties of the action of PSL,(Z)
on §,(Qp). In Section 5, we shall use the results of Sections 3 and 4, together

with Zimmer’s superrigidity theorem and Ratner’s measure classification theorem,
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to complete the proof of Theorem 1.2. The argument in Section 5 makes essential
use of ideas which were itroduced by Adams [1]. (These ideas can be regarded as
constituting a Borel version of a weak form of Furman’s superrigidity theorem [8].
For example, see the discussion in Thomas [21].)

We shall assume that the reader is familiar with the basic machinery of Zim-
mer’s superrigidity theory [22], including the notions of Borel cocycles and induced
actions. Clear accounts of this material can be found in Zimmer [22] and Adams-
Kechris [2]. In particular, Adams-Kechris [2, Section 2] provides a convenient intro-
duction to the basic techniques and results in this area, written for the non-expert
in the ergodic theory of groups.

Throughout this paper, Z, denotes the ring of p-adic integers and F, denotes
the field with p elements.

2. PRELIMINARIES

In this section, we shall recall some basic notions and results from ergodic theory.
Let G be a lcsc group and let X be a standard Borel G-space. Throughout this
paper, a probability measure on X will always mean a Borel probability measure;
i.e. a measure which is defined on the collection of Borel subsets of X. The
probability measure p on X is G-invariant iff u(g(A)) = u(A) for every g € G
and Borel subset A C X. If p is G-invariant, then the action of G on (X, p) is
said to be ergodic iff for every G-invariant Borel subset A C X, either u(A) =0 or
1(A) = 1. In this case, we shall also say that p is an ergodic probability measure.

The following characterization of ergodicity is well-known.

Proposition 2.1. If iy is a G-invariant probability measure on the standard Borel
G-space X, then the following statements are equivalent.
(i) The action of G on (X, u) is ergodic.
(ii) If Y is a standard Borel space and f : X — Y is a G-invariant Borel
function, then there exists a G-invariant Borel subset M C X with (M) =
1 such that f [ M is a constant function.

The action of G on X is said to be uniquely ergodic iff there exists a unique
G-invariant probability measure p on X. In this case, it is well-known that g must

be ergodic. (For example, see [4, Section 1.3].)
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Suppose that Y is a standard Borel space and that f : X — Y is a Borel
function. Then for every probability measure v on X, we can define a corresponding

probability measure f,v on Y by

(fr)(A) = v(f7(4))

for every Borel subset A C Y. Now suppose that v is G-invariant and that Y is also
a standard Borel G-space. Then the Borel function f: X — Y is said to be almost
G-equivariant iff for all g € G, g - f(x) = f(g- z) for v-a.e. x € X. In this case, it
is easily checked that f.v is also G-invariant; and we say that (Y, f.v) is a factor
of (X,v). It is also easily checked that if v is ergodic, then f.v is ergodic. If f is a
finite-to-one function, then we say that (X, v) is a finite extension of (Y, f.v).
Suppose that ' is a countable group and that X is a standard Borel I'-space
with an invariant ergodic probability measure u. Let A < T' be a subgroup such
that [I" : A] < co. Then a A-invariant Borel subset Z C X is said to be an ergodic

component for the action of A on X iff

e 1(Z) > 0; and
e A acts ergodically on (Z, uz), where uz is the probability measure defined
on Z by pz(A) = n(A)/u(Z).

It is easily checked that there exists a partition Z; U --- U Zyg of X into finitely
many ergodic components and that the collection of ergodic components is uniquely
determined up to p-null sets. Furthermore, if the action of I' on X is uniquely
ergodic, then the action of A on each ergodic component Z C X is also uniquely
ergodic.

Finally suppose that K is a compact second countable group and that L is a
closed subgroup. Then there exists a unique K-invariant probability measure p
on the standard Borel K-space K/L. (For example, see [16, Theorem 3.17].) The
measure p is called the Haar probability measure on K/L and can be described
explicitly as follows. Suppose that v is the Haar probability measure on K and
let 7 : K — K/L be the canonical surjection. Then y = m,v. In the remaining
sections, we shall make repeated use of the following easy observation. (A proof

can be found in Thomas [21, 2.2].)
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Lemma 2.2. Let K be a compact second countable group, let L < K be a closed
subgroup and let p be the Haar probability measure on K/L. If T is a countable
dense subgroup of K, then the following properties hold.
(a) The action of T on K/L is uniquely ergodic; i.e. p is the unique T'-invariant
probability measure on K/L.
(b) Suppose that A < T is a subgroup such that [T : A] < oo and that H = A is
the closure of A in K. Then the ergodic components for the action of A on
K/L are precisely the H-orbits {H -z |z € K/L}.
(c) Suppose that A < T is a normal subgroup such that [I' : A] < co and let C
be the set of ergodic components for the action of A on K/L. Then T acts

as a transitive permutation group on C.

3. GROUPS ACTING ON p-ADIC SPACES

In this section, we shall prove two basic results concerning the dynamical prop-
erties of the action of PSL,(Z) on the standard Borel space S, (Q,) of nontrivial
proper subspaces of the n-dimensional vector space Q over the p-adic field. For

the rest of this paper, we shall fix some integer n > 3 and let I' = PSL, (Z).

Definition 3.1. If 0 < k < n, then V(k)(n,(@p) denotes the standard Borel space

consisting of the k-dimensional vector subspaces of Qj.

It is easily checked that the compact group PSL,(Z,) acts transitively on
V) (n,Q,). (For example, see Thomas [21, 6.1].) Thus we can identify V*) (n, Q,)
with the coset space PSL,,(Z,)/L, where L is a suitably chosen closed subgroup of
PSL,(Zy,). Let u, be the corresponding Haar probability measure on V) (n, Qyp)-
Since I is a dense subgroup of PSL,,(Z,), Lemma 2.2 applies to the action of I' on
V) (n,Qp).

The following entropy argument is a slight variant of the proof of Corollary B(2)

of Furman [8].

Proposition 3.2. Suppose that ()z,ﬁp) is a finite ergodic extension of the I'-space
(V= (n,Qp), 1p). Then ()?,ﬁp) does not have any factors of the form

(PSL,(R)/A,m),

where A is a lattice in PSL,(R) and m is the Haar probability measure.
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Proof. Suppose that (PSL, (R)/A,m) is a factor of (X Lp). Then for all v € T', the
corresponding entropies satisfy h(PSLy(R)/A, ) < h(X,~). However, h(X,~) = 0
for all v € T'; while if 4 € T corresponds to an element of S L, (Z) which has at least

one eigenvalue off the unit circle, then h(PSL,(R)/A,v) > 0. O

Next suppose that X7, Xo are standard Borel I'-spaces with invariant ergodic
probability measures pi, uo respectively. Then (Xa, ps) is said to be a wvirtual
quotient of (X1, p1) iff there exist:

(i) a subgroup T'y < T with [I": Tg] < oo,
(ii) an embedding ¢ : Ty — T,

(iii) ergodic components Z;, Z for the actions of I'g, ¢(T'g) on X, Xo respec-

tively, and

(iv) a Borel function f : Z; — Zs

such that the following conditions are satisfied:

(@) felp)z, = (p2)z,; and

(b) fv-x)=¢(v)- f(z) for all v € Ty and = € Z;.
By the Margulis Superrigidity Theorem [15], the embedding ¢ : Ty — I' extends
to a Lie group automorphism of PSL,(R) and hence we necessarily also have that
[[': ¢(To)] < co. (We have used the term “virtual quotient” rather than “virtual

factor” because of the slight twisting permitted in clause (b).)

Theorem 3.3. Suppose that ()?,ﬁp) is a finite ergodic extension of the I'-space
(V(”*l)(n,(@p),up). Ifg#pand 1 <k <n-—1, then (V(k)(n,Qq),uq) is not a
virtual quotient of ()Z',ﬁp).

The following result was proved in Thomas [21, Section 6] for the special case
when & = 1. The proof for arbitrary k is essentially identical. For the sake of
completeness, we shall sketch the main points of the proof. In the following argu-
ment, K; = ker, denotes the congruence subgroup of PSL,,(Z,) arising from the

canonical surjection
Yy 2 PSLy(Zg) — PSLy(Z4/q"Zy).

Lemma 3.4. Suppose that 1 < k <n — 1 and that A < T is a subgroup such that
[T : A] < co. Let Z be an ergodic component for the action of A on V¥ (n, Qq) and
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for each subgroup A < A with [A : A] < oo, let e(A, Z) be the number of ergodic
components for the action of A on Z.
(a) If A S A is a normal subgroup with [A : A] < oo, then e(A,Z) = bq" for
some r > 0 and some divisor b of |PSLy, (Fy)|.
(b) For each N > 0, there exists a normal subgroup A < A with [A : A] < o0
such that e(A,Z) > N.

Proof. To see that 3.4(a) holds, let H = A and N = A be the closures of A, A in
PSL, (Zg) respectively. Then we can suppose that Z is an orbit of H on V) (n, Qq)
and that the set C of ergodic components for the action of A on Z consists of the
orbits of N on Z. Clearly H acts transitively on C. Hence 3.4(a) follows from the
fact that K is a pro-p group. Finally 3.4(b) is an easy consequence of the fact that

if a; is the number of orbits of K; on V(k)(m(@q), then a; — 0o as t — co. O

Lemma 3.5. Suppose that ()?,ﬁp) be a finite ergodic extension of the I'-space
(V=D (n,Q,), ptp) and that A < T is a subgroup such that [[' : A] < oo. Let Z
be an ergodic component for the action of A on X and for each subgroup A < A
with [A @ A] < oo, let e(A, Z) be the number of ergodic components for the action
of A on 7. Then there exists a constant ¢ such that whenever A < A is a normal

subgroup with [A : A] < oo, then e(A, Z) =bp" for somer >0 and b < c.

Proof. Let m: X — V=D(n, Qp) be the factor map and let Z = 7(Z). Then Z
is an ergodic component for the action of A on V("_l)(n,(@p). Furthermore, by
ergodicity, we can suppose that there exists a constant ¢ such that |7=1(2)| = ¢
for all z € Z. Let A < A be a normal subgroup with [A : A] < oo and let
{A; |1 < i < e} be the ergodic components for the action of A on Z. By Lemma
3.4, e = bp" for some r > 0 and some divisor b of |PSL,,(F,)|. For each 1 <i <ee,
let ﬁl =g ! (4;). Then each ZZ is the union of at most ¢ ergodic components for the
action of A on Z. Since A < A, it follows that A acts transitively on {4; | 1 <1i < e}

and hence each A; contains the same number of ergodic components. O

Proof of Theorem 3.3. Suppose that (V*)(n, Qq), 1tq) is a virtual quotient of ()N(, Lp)-
Thus there exist:
(i) a subgroup 'y < T with [I": Tg] < oo,

(ii) an embedding ¢ : Ty — T,
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(iii) ergodic components Z, Z for the actions of Ty, ¢(Ig) on X, V) (n,Q,)
respectively, and

(iv) a Borel function f : Z—7Z
such that the following conditions are satisfied:

() fe(hp)z = (1q)z; and

(b) f(v-z)=@(y)- f(z) forall y € Ty and z € Z.
Let t > 0 be arbitrary. By Lemma 3.4, there exists a normal subgroup A < ¢(Tg)
with [p(To) : A] < oo such that ¢ divides e = e(A,Z). Let {4; | 1 < i < e}
be the ergodic components for the action of A on Z; and for each 1 < i < e, let
A; = f71(A;). Then each A; is the union of a finite number of ergodic components
for the action of ¢~ *(A) on Z. Arguing as in the proof of Lemma 3.5, we see
that each gz contains the same number of ergodic components and so e divides
e(o™1(A), Z). But if we choose ¢ sufficiently large, this clearly contradicts Lemma
3.5. [l

4. THE KUROSH-MALCEV p-ADIC LOCALISATION TECHNIQUE

In this section, we shall first use the Kurosh-Malcev p-adic localisation technique
[13, 14] to relate the classification problem for p-local torsion-free abelian groups
to the orbit equivalence relation induced by the action of GL,,(Q) on the standard
Borel space S,,(Q,) of vector subspaces of the n-dimensional vector space Q) over
the p-adic field. Then we shall complete the proof of Theorem 1.2, modulo a
superrigidity result which we shall prove in Section 5.

Suppose that A, B € R(Q™). Then A and B are said to be quasi-equal, written
A ~ B, iff AN B has finite index in both A and B. We say that A and B are
quasi-isomorphic, written A ~ B, if there exists ¢ € GL,(Q) such that p(4) ~ B.
By Thomas [20, Section 3], ~ and ~ are both countable Borel equivalence relations

on R(Q™).
Definition 4.1. For each A € R (Q"), let A = Zy, ® A.

We shall regard each A as a subgroup of Qp in the usual way; i.e. A is the

subgroup consisting of all finite sums

Y101 + Y202 + - -+ ViQy,
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where v; € Z, and a; € A for 1 < i <t. By Lemma 93.3 [6], there exist integers

0 <k,f <nwith k+ ¢ =n and elements v;, w; € A such that
R k ¢
A= @vai D @prj.
i=1 j=1
Definition 4.2. For each A € R®P)(Q"), let Vy = @5:1 Qpu;.

Theorem 4.3. If A, B € R?)(Q"), then
(a) A~ B iff Va = Vp;
(b) A ~ B iff there exists m € GL,(Q) such that 7(Va) = Vp.

Proof. 4.3(a) was proved in Thomas [20, 4.7]. To see that 4.3(b) holds, consider the
canonical extension of the action of GL,(Q) on Q™ to an action on Qp- Suppose
that 7 € GL,(Q) and let 7(A) = C. Then it is clear that W(A\) = C and this
implies that 7(V4) = V. Thus 4.3(b) follows from 4.3(a). O

Theorem 4.4. Suppose that A € RP)(Q") and that dimVy = n — 1. Then for
each B € R®)(Q"), we have that A ~ B iff A= B.

Proof. By Exercises 32.5 and 93.1 [6], for every group C' € R®)(Q"), we have that
dimg, Vo = n — dimg, C/pC.

In particular, dimp, A/pA = 1. It follows that |A/qA| < ¢ for every prime ¢; and
so the result follows from Proposition 92.1 [6]. O

Definition 4.5. Let ey,..., e, be the standard basis of Q). Suppose that S is a

Qp-subspace of Q) of dimension 0 < k < n. Then
o(S)=(S®Zpe;, ® - D ZLye;, ) NQ,
where 47 < --- < i,_ is the lexicographically least sequence such that
Qp =(S,ei,...,ei,_,)

Theorem 4.6. If S is a Qp-subspace of Q) of dimension 0 < k <n, then
(a) o(S) € RP(Q);
(b) Vo) = 5.
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Proof. Arguing as in the proof of Fuchs [6, 93.5], we easily obtain that
Zy,R0(S)=S®ZLpe;, - B Lye;, ,.
The result follows. O

We are now ready to begin the proof of Theorem 1.2. Suppose p # ¢ are distinct
primes and that h : R®(Q") — R@(Q") is a Borel map such that A = B iff
h(A) = h(B). Let

n—1
Fvm,Q,) = 8u(@) = | V™(n.Qy)

k=0

be the Borel map defined by f(S) = V{oo)(s)- Applying Theorems 4.3, 4.4 and
4.6, we see that if S, T € V(”*l)(m(@p), then the following three statements are

equivalent:

(1) S and T lie in the same G L, (Q)-orbit;
(2) o(8) =a(T);
3) (hoa)(S) = (hoo)(T).

Applying Theorem 4.3 once again, we also see that the following two statements

are equivalent:

(i) f(S) and f(T) lie in the same GL,(Q)-orbit;
(ii) (hoa)(S) ~ (hoo)(T).

It follows that if S, T € V(»~Y(n,Q,) lie in the same GL,(Q)-orbit, then f(S)
and f(7T) lie in the same GL,(Q)-orbit; and also that if A is a GL,(Q)-orbit
on V) (n,Q,) for some 1 < k < n — 1, then f~*(A) is a countable subset of
V=b(n,Q,).

Now consider the measure-preserving action of SL,(Z) on (V"= (n,Q,), 1)
Since SL,(Z) acts ergodically on V("= (n,Q,), it follows that there exists a fixed
1 <k <n-1and an SL,(Z)-invariant Borel subset X C V(=1 (n,Q,) with
tp(X) = 1 such that f(S) € V®)(n,Q,) for all S € X. However, this clearly
contradicts the following theorem, which will be proved in Section 5. This completes

the proof of Theorem 1.2.
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Theorem 4.7. Suppose that n > 3 and that 1 < k <n —1. Let p # q be distinct
primes and suppose that f : V("’l)(n,(@p) — V#)(n, Qq) is a Borel map such that
for all z, y € V(=1 (n, Qp),

Then there exists a Borel subset Z C V(=1 (n, Q,) with ju,(Z) = 1 such that f
maps Z into a single GL,(Q)-orbit.

5. THE PROOF OF THEOREM 4.7

In this section, we shall prove Theorem 4.7. (Our argument will make essential
use of the techniques introduced by Adams [1]. As we mentioned in Section 1,
these techniques can be regarded as constituting a Borel version of a weak form
of Furman’s superrigidity theorem [8].) Suppose that n > 3 and that p # ¢ are
distinct primes. Let 1 < k < n and let f : V("_l)(n,(@p) — V®)(n,Q,) be a Borel
map such that for all z, y € V*=V(n,Q,),

o if SL,(Z) -z =SL,(Z) -y, then GL,(Q) - f(z) = GL,(Q) - f(y).
Suppose that there does not exist a Borel subset Z C V(=Y (n, Q,) with ,(Z) = 1
such that f maps Z into a single GL,,(Q)-orbit. For the remainder of this section,
we shall work with the corresponding actions of I' = PSL,(Z) and PGL,(Q) on
V=D (n,Q,), V¥ (n,Q,) respectively. Let

V={yeV®(n,Q,)|g-y#yforall#gePGL,(Q)]}

In other words, Y is the Borel subset of V*)(n,Q,) where PGL, (Q) acts freely.

Lemma 5.1. There exists a I'-invariant Borel subset X C V("’l)(n,Qp) with

pp(X) =1 such that f(x) €Y forallz € X.

In the proof of Lemma 5.1, we shall make use of the following cocycle reduction
result. (Throughout this section, Q@ denotes the algebraic closure of Q. If we
strengthen the hypotheses by assuming that G is an algebraic Q-group and that
H < G(Q), then Theorem 5.2 is an easy consequence of [20, Theorem 2.3]. However,
an examination of its proof shows that [20, Theorem 2.3] also holds when Q is

replaced by Q.)
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Theorem 5.2. Let n > 3 and let Q be a standard Borel PSL,(Z)-space with an
invariant ergodic probability measure y. Suppose that H < G(Q), where G is an
algebraic Q-group such that dim G < n?—1, and that Z is a standard Borel H-space
on which H acts freely. If f : Q — Z is a Borel function such that for all x, y € €,

PSL,(Z)-x=PSL,(Z)-y implies H-f(z)=H- f(y),

then there exists an PSL,(Z)-invariant Borel subset M C Q with u(M) = 1 such
that f maps M into a single H-orbit.

Suppose that Lemma 5.1 is false. There exists a I'-invariant Borel subset X of
V=D (n,Q,) with u,(X) = 1 such that f(z) ¢ Y for all z € X. We shall consider
the induced action of GL,(Q) on the exterior power V = /\k((@g). Let eq,...,e,
be the standard basis of Q7. Let d = (}) and let B = {b; | 1 < j < d} be the
corresponding “standard basis” of V; i.e. B consists of the vectors e;; A--- Ae;,,
where i7 < --+ < 1. Then @d NV denotes the collection of vectors v € V of the

form

v =a1by + -+ agsbg,

where each a; € Qn Qq. The subspace ' < V is said to be a Q-subspace iff
there exists a (possibly empty) collection of vectors wy,...,w; € @d NV such that
E = (wy,...,w;). Clearly if E, F < V are Q-subspaces, then E N F is also a
Q-subspace. In particular, for each 1-dimensional subspace (v) of V, there exists a
unique minimal Q-subspace FE such that (v) < E.

For each k-dimensional subspace S = (s1,...,s;) of Qp, let

[S] = <Sl/\"'/\sk>
be the corresponding 1-dimensional subspace of V.

Claim 5.3. For each x € X, there exists a proper Q-subspace E of V such that
[f(z)] <E.

Proof. For each z € X, there exists a noncentral element g € GL,(Q) and an
eigenspace E for the induced action of g on V such that [f(z)] < E. Clearly E is
a proper Q-subspace of V. (]
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Recall that the Effros Borel space on V is the standard Borel space consisting
of the set

F(V)={Z CV | Zis a closed subset of V'}

equipped with the o-algebra generated by the sets of the form
{ZeF(V)| ZnU # 0},

where U varies over the open subsets of V. For each x € X, let E, € F(V) be
the unique minimal Q-subspace such that [f(z)] < F,; and let m : X — F(V)
be the Borel map defined by m(z) = E,. Since there are only countably many
possibilities for E,, there exists a Borel subset Xy C X with p,(Xo) > 0 and a
fixed Q-subspace E such that E, = E for all z € X,. Let X; =T+ Xq. Since p,, is
ergodic, it follows that p,(X1) = 1. After slightly adjusting f if necessary, we can
suppose that E, = E for all € X;. (More precisely, let ¢ : X1 — X; be a Borel
function such that c¢(z) € T'- 2 N X, for all x € X;. Then we can replace f with
' =foc)

Now suppose that z, y € X; and that y € I' - . Then there exists g € GL,(Q)
such that ¢ - [f(z)] = [f(y)]. We claim that

geR={pecGL,(Q]| ¢(E) = E}.

To see this, note that g(E) is also a Q-subspace and that [f(y)] < ENg(E). Hence,
by the minimality of E, we must have that g(E) = E.

Next let € X; and suppose that ¢ € R satisfies ¢ [f(x)] = [f(2)]. Then [f(z)]
is contained in the eigenspace W of ¢ corresponding to some eigenvalue A € Q. By
the minimality of E, we must have that F < W and so ¢(v) = Av for all v € E.
Let H < PGL(FE) be the group of projective linear transformations induced by R

on the set of 1-dimensional subspaces of E. Then we have just shown that

e H acts freely on the standard Borel space Z = {h - [f(z)] | h € H and x €

X}
o if z, y € X; and y € T - z, then there exists an element h € H such that
h-[f(@)] = [ (y)]-

Claim 5.4. There exists an algebraic Q-group G with dim G < n? — 1 such that
H < G(Q).
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Proof. Clearly it is enough to show that the Q-subspace E is not G L,,(Q)-invariant.
To see this, note that SL,(Z,) acts transitively on the subset {[S] | S € V*)(n,Q,)}.
In particular, for each b; € B and = € X, there exists g € SL,(Z,) such that
g-[f(z)] = b,. Since E is a proper subspace of V, it follows that E is not SL,,(Z,)-
invariant. Because SL,,(Z) is a dense subgroup of SL,,(Z,), it follows that E is not
S Ly (Z)-invariant. O

By Theorem 5.2, there exists a I'-invariant Borel subset M C X with p,(M) =1
such that {[f(z)] | # € M} is contained in a single H-orbit on Z. But this means
that f maps M into a single G L,,(Q)-orbit on V¥)(n, Q,), which is a contradiction.
This completes the proof of Lemma 5.1.

Let a: T'x X — PGL,(Q) be the Borel cocycle defined by

a(y,z) - f(a) = f(v-z)

for all v € T and x € X. For each matrix M € GL,(Q), let [M] be the correspond-
ing element of PGL,(Q). Let A = Q*/(Q*)" and let § : PGL,(Q) — A be the
homomorphism defined by

d(g) = det(M,y)(Q")",

where M, € GL,(Q) satisfies [My] = g. Then keré = PSL,(Q). Consider the
cocycle 0o : ' x X — A. By Zimmer [22, 9.1.1], since T is a Kazhdan group and
A is an amenable group, ¢ o « is equivalent to a cocycle taking values in a finite
subgroup F' < A. It easily follows that « is equivalent to a cocycle o’ taking values
in L = §71(F). (For example, see the proof of Adams-Kechris [2, 6.1].) Clearly
[L:PSL,(Q)] < co. Hence by Adams-Kechris [2, 2.5], there exists a finite ergodic
extension (X, Lp) of (X, pp) such that the lift o : I' x X — L of o is equivalent to
a cocycle [ taking values in PSL,(Q). Let f: X — Y be the corresponding Borel
function such that for all v € I,

Blv,x)- flx) = f(y-z) for pyae z€ X.

Then it is clear that there does not exist a Borel subset Z C X with ﬁp(Z) =1
such that f maps Z into a single PGL,(Q)-orbit. By Zimmer [23, 2.2], since
I' is a Kazhdan group, 3 is equivalent to a cocycle 8’ taking values in a finitely

generated subgroup of PSL, (Q). To simplify the notation, we shall suppose that
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B’ = (3. So there exists a finite set of primes q1,...,q; such that 3 takes values
in A =PSL,(Z[1/q1,-..,1/q]). By Zimmer [22, 10.1.1], if we identify A with its

image under the diagonal embedding into
H = PSL,(R) x PSL,(Qq,) X --- x PSL,(Qq,),

then A is a lattice in H. Let i : A — H denote the diagonal embedding.
Now consider the induced Borel action of PSL,(R) on

X = X x (PSL,(R)/PSL,(Z))

and let B : PSL,(R) x X — A be the cocycle induced from (. Suppose that
10 B : PSL,(R) x X — His equivalent to a cocycle taking values in a compact
subgroup of H. Then Adams-Kechris [2, 2.4] implies that B is equivalent to a
cocycle taking values in a finite subgroup F' of A; and hence, by Adams-Kechris
[2, 2.3], B is also equivalent to a cocycle taking values in F'. But then a standard
argument shows that there exists a Borel subset Z C X with ﬁp(é) = 1 such
that fmaps Z into a single PGL,,(Q)-orbit, which is a contradiction. Thus i o 3
is not equivalent to a cocycle taking values in a compact subgroup of H. For
each 1 < ¢ <t let mp : H — PSL,(Qqg,) be the canonical projection and let
B\g : PSL,(R) x X - PSL,(Qq,) be the cocycle defined by Bg =mpoio 3 By
Zimmer [22, 5.2.5], together with the methods of Adams-Kechris [2], Bg is equivalent
to a cocycle taking values in a compact subgroup K, of PSL,,(Qg,). (More precisely,
arguing as in the proof of Adams-Kechris [2, 3.5], we can easily reduce to the case
when the range of the cocycle (3 is Zariski dense in PSL,(Qg,).) It follows that if

7o : H — PSL,(R) is the canonical projection, then the cocycle
Bo=mgoiofB: PSLy(R) x X — PSL,(R)

is not equivalent to a cocycle taking values in a compact subgroup of PSL, (R).
Hence, by Adams [1, 5.3], there exists a Lie group automorphism ¢ of PSL,(R)
such that By is equivalent to the cocycle B¢ : PSL,(R) x X - PSL,(R) defined
by 3@ (g,2) = ¢(g). Arguing as in the proof of Adams [1, 5.4], i o § is equivalent to

a cocycle

B3:Tx X — H=PSL,(R) x PSL,(Qy,) X - X PSL,(Qy,)
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given by

ﬂ(r%'r) = <‘P(7),61(771‘), s 7ﬁt(’73 .I‘)>7

where each Gy : I' x X — PSL,(Qq,) is a cocycle taking values in the compact
subgroup K, of PSL,(Qg,). Since PSL,(Z,,) is an open subgroup of PSL, (Qy,),
it follows that PSL,(Z,,) N K, has finite index in K,. Applying Adams-Kechris
[2, 2.5], after replacing ()? ,lp) by a finite ergodic extension if necessary, we can
suppose that 3, takes values in the compact subgroup PSL,(Z,,) foreach 1 < ¢ <t.
Let K = PSLy(Zg,) X -+ x PSL,(Zg,) and G = PSL,(Qq,) X --- x PSL,(Qy,).
From now on, we shall identify G and PSL,(R) with the corresponding subgroups
of H. In particular, this allows us to consider the commuting actions of K and
PSL,(R) on H/A.

Let S C H be a Borel transversal for H/A chosen so that G C S and identify
S with H/A by identifying each s € S with sA. Then the action of H on H/A

induces a corresponding Borel action of H on .S, defined by
h - s = the unique element in S N hsA.
The associated cocycle p: H x S — A is defined by
p(h,s) = the unique A € A such that (h-s)\ = hs
=(h- s)flhs
Recall that the induced action of H on
Y=Y xS8=Y x (H/A)
is defined by

h-(y,s) = (p(h,s) -y, h-s).

Letj:Y — Y be the A-equivariant map defined by j(y) = (y, 1) and let f: X-Y
be the map defined by f: jo f Then for all v € T,

~ ~

(ioB)(v,z)- f(z) = f(y-z) for fiy-ae. z € X.

Let b: X — H be a Borel map such that for all v € T,

Bly,a) = b(y - a)(io B)(v,x)b(a) " for fiprac. x € X
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-~

and define f: X — Y by f(z) = b(x) - f(x). Then for all v € T,

B(y,x)- f(x) = f(y-z) for fiyae z€X.

Next we shall study the distribution of f(X) within Y. Since K is a compact
group, it follows that K\ H/A is a standard Borel space. Let 1 : Y — K\H/A be
the map defined by n(y,sA) = KsA and let w = (9o f).fip. Then w is a p(T)-
invariant ergodic probability measure on K\H/A. Furthermore, by definition, for

any Borel subset A C K\H/A,

w(A) = Jip(fz € X | (no f)(x) € A}).

Since K has countable index in G, it follows that PSL,(R) has only countably
many orbits on K\H/A. Hence, since ¢(I") acts ergodically on K\H/A, it follows
that w is concentrated on a single PSL, (R)-orbit Q on K\H/A. (The following
proof is based on an unpublished argument of Dave Witte, which appeared in an

early version of Adams [1]. It is very closely related to Lemma 4.6 of Furman [7].)
Lemma 5.5. w is supported on a finite subset Qg C €.

Proof. By Shah [18, 1.4], since w is a ¢(T')-invariant ergodic probability measure
on the homogeneous PSL,(R)-space © and (T') is a lattice in PSL,(R), there
exists a (topologically) closed subgroup C of PSL, (R) containing ¢(T") such that w
is C-invariant and concentrated on a C-orbit. Because C' contains ¢(I'), it follows
that PSL,(R)/C has finite volume. Hence, by the Borel Density Theorem, one of

the following two possibilities holds:

e C'=PSL,(R); or
e C is a discrete subgroup of PSL,(R).

First suppose that C = PSL,(R). Then there exists a lattice A of PSL,(R)
such that the o(T")-space (Q,w) is isomorphic to (PSL,(R)/A,m), where m is the
Haar probability measure. But this means that (PSL,(R)/¢~(A),m) is a factor
of the I'-space ()Z' ,lp), which contradicts Proposition 3.2. Hence C' must be a
discrete subgroup of PSL,(R). In particular, C is a countable group and so w is
concentrated on a countable subset 2y of ). Since w is a C-invariant probability

measure, this implies that Qg is actually a finite set. O
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Clearly Q¢ € K\H/A must be ¢(T')-invariant and so there exists a subgroup
I’y < T such that [I' : T'g] < oo and ¢(T'g) acts trivially on £y. Fix some element
KsA € Q. After replacing f : X — Y by the map f(z) = mo(s)" f(x) and
¢ € Aut(PSL,(R)) by the automorphism ¢’(g) = m(s) " L(g)mo(s) if necessary,
we can suppose that s € G. (Recall that 7o : H — PSL,(R) denotes the canonical
projection.) Since ¢(I'g) fixes KsA, we have that ¢(v)s € KsA for each v € T'y;
and hence, applying the projection 7y : H — PSL,(R), we obtain that

o) € mo(A) = PSL,(Z[1/q1,-..,1/q]) < PSL,(R).

In particular, the lattice p(I'g) of PSL,(R) satisfies ¢(I'g) < PSL,(Q). Hence, by
Margulis [15, IX.4.14], ¢(T') is commensurable with PSL,,(Z). After replacing T’y
by a subgroup of finite index if necessary, we can suppose that o(T'g) < PSL,(Z).

Let Xo = {z € X | (no f)(z) = KsA}. Clearly w({KsA}) = 1/|{%]| and
so Jip(Xo) = 1/|%| > 0. Recall that G is contained in the distinguished Borel
transversal S of H/A. Consequently, for each x € X, there exist fi(zr) €Y and
k, € K such that f(z) = (f1(x), kzs). Now suppose that z € X, and v € Iy satisfy

By, x)- fz) = fv- ).
Define ¢, d € K by B(v,2) = ¢(y)c and d = (1, (7)1, ..., o(7) ). Note that
o(7)ckys = ckysdA,
where A = (p(7),...,¢(7)) € A. Tt follows that
(Fi(r- 2oy e) = (1) - Fi (2, s,
Hence the Borel map f; : )~(0 — Y has the property that for all v € 'y,
Ay -z) =@ fi(z) for fiyae z€ X,

Since ﬁp()?o) > 0, there exists an ergodic component )?1 for the action of I'g on )?0

such that X; C )N(o; and clearly we can suppose that

fily-z) =p(y) - fi(z)

for all y € Ty and = € X;. Furthermore, by the ergodicity of the action of 'y on
)?1, we can suppose that there exists an ergodic component Y; for the action of

©(T'g) on Y such that f;(X;) C ;. Since Ty preserves the probability measure
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%, on X1, it follows that (T'g) preserves the probability measure ( f1)«(p) %,

on Y7; and since the action of ¢(T'g) on Y7 is uniquely ergodic, this implies that

(fl)*

(fip) 5, = (11q)v,. But this means that (V) (n,Q,), 1q) is a virtual quotient

of ()? , lp), which contradicts Theorem 3.3. This completes the proof of Theorem

4.7.
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