

THE CLASSIFICATION PROBLEM FOR p -LOCAL TORSION-FREE ABELIAN GROUPS OF FINITE RANK

SIMON THOMAS

ABSTRACT. Let $n \geq 3$. We prove that if $p \neq q$ are distinct primes, then the classification problems for p -local and q -local torsion-free abelian groups of rank n are incomparable with respect to Borel reducibility.

1. INTRODUCTION

This paper is a contribution to the project [10, 9, 2, 12, 19, 20] of trying to understand the complexity of the classification problem for the torsion-free abelian groups of finite rank. Recall that, up to isomorphism, the torsion-free abelian groups of rank n are exactly the additive subgroups of the n -dimensional vector space \mathbb{Q}^n which contain n linearly independent elements. In 1937, Baer [3] solved the classification problem for the torsion-free abelian groups of rank 1. Since then, despite the efforts of such mathematicians as Kurosh [13] and Malcev [14], no satisfactory solution of the classification problem has been found for the torsion-free abelian groups of rank $n \geq 2$. Thus it was natural to ask whether the classification problem was genuinely more difficult for the groups of rank $n \geq 2$. In 1999, Hjorth [9] proved that the classification problem for the rank 2 groups was strictly harder than that for the rank 1 groups. A little later, building on work of Adams-Kechris [2], Thomas [20] proved that the complexity of the classification problem increases strictly with the rank n .

In this paper, we shall consider the complexity of the classification problem for the p -local torsion-free abelian groups of finite rank. (Recall that an abelian group A is said to be p -local iff A is q -divisible for every prime $q \neq p$.) In Thomas [20], it was shown that the complexity of the classification problem for the p -local torsion-free abelian groups also increases strictly with the rank n . However, this left open the more natural question of whether the classification problem for the

Research partially supported by NSF Grants.

p -local torsion-free abelian groups of a *fixed* rank n was strictly easier than the classification problem for arbitrary torsion-free abelian groups of rank n . In this paper, we shall use Zimmer's superrigidity theorem [22], together with Ratner's measure classification theorem [17], to prove that if $n \geq 3$ and $p \neq q$ are distinct primes, then the classification problems for p -local and q -local torsion-free abelian groups of rank n have incomparable complexities. This easily implies that the classification problem for the p -local torsion-free abelian groups of rank n is indeed strictly easier than that for arbitrary torsion-free abelian groups of rank n . In order to give a precise formulation of our results, we need to make use of the notion of Borel reducibility. (Here we follow the example of Friedman-Stanley [5] and Hjorth-Kechris [10].)

Let X be a standard Borel space; i.e. a Polish space equipped with its associated σ -algebra of Borel subsets. Then a *Borel equivalence relation* on X is an equivalence relation $E \subseteq X^2$ which is a Borel subset of X^2 . If E, F are Borel equivalence relations on the standard Borel spaces X, Y respectively, then we say that E is *Borel reducible* to F and write $E \leq_B F$ if there exists a Borel function $f : X \rightarrow Y$ such that xEy iff $f(x)Ff(y)$. We say that E and F are *Borel bireducible* and write $E \sim_B F$ if both $E \leq_B F$ and $F \leq_B E$. Finally we write $E <_B F$ if both $E \leq_B F$ and $F \not\leq_B E$. Most of the Borel equivalence relations that we shall consider in this paper arise from group actions as follows. Let G be a *lcsc* group; i.e. a locally compact second countable group. Then a *standard Borel G -space* is a standard Borel space X equipped with a Borel action $(g, x) \mapsto g.x$ of G on X . The corresponding G -orbit equivalence relation on X , which we shall denote by E_G^X , is a Borel equivalence relation. In fact, by Kechris [11], E_G^X is Borel bireducible with a countable Borel equivalence relation; i.e. a Borel equivalence relation E such that every E -class is countable.

Throughout this paper, we shall identify the class of torsion-free abelian groups of rank n with the set $R(\mathbb{Q}^n)$ of subgroups of \mathbb{Q}^n of rank n . Notice that $R(\mathbb{Q}^n)$ is a Borel subset of the Polish space $\mathcal{P}(\mathbb{Q}^n)$ of all subsets of \mathbb{Q}^n and hence $R(\mathbb{Q}^n)$ can be regarded as a standard Borel space. (Here we are identifying $\mathcal{P}(\mathbb{Q}^n)$ with the space $2^{\mathbb{Q}^n}$ of all functions $h : \mathbb{Q}^n \rightarrow \{0, 1\}$ equipped with the product topology.)

Furthermore, the natural action of $GL_n(\mathbb{Q})$ on the vector space \mathbb{Q}^n induces a corresponding Borel action on $R(\mathbb{Q}^n)$; and it is easily checked that if $A, B \in R(\mathbb{Q}^n)$, then $A \cong B$ iff there exists an element $\varphi \in GL_n(\mathbb{Q})$ such that $\varphi(A) = B$. Similarly, we shall identify the class of *p*-local torsion-free abelian groups of rank n with the standard Borel space $R^{(p)}(\mathbb{Q}^n)$ of *p*-local subgroups of \mathbb{Q}^n of rank n .

Definition 1.1. For each $n \geq 1$ and prime p , the isomorphism relations on $R(\mathbb{Q}^n)$ and $R^{(p)}(\mathbb{Q}^n)$ will be denoted by \cong_n and $\cong_n^{(p)}$ respectively.

With this notation, the main results of Thomas [20] say that $(\cong_n) <_B (\cong_{n+1})$ and $(\cong_n^{(p)}) <_B (\cong_{n+1}^{(p)})$ for each $n \geq 1$ and each prime p . We are now also able to state the main results of this paper.

Theorem 1.2. *If $n \geq 3$ and $p \neq q$ are distinct primes, then $\cong_n^{(p)}$ and $\cong_n^{(q)}$ are incomparable with respect to Borel reducibility.*

Corollary 1.3. *If $n \geq 3$ and p is a prime, then $(\cong_n^{(p)}) <_B (\cong_n)$.*

Proof. If $q \neq p$ is another prime, then $(\cong_n^{(q)}) \leq_B (\cong_n)$ and $(\cong_n^{(q)}) \not\leq_B (\cong_n^{(p)})$. \square

Of course, it is trivially the case that $(\cong_1^{(p)}) <_B (\cong_1)$ for each prime p , since there only exist two *p*-local torsion-free abelian groups of rank 1 up to isomorphism. However, the following problem remains open.

Conjecture 1.4. $(\cong_2^{(p)}) <_B (\cong_2)$ for each prime p .

This paper is organised as follows. In Section 2, we shall recall some basic notions and results from ergodic theory. In Section 4, we shall use the Kurosh-Malcev *p*-adic localisation technique [13, 14] to show that the quasi-isomorphism relation on $R^{(p)}(\mathbb{Q}^n)$ is essentially identical to the orbit equivalence relation induced by the action of $GL_n(\mathbb{Q})$ on the standard Borel space $\mathcal{S}_n(\mathbb{Q}_p)$ of vector subspaces of the n -dimensional vector space \mathbb{Q}_p^n over the *p*-adic field. (Recall that two groups $A, B \in R^{(p)}(\mathbb{Q}^n)$ are said to be *quasi-isomorphic* iff there exists $\varphi \in GL_n(\mathbb{Q})$ such that $\varphi(A) \cap B$ has finite index in both $\varphi(A)$ and B .) In Section 3, we shall prove two basic results concerning the dynamical properties of the action of $PSL_n(\mathbb{Z})$ on $\mathcal{S}_n(\mathbb{Q}_p)$. In Section 5, we shall use the results of Sections 3 and 4, together with Zimmer's superrigidity theorem and Ratner's measure classification theorem,

to complete the proof of Theorem 1.2. The argument in Section 5 makes essential use of ideas which were introduced by Adams [1]. (These ideas can be regarded as constituting a Borel version of a weak form of Furman’s superrigidity theorem [8]. For example, see the discussion in Thomas [21].)

We shall assume that the reader is familiar with the basic machinery of Zimmer’s superrigidity theory [22], including the notions of Borel cocycles and induced actions. Clear accounts of this material can be found in Zimmer [22] and Adams-Kechris [2]. In particular, Adams-Kechris [2, Section 2] provides a convenient introduction to the basic techniques and results in this area, written for the non-expert in the ergodic theory of groups.

Throughout this paper, \mathbb{Z}_p denotes the ring of p -adic integers and \mathbb{F}_p denotes the field with p elements.

2. PRELIMINARIES

In this section, we shall recall some basic notions and results from ergodic theory. Let G be a lcsc group and let X be a standard Borel G -space. Throughout this paper, a probability measure on X will always mean a Borel probability measure; i.e. a measure which is defined on the collection of Borel subsets of X . The probability measure μ on X is *G -invariant* iff $\mu(g(A)) = \mu(A)$ for every $g \in G$ and Borel subset $A \subseteq X$. If μ is G -invariant, then the action of G on (X, μ) is said to be *ergodic* iff for every G -invariant Borel subset $A \subseteq X$, either $\mu(A) = 0$ or $\mu(A) = 1$. In this case, we shall also say that μ is an ergodic probability measure. The following characterization of ergodicity is well-known.

Proposition 2.1. *If μ is a G -invariant probability measure on the standard Borel G -space X , then the following statements are equivalent.*

- (i) *The action of G on (X, μ) is ergodic.*
- (ii) *If Y is a standard Borel space and $f : X \rightarrow Y$ is a G -invariant Borel function, then there exists a G -invariant Borel subset $M \subseteq X$ with $\mu(M) = 1$ such that $f \upharpoonright M$ is a constant function.*

The action of G on X is said to be *uniquely ergodic* iff there exists a unique G -invariant probability measure μ on X . In this case, it is well-known that μ must be ergodic. (For example, see [4, Section I.3].)

Suppose that Y is a standard Borel space and that $f : X \rightarrow Y$ is a Borel function. Then for every probability measure ν on X , we can define a corresponding probability measure $f_*\nu$ on Y by

$$(f_*\nu)(A) = \nu(f^{-1}(A))$$

for every Borel subset $A \subseteq Y$. Now suppose that ν is G -invariant and that Y is also a standard Borel G -space. Then the Borel function $f : X \rightarrow Y$ is said to be *almost G -equivariant* iff for all $g \in G$, $g \cdot f(x) = f(g \cdot x)$ for ν -a.e. $x \in X$. In this case, it is easily checked that $f_*\nu$ is also G -invariant; and we say that $(Y, f_*\nu)$ is a *factor* of (X, ν) . It is also easily checked that if ν is ergodic, then $f_*\nu$ is ergodic. If f is a finite-to-one function, then we say that (X, ν) is a *finite extension* of $(Y, f_*\nu)$.

Suppose that Γ is a countable group and that X is a standard Borel Γ -space with an invariant ergodic probability measure μ . Let $\Lambda \leq \Gamma$ be a subgroup such that $[\Gamma : \Lambda] < \infty$. Then a Λ -invariant Borel subset $Z \subseteq X$ is said to be an *ergodic component* for the action of Λ on X iff

- $\mu(Z) > 0$; and
- Λ acts ergodically on (Z, μ_Z) , where μ_Z is the probability measure defined on Z by $\mu_Z(A) = \mu(A)/\mu(Z)$.

It is easily checked that there exists a partition $Z_1 \sqcup \cdots \sqcup Z_d$ of X into finitely many ergodic components and that the collection of ergodic components is uniquely determined up to μ -null sets. Furthermore, if the action of Γ on X is uniquely ergodic, then the action of Λ on each ergodic component $Z \subseteq X$ is also uniquely ergodic.

Finally suppose that K is a compact second countable group and that L is a closed subgroup. Then there exists a unique K -invariant probability measure μ on the standard Borel K -space K/L . (For example, see [16, Theorem 3.17].) The measure μ is called the Haar probability measure on K/L and can be described explicitly as follows. Suppose that ν is the Haar probability measure on K and let $\pi : K \rightarrow K/L$ be the canonical surjection. Then $\mu = \pi_*\nu$. In the remaining sections, we shall make repeated use of the following easy observation. (A proof can be found in Thomas [21, 2.2].)

Lemma 2.2. *Let K be a compact second countable group, let $L \leq K$ be a closed subgroup and let μ be the Haar probability measure on K/L . If Γ is a countable dense subgroup of K , then the following properties hold.*

- (a) *The action of Γ on K/L is uniquely ergodic; i.e. μ is the unique Γ -invariant probability measure on K/L .*
- (b) *Suppose that $\Lambda \leq \Gamma$ is a subgroup such that $[\Gamma : \Lambda] < \infty$ and that $H = \overline{\Lambda}$ is the closure of Λ in K . Then the ergodic components for the action of Λ on K/L are precisely the H -orbits $\{H \cdot x \mid x \in K/L\}$.*
- (c) *Suppose that $\Lambda \trianglelefteq \Gamma$ is a normal subgroup such that $[\Gamma : \Lambda] < \infty$ and let \mathcal{C} be the set of ergodic components for the action of Λ on K/L . Then Γ acts as a transitive permutation group on \mathcal{C} .*

3. GROUPS ACTING ON p -ADIC SPACES

In this section, we shall prove two basic results concerning the dynamical properties of the action of $PSL_n(\mathbb{Z})$ on the standard Borel space $\mathcal{S}_n(\mathbb{Q}_p)$ of nontrivial proper subspaces of the n -dimensional vector space \mathbb{Q}_p^n over the p -adic field. For the rest of this paper, we shall fix some integer $n \geq 3$ and let $\Gamma = PSL_n(\mathbb{Z})$.

Definition 3.1. If $0 \leq k \leq n$, then $V^{(k)}(n, \mathbb{Q}_p)$ denotes the standard Borel space consisting of the k -dimensional vector subspaces of \mathbb{Q}_p^n .

It is easily checked that the compact group $PSL_n(\mathbb{Z}_p)$ acts transitively on $V^{(k)}(n, \mathbb{Q}_p)$. (For example, see Thomas [21, 6.1].) Thus we can identify $V^{(k)}(n, \mathbb{Q}_p)$ with the coset space $PSL_n(\mathbb{Z}_p)/L$, where L is a suitably chosen closed subgroup of $PSL_n(\mathbb{Z}_p)$. Let μ_p be the corresponding Haar probability measure on $V^{(k)}(n, \mathbb{Q}_p)$. Since Γ is a dense subgroup of $PSL_n(\mathbb{Z}_p)$, Lemma 2.2 applies to the action of Γ on $V^{(k)}(n, \mathbb{Q}_p)$.

The following entropy argument is a slight variant of the proof of Corollary B(2) of Furman [8].

Proposition 3.2. *Suppose that $(\tilde{X}, \tilde{\mu}_p)$ is a finite ergodic extension of the Γ -space $(V^{(n-1)}(n, \mathbb{Q}_p), \mu_p)$. Then $(\tilde{X}, \tilde{\mu}_p)$ does not have any factors of the form*

$$(PSL_n(\mathbb{R})/\Delta, m),$$

where Δ is a lattice in $PSL_n(\mathbb{R})$ and m is the Haar probability measure.

Proof. Suppose that $(PSL_n(\mathbb{R})/\Delta, m)$ is a factor of $(\tilde{X}, \tilde{\mu}_p)$. Then for all $\gamma \in \Gamma$, the corresponding entropies satisfy $h(PSL_n(\mathbb{R})/\Delta, \gamma) \leq h(\tilde{X}, \gamma)$. However, $h(\tilde{X}, \gamma) = 0$ for all $\gamma \in \Gamma$; while if $\gamma \in \Gamma$ corresponds to an element of $SL_n(\mathbb{Z})$ which has at least one eigenvalue off the unit circle, then $h(PSL_n(\mathbb{R})/\Delta, \gamma) > 0$. \square

Next suppose that X_1, X_2 are standard Borel Γ -spaces with invariant ergodic probability measures μ_1, μ_2 respectively. Then (X_2, μ_2) is said to be a *virtual quotient* of (X_1, μ_1) iff there exist:

- (i) a subgroup $\Gamma_0 \leqslant \Gamma$ with $[\Gamma : \Gamma_0] < \infty$,
- (ii) an embedding $\varphi : \Gamma_0 \rightarrow \Gamma$,
- (iii) ergodic components Z_1, Z_2 for the actions of $\Gamma_0, \varphi(\Gamma_0)$ on X_1, X_2 respectively, and
- (iv) a Borel function $f : Z_1 \rightarrow Z_2$

such that the following conditions are satisfied:

- (a) $f_*(\mu_1)_{Z_1} = (\mu_2)_{Z_2}$; and
- (b) $f(\gamma \cdot x) = \varphi(\gamma) \cdot f(x)$ for all $\gamma \in \Gamma_0$ and $x \in Z_1$.

By the Margulis Superrigidity Theorem [15], the embedding $\varphi : \Gamma_0 \rightarrow \Gamma$ extends to a Lie group automorphism of $PSL_n(\mathbb{R})$ and hence we necessarily also have that $[\Gamma : \varphi(\Gamma_0)] < \infty$. (We have used the term “virtual quotient” rather than “virtual factor” because of the slight twisting permitted in clause (b).)

Theorem 3.3. *Suppose that $(\tilde{X}, \tilde{\mu}_p)$ is a finite ergodic extension of the Γ -space $(V^{(n-1)}(n, \mathbb{Q}_p), \mu_p)$. If $q \neq p$ and $1 \leq k \leq n-1$, then $(V^{(k)}(n, \mathbb{Q}_q), \mu_q)$ is not a virtual quotient of $(\tilde{X}, \tilde{\mu}_p)$.*

The following result was proved in Thomas [21, Section 6] for the special case when $k = 1$. The proof for arbitrary k is essentially identical. For the sake of completeness, we shall sketch the main points of the proof. In the following argument, $K_t = \ker \psi_t$ denotes the congruence subgroup of $PSL_n(\mathbb{Z}_q)$ arising from the canonical surjection

$$\psi_t : PSL_n(\mathbb{Z}_q) \rightarrow PSL_n(\mathbb{Z}_q/q^t \mathbb{Z}_q).$$

Lemma 3.4. *Suppose that $1 \leq k \leq n-1$ and that $\Lambda \leqslant \Gamma$ is a subgroup such that $[\Gamma : \Lambda] < \infty$. Let Z be an ergodic component for the action of Λ on $V^{(k)}(n, \mathbb{Q}_q)$ and*

for each subgroup $\Delta \leq \Lambda$ with $[\Lambda : \Delta] < \infty$, let $e(\Delta, Z)$ be the number of ergodic components for the action of Δ on Z .

- (a) If $\Delta \trianglelefteq \Lambda$ is a normal subgroup with $[\Lambda : \Delta] < \infty$, then $e(\Delta, Z) = bq^r$ for some $r \geq 0$ and some divisor b of $|PSL_n(\mathbb{F}_q)|$.
- (b) For each $N \geq 0$, there exists a normal subgroup $\Delta \trianglelefteq \Lambda$ with $[\Lambda : \Delta] < \infty$ such that $e(\Delta, Z) \geq N$.

Proof. To see that 3.4(a) holds, let $H = \overline{\Lambda}$ and $N = \overline{\Delta}$ be the closures of Λ , Δ in $PSL_n(\mathbb{Z}_q)$ respectively. Then we can suppose that Z is an orbit of H on $V^{(k)}(n, \mathbb{Q}_q)$ and that the set \mathcal{C} of ergodic components for the action of Δ on Z consists of the orbits of N on Z . Clearly H acts transitively on \mathcal{C} . Hence 3.4(a) follows from the fact that K_1 is a pro- p group. Finally 3.4(b) is an easy consequence of the fact that if a_t is the number of orbits of K_t on $V^{(k)}(n, \mathbb{Q}_q)$, then $a_t \rightarrow \infty$ as $t \rightarrow \infty$. \square

Lemma 3.5. Suppose that $(\tilde{X}, \tilde{\mu}_p)$ be a finite ergodic extension of the Γ -space $(V^{(n-1)}(n, \mathbb{Q}_p), \mu_p)$ and that $\Lambda \leq \Gamma$ is a subgroup such that $[\Gamma : \Lambda] < \infty$. Let \tilde{Z} be an ergodic component for the action of Λ on \tilde{X} and for each subgroup $\Delta \leq \Lambda$ with $[\Lambda : \Delta] < \infty$, let $e(\Delta, \tilde{Z})$ be the number of ergodic components for the action of Δ on \tilde{Z} . Then there exists a constant c such that whenever $\Delta \trianglelefteq \Lambda$ is a normal subgroup with $[\Lambda : \Delta] < \infty$, then $e(\Delta, \tilde{Z}) = bp^r$ for some $r \geq 0$ and $b \leq c$.

Proof. Let $\pi : \tilde{X} \rightarrow V^{(n-1)}(n, \mathbb{Q}_p)$ be the factor map and let $Z = \pi(\tilde{Z})$. Then Z is an ergodic component for the action of Λ on $V^{(n-1)}(n, \mathbb{Q}_p)$. Furthermore, by ergodicity, we can suppose that there exists a constant ℓ such that $|\pi^{-1}(z)| = \ell$ for all $z \in Z$. Let $\Delta \trianglelefteq \Lambda$ be a normal subgroup with $[\Lambda : \Delta] < \infty$ and let $\{A_i \mid 1 \leq i \leq e\}$ be the ergodic components for the action of Δ on Z . By Lemma 3.4, $e = bp^r$ for some $r \geq 0$ and some divisor b of $|PSL_n(\mathbb{F}_p)|$. For each $1 \leq i \leq e$, let $\tilde{A}_i = \pi^{-1}(A_i)$. Then each \tilde{A}_i is the union of at most ℓ ergodic components for the action of Δ on \tilde{Z} . Since $\Delta \trianglelefteq \Lambda$, it follows that Λ acts transitively on $\{A_i \mid 1 \leq i \leq e\}$ and hence each \tilde{A}_i contains the same number of ergodic components. \square

Proof of Theorem 3.3. Suppose that $(V^{(k)}(n, \mathbb{Q}_q), \mu_q)$ is a virtual quotient of $(\tilde{X}, \tilde{\mu}_p)$.

Thus there exist:

- (i) a subgroup $\Gamma_0 \leq \Gamma$ with $[\Gamma : \Gamma_0] < \infty$,
- (ii) an embedding $\varphi : \Gamma_0 \rightarrow \Gamma$,

- (iii) ergodic components \tilde{Z} , Z for the actions of Γ_0 , $\varphi(\Gamma_0)$ on \tilde{X} , $V^{(k)}(n, \mathbb{Q}_q)$ respectively, and
- (iv) a Borel function $f : \tilde{Z} \rightarrow Z$

such that the following conditions are satisfied:

- (a) $f_*(\tilde{\mu}_p)_{\tilde{Z}} = (\mu_q)_Z$; and
- (b) $f(\gamma \cdot x) = \varphi(\gamma) \cdot f(x)$ for all $\gamma \in \Gamma_0$ and $x \in \tilde{Z}$.

Let $t \geq 0$ be arbitrary. By Lemma 3.4, there exists a normal subgroup $\Delta \trianglelefteq \varphi(\Gamma_0)$ with $[\varphi(\Gamma_0) : \Delta] < \infty$ such that q^t divides $e = e(\Delta, Z)$. Let $\{A_i \mid 1 \leq i \leq e\}$ be the ergodic components for the action of Δ on Z ; and for each $1 \leq i \leq e$, let $\tilde{A}_i = f^{-1}(A_i)$. Then each \tilde{A}_i is the union of a finite number of ergodic components for the action of $\varphi^{-1}(\Delta)$ on \tilde{Z} . Arguing as in the proof of Lemma 3.5, we see that each \tilde{A}_i contains the same number of ergodic components and so e divides $e(\varphi^{-1}(\Delta), \tilde{Z})$. But if we choose t sufficiently large, this clearly contradicts Lemma 3.5. \square

4. THE KUROSH-MALCEV p -ADIC LOCALISATION TECHNIQUE

In this section, we shall first use the Kurosh-Malcev p -adic localisation technique [13, 14] to relate the classification problem for p -local torsion-free abelian groups to the orbit equivalence relation induced by the action of $GL_n(\mathbb{Q})$ on the standard Borel space $\mathcal{S}_n(\mathbb{Q}_p)$ of vector subspaces of the n -dimensional vector space \mathbb{Q}_p^n over the p -adic field. Then we shall complete the proof of Theorem 1.2, modulo a superrigidity result which we shall prove in Section 5.

Suppose that $A, B \in R(\mathbb{Q}^n)$. Then A and B are said to be *quasi-equal*, written $A \approx B$, iff $A \cap B$ has finite index in both A and B . We say that A and B are *quasi-isomorphic*, written $A \sim B$, if there exists $\varphi \in GL_n(\mathbb{Q})$ such that $\varphi(A) \approx B$. By Thomas [20, Section 3], \approx and \sim are both countable Borel equivalence relations on $R(\mathbb{Q}^n)$.

Definition 4.1. For each $A \in R^{(p)}(\mathbb{Q}^n)$, let $\hat{A} = \mathbb{Z}_p \otimes A$.

We shall regard each \hat{A} as a subgroup of \mathbb{Q}_p^n in the usual way; i.e. \hat{A} is the subgroup consisting of all finite sums

$$\gamma_1 a_1 + \gamma_2 a_2 + \cdots + \gamma_t a_t,$$

where $\gamma_i \in \mathbb{Z}_p$ and $a_i \in A$ for $1 \leq i \leq t$. By Lemma 93.3 [6], there exist integers $0 \leq k, \ell \leq n$ with $k + \ell = n$ and elements $v_i, w_j \in \widehat{A}$ such that

$$\widehat{A} = \bigoplus_{i=1}^k \mathbb{Q}_p v_i \oplus \bigoplus_{j=1}^{\ell} \mathbb{Z}_p w_j.$$

Definition 4.2. For each $A \in R^{(p)}(\mathbb{Q}^n)$, let $V_A = \bigoplus_{i=1}^k \mathbb{Q}_p v_i$.

Theorem 4.3. *If $A, B \in R^{(p)}(\mathbb{Q}^n)$, then*

- (a) $A \approx B$ iff $V_A = V_B$;
- (b) $A \sim B$ iff there exists $\pi \in GL_n(\mathbb{Q})$ such that $\pi(V_A) = V_B$.

Proof. 4.3(a) was proved in Thomas [20, 4.7]. To see that 4.3(b) holds, consider the canonical extension of the action of $GL_n(\mathbb{Q})$ on \mathbb{Q}^n to an action on \mathbb{Q}_p^n . Suppose that $\pi \in GL_n(\mathbb{Q})$ and let $\pi(A) = C$. Then it is clear that $\pi(\widehat{A}) = \widehat{C}$ and this implies that $\pi(V_A) = V_C$. Thus 4.3(b) follows from 4.3(a). \square

Theorem 4.4. *Suppose that $A \in R^{(p)}(\mathbb{Q}^n)$ and that $\dim V_A = n - 1$. Then for each $B \in R^{(p)}(\mathbb{Q}^n)$, we have that $A \sim B$ iff $A \cong B$.*

Proof. By Exercises 32.5 and 93.1 [6], for every group $C \in R^{(p)}(\mathbb{Q}^n)$, we have that

$$\dim_{\mathbb{Q}_p} V_C = n - \dim_{\mathbb{F}_p} C/pC.$$

In particular, $\dim_{\mathbb{F}_p} A/pA = 1$. It follows that $|A/qA| \leq q$ for every prime q ; and so the result follows from Proposition 92.1 [6]. \square

Definition 4.5. Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the standard basis of \mathbb{Q}_p^n . Suppose that S is a \mathbb{Q}_p -subspace of \mathbb{Q}_p^n of dimension $0 \leq k \leq n$. Then

$$\sigma(S) = (S \oplus \mathbb{Z}_p \mathbf{e}_{i_1} \oplus \dots \oplus \mathbb{Z}_p \mathbf{e}_{i_{n-k}}) \cap \mathbb{Q}^n,$$

where $i_1 < \dots < i_{n-k}$ is the lexicographically least sequence such that

$$\mathbb{Q}_p^n = \langle S, \mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_{n-k}} \rangle.$$

Theorem 4.6. *If S is a \mathbb{Q}_p -subspace of \mathbb{Q}_p^n of dimension $0 \leq k \leq n$, then*

- (a) $\sigma(S) \in R^{(p)}(\mathbb{Q}^n)$;
- (b) $V_{\sigma(S)} = S$.

Proof. Arguing as in the proof of Fuchs [6, 93.5], we easily obtain that

$$\mathbb{Z}_p \otimes \sigma(S) = S \oplus \mathbb{Z}_p \mathbf{e}_{i_1} \oplus \cdots \oplus \mathbb{Z}_p \mathbf{e}_{i_{n-k}}.$$

The result follows. \square

We are now ready to begin the proof of Theorem 1.2. Suppose $p \neq q$ are distinct primes and that $h : R^{(p)}(\mathbb{Q}^n) \rightarrow R^{(q)}(\mathbb{Q}^n)$ is a Borel map such that $A \cong B$ iff $h(A) \cong h(B)$. Let

$$f : V^{(n-1)}(n, \mathbb{Q}_p) \rightarrow \mathcal{S}_n(\mathbb{Q}_p) = \bigcup_{k=0}^{n-1} V^{(n)}(n, \mathbb{Q}_q)$$

be the Borel map defined by $f(S) = V_{(h \circ \sigma)(S)}$. Applying Theorems 4.3, 4.4 and 4.6, we see that if $S, T \in V^{(n-1)}(n, \mathbb{Q}_p)$, then the following three statements are equivalent:

- (1) S and T lie in the same $GL_n(\mathbb{Q})$ -orbit;
- (2) $\sigma(S) \cong \sigma(T)$;
- (3) $(h \circ \sigma)(S) \cong (h \circ \sigma)(T)$.

Applying Theorem 4.3 once again, we also see that the following two statements are equivalent:

- (i) $f(S)$ and $f(T)$ lie in the same $GL_n(\mathbb{Q})$ -orbit;
- (ii) $(h \circ \sigma)(S) \sim (h \circ \sigma)(T)$.

It follows that if $S, T \in V^{(n-1)}(n, \mathbb{Q}_p)$ lie in the same $GL_n(\mathbb{Q})$ -orbit, then $f(S)$ and $f(T)$ lie in the same $GL_n(\mathbb{Q})$ -orbit; and also that if Δ is a $GL_n(\mathbb{Q})$ -orbit on $V^{(k)}(n, \mathbb{Q}_q)$ for some $1 \leq k \leq n-1$, then $f^{-1}(\Delta)$ is a countable subset of $V^{(n-1)}(n, \mathbb{Q}_p)$.

Now consider the measure-preserving action of $SL_n(\mathbb{Z})$ on $(V^{(n-1)}(n, \mathbb{Q}_p), \mu_p)$. Since $SL_n(\mathbb{Z})$ acts ergodically on $V^{(n-1)}(n, \mathbb{Q}_p)$, it follows that there exists a fixed $1 \leq k \leq n-1$ and an $SL_n(\mathbb{Z})$ -invariant Borel subset $X \subseteq V^{(n-1)}(n, \mathbb{Q}_p)$ with $\mu_p(X) = 1$ such that $f(S) \in V^{(k)}(n, \mathbb{Q}_q)$ for all $S \in X$. However, this clearly contradicts the following theorem, which will be proved in Section 5. This completes the proof of Theorem 1.2.

Theorem 4.7. *Suppose that $n \geq 3$ and that $1 \leq k \leq n-1$. Let $p \neq q$ be distinct primes and suppose that $f : V^{(n-1)}(n, \mathbb{Q}_p) \rightarrow V^{(k)}(n, \mathbb{Q}_q)$ is a Borel map such that for all $x, y \in V^{(n-1)}(n, \mathbb{Q}_p)$,*

- *if $SL_n(\mathbb{Z}) \cdot x = SL_n(\mathbb{Z}) \cdot y$, then $GL_n(\mathbb{Q}) \cdot f(x) = GL_n(\mathbb{Q}) \cdot f(y)$.*

Then there exists a Borel subset $Z \subseteq V^{(n-1)}(n, \mathbb{Q}_p)$ with $\mu_p(Z) = 1$ such that f maps Z into a single $GL_n(\mathbb{Q})$ -orbit.

5. THE PROOF OF THEOREM 4.7

In this section, we shall prove Theorem 4.7. (Our argument will make essential use of the techniques introduced by Adams [1]. As we mentioned in Section 1, these techniques can be regarded as constituting a Borel version of a weak form of Furman's superrigidity theorem [8].) Suppose that $n \geq 3$ and that $p \neq q$ are distinct primes. Let $1 \leq k \leq n$ and let $f : V^{(n-1)}(n, \mathbb{Q}_p) \rightarrow V^{(k)}(n, \mathbb{Q}_q)$ be a Borel map such that for all $x, y \in V^{(n-1)}(n, \mathbb{Q}_p)$,

- *if $SL_n(\mathbb{Z}) \cdot x = SL_n(\mathbb{Z}) \cdot y$, then $GL_n(\mathbb{Q}) \cdot f(x) = GL_n(\mathbb{Q}) \cdot f(y)$.*

Suppose that there does not exist a Borel subset $Z \subseteq V^{(n-1)}(n, \mathbb{Q}_p)$ with $\mu_p(Z) = 1$ such that f maps Z into a single $GL_n(\mathbb{Q})$ -orbit. For the remainder of this section, we shall work with the corresponding actions of $\Gamma = PSL_n(\mathbb{Z})$ and $PGL_n(\mathbb{Q})$ on $V^{(n-1)}(n, \mathbb{Q}_p)$, $V^{(k)}(n, \mathbb{Q}_q)$ respectively. Let

$$Y = \{y \in V^{(k)}(n, \mathbb{Q}_q) \mid g \cdot y \neq y \text{ for all } 1 \neq g \in PGL_n(\mathbb{Q})\}.$$

In other words, Y is the Borel subset of $V^{(k)}(n, \mathbb{Q}_q)$ where $PGL_n(\mathbb{Q})$ acts freely.

Lemma 5.1. *There exists a Γ -invariant Borel subset $X \subseteq V^{(n-1)}(n, \mathbb{Q}_p)$ with $\mu_p(X) = 1$ such that $f(x) \in Y$ for all $x \in X$.*

In the proof of Lemma 5.1, we shall make use of the following cocycle reduction result. (Throughout this section, $\overline{\mathbb{Q}}$ denotes the algebraic closure of \mathbb{Q} . If we strengthen the hypotheses by assuming that G is an algebraic \mathbb{Q} -group and that $H \leq G(\mathbb{Q})$, then Theorem 5.2 is an easy consequence of [20, Theorem 2.3]. However, an examination of its proof shows that [20, Theorem 2.3] also holds when \mathbb{Q} is replaced by $\overline{\mathbb{Q}}$.)

Theorem 5.2. *Let $n \geq 3$ and let Ω be a standard Borel $PSL_n(\mathbb{Z})$ -space with an invariant ergodic probability measure μ . Suppose that $H \leq G(\overline{\mathbb{Q}})$, where G is an algebraic $\overline{\mathbb{Q}}$ -group such that $\dim G < n^2 - 1$, and that Z is a standard Borel H -space on which H acts freely. If $f : \Omega \rightarrow Z$ is a Borel function such that for all $x, y \in \Omega$,*

$$PSL_n(\mathbb{Z}) \cdot x = PSL_n(\mathbb{Z}) \cdot y \quad \text{implies} \quad H \cdot f(x) = H \cdot f(y),$$

then there exists an $PSL_n(\mathbb{Z})$ -invariant Borel subset $M \subseteq \Omega$ with $\mu(M) = 1$ such that f maps M into a single H -orbit.

Suppose that Lemma 5.1 is false. There exists a Γ -invariant Borel subset X of $V^{(n-1)}(n, \mathbb{Q}_p)$ with $\mu_p(X) = 1$ such that $f(x) \notin Y$ for all $x \in X$. We shall consider the induced action of $GL_n(\mathbb{Q})$ on the exterior power $V = \bigwedge^k(\mathbb{Q}_q^n)$. Let $\mathbf{e}_1, \dots, \mathbf{e}_n$ be the standard basis of \mathbb{Q}_q^n . Let $d = \binom{n}{k}$ and let $\mathcal{B} = \{\mathbf{b}_j \mid 1 \leq j \leq d\}$ be the corresponding “standard basis” of V ; i.e. \mathcal{B} consists of the vectors $\mathbf{e}_{i_1} \wedge \dots \wedge \mathbf{e}_{i_k}$, where $i_1 < \dots < i_k$. Then $\overline{\mathbb{Q}}^d \cap V$ denotes the collection of vectors $\mathbf{v} \in V$ of the form

$$\mathbf{v} = a_1 \mathbf{b}_1 + \dots + a_d \mathbf{b}_d,$$

where each $a_j \in \overline{\mathbb{Q}} \cap \mathbb{Q}_q$. The subspace $E \leq V$ is said to be a $\overline{\mathbb{Q}}$ -subspace iff there exists a (possibly empty) collection of vectors $\mathbf{w}_1, \dots, \mathbf{w}_t \in \overline{\mathbb{Q}}^d \cap V$ such that $E = \langle \mathbf{w}_1, \dots, \mathbf{w}_t \rangle$. Clearly if $E, F \leq V$ are $\overline{\mathbb{Q}}$ -subspaces, then $E \cap F$ is also a $\overline{\mathbb{Q}}$ -subspace. In particular, for each 1-dimensional subspace $\langle \mathbf{v} \rangle$ of V , there exists a unique minimal $\overline{\mathbb{Q}}$ -subspace E such that $\langle \mathbf{v} \rangle \leq E$.

For each k -dimensional subspace $S = \langle \mathbf{s}_1, \dots, \mathbf{s}_k \rangle$ of \mathbb{Q}_q^n , let

$$[S] = \langle \mathbf{s}_1 \wedge \dots \wedge \mathbf{s}_k \rangle$$

be the corresponding 1-dimensional subspace of V .

Claim 5.3. *For each $x \in X$, there exists a proper $\overline{\mathbb{Q}}$ -subspace E of V such that $[f(x)] \leq E$.*

Proof. For each $x \in X$, there exists a noncentral element $g \in GL_n(\mathbb{Q})$ and an eigenspace E for the induced action of g on V such that $[f(x)] \leq E$. Clearly E is a proper $\overline{\mathbb{Q}}$ -subspace of V . \square

Recall that the *Effros Borel space* on V is the standard Borel space consisting of the set

$$F(V) = \{Z \subseteq V \mid Z \text{ is a closed subset of } V\}$$

equipped with the σ -algebra generated by the sets of the form

$$\{Z \in F(V) \mid Z \cap U \neq \emptyset\},$$

where U varies over the open subsets of V . For each $x \in X$, let $E_x \in F(V)$ be the unique minimal $\overline{\mathbb{Q}}$ -subspace such that $[f(x)] \leqslant E_x$; and let $m : X \rightarrow F(V)$ be the Borel map defined by $m(x) = E_x$. Since there are only countably many possibilities for E_x , there exists a Borel subset $X_0 \subseteq X$ with $\mu_p(X_0) > 0$ and a fixed $\overline{\mathbb{Q}}$ -subspace E such that $E_x = E$ for all $x \in X_0$. Let $X_1 = \Gamma \cdot X_0$. Since μ_p is ergodic, it follows that $\mu_p(X_1) = 1$. After slightly adjusting f if necessary, we can suppose that $E_x = E$ for all $x \in X_1$. (More precisely, let $c : X_1 \rightarrow X_1$ be a Borel function such that $c(x) \in \Gamma \cdot x \cap X_0$ for all $x \in X_1$. Then we can replace f with $f' = f \circ c$.)

Now suppose that $x, y \in X_1$ and that $y \in \Gamma \cdot x$. Then there exists $g \in GL_n(\mathbb{Q})$ such that $g \cdot [f(x)] = [f(y)]$. We claim that

$$g \in R = \{\varphi \in GL_n(\mathbb{Q}) \mid \varphi(E) = E\}.$$

To see this, note that $g(E)$ is also a $\overline{\mathbb{Q}}$ -subspace and that $[f(y)] \leqslant E \cap g(E)$. Hence, by the minimality of E , we must have that $g(E) = E$.

Next let $x \in X_1$ and suppose that $\varphi \in R$ satisfies $\varphi \cdot [f(x)] = [f(x)]$. Then $[f(x)]$ is contained in the eigenspace W of φ corresponding to some eigenvalue $\lambda \in \overline{\mathbb{Q}}$. By the minimality of E , we must have that $E \leqslant W$ and so $\varphi(\mathbf{v}) = \lambda \mathbf{v}$ for all $\mathbf{v} \in E$. Let $H \leqslant PGL(E)$ be the group of projective linear transformations induced by R on the set of 1-dimensional subspaces of E . Then we have just shown that

- H acts freely on the standard Borel space $Z = \{h \cdot [f(x)] \mid h \in H \text{ and } x \in X_1\}$;
- if $x, y \in X_1$ and $y \in \Gamma \cdot x$, then there exists an element $h \in H$ such that $h \cdot [f(x)] = [f(y)]$.

Claim 5.4. *There exists an algebraic $\overline{\mathbb{Q}}$ -group G with $\dim G < n^2 - 1$ such that $H \leqslant G(\overline{\mathbb{Q}})$.*

Proof. Clearly it is enough to show that the $\overline{\mathbb{Q}}$ -subspace E is not $GL_n(\mathbb{Q})$ -invariant. To see this, note that $SL_n(\mathbb{Z}_p)$ acts transitively on the subset $\{[S] \mid S \in V^{(k)}(n, \mathbb{Q}_q)\}$. In particular, for each $\mathbf{b}_j \in \mathcal{B}$ and $x \in X_1$, there exists $g \in SL_n(\mathbb{Z}_p)$ such that $g \cdot [f(x)] = \mathbf{b}_j$. Since E is a proper subspace of V , it follows that E is not $SL_n(\mathbb{Z}_p)$ -invariant. Because $SL_n(\mathbb{Z})$ is a dense subgroup of $SL_n(\mathbb{Z}_p)$, it follows that E is not $SL_n(\mathbb{Z})$ -invariant. \square

By Theorem 5.2, there exists a Γ -invariant Borel subset $M \subseteq X_1$ with $\mu_p(M) = 1$ such that $\{[f(x)] \mid x \in M\}$ is contained in a single H -orbit on Z . But this means that f maps M into a single $GL_n(\mathbb{Q})$ -orbit on $V^{(k)}(n, \mathbb{Q}_q)$, which is a contradiction. This completes the proof of Lemma 5.1.

Let $\alpha : \Gamma \times X \rightarrow PGL_n(\mathbb{Q})$ be the Borel cocycle defined by

$$\alpha(\gamma, x) \cdot f(x) = f(\gamma \cdot x)$$

for all $\gamma \in \Gamma$ and $x \in X$. For each matrix $M \in GL_n(\mathbb{Q})$, let $[M]$ be the corresponding element of $PGL_n(\mathbb{Q})$. Let $A = \mathbb{Q}^*/(\mathbb{Q}^*)^n$ and let $\delta : PGL_n(\mathbb{Q}) \rightarrow A$ be the homomorphism defined by

$$\delta(g) = \det(M_g)(\mathbb{Q}^*)^n,$$

where $M_g \in GL_n(\mathbb{Q})$ satisfies $[M_g] = g$. Then $\ker \delta = PSL_n(\mathbb{Q})$. Consider the cocycle $\delta \circ \alpha : \Gamma \times X \rightarrow A$. By Zimmer [22, 9.1.1], since Γ is a Kazhdan group and A is an amenable group, $\delta \circ \alpha$ is equivalent to a cocycle taking values in a finite subgroup $F \leq A$. It easily follows that α is equivalent to a cocycle α' taking values in $L = \delta^{-1}(F)$. (For example, see the proof of Adams-Kechris [2, 6.1].) Clearly $[L : PSL_n(\mathbb{Q})] < \infty$. Hence by Adams-Kechris [2, 2.5], there exists a finite ergodic extension $(\tilde{X}, \tilde{\mu}_p)$ of (X, μ_p) such that the lift $\tilde{\alpha} : \Gamma \times \tilde{X} \rightarrow L$ of α' is equivalent to a cocycle β taking values in $PSL_n(\mathbb{Q})$. Let $\tilde{f} : \tilde{X} \rightarrow Y$ be the corresponding Borel function such that for all $\gamma \in \Gamma$,

$$\beta(\gamma, x) \cdot \tilde{f}(x) = \tilde{f}(\gamma \cdot x) \quad \text{for } \tilde{\mu}_p\text{-a.e. } x \in \tilde{X}.$$

Then it is clear that there does not exist a Borel subset $\tilde{Z} \subseteq \tilde{X}$ with $\tilde{\mu}_p(\tilde{Z}) = 1$ such that \tilde{f} maps \tilde{Z} into a single $PGL_n(\mathbb{Q})$ -orbit. By Zimmer [23, 2.2], since Γ is a Kazhdan group, β is equivalent to a cocycle β' taking values in a finitely generated subgroup of $PSL_n(\mathbb{Q})$. To simplify the notation, we shall suppose that

$\beta' = \beta$. So there exists a finite set of primes q_1, \dots, q_t such that β takes values in $\Lambda = PSL_n(\mathbb{Z}[1/q_1, \dots, 1/q_t])$. By Zimmer [22, 10.1.1], if we identify Λ with its image under the diagonal embedding into

$$H = PSL_n(\mathbb{R}) \times PSL_n(\mathbb{Q}_{q_1}) \times \cdots \times PSL_n(\mathbb{Q}_{q_t}),$$

then Λ is a lattice in H . Let $i : \Lambda \rightarrow H$ denote the diagonal embedding.

Now consider the induced Borel action of $PSL_n(\mathbb{R})$ on

$$\widehat{X} = \widetilde{X} \times (PSL_n(\mathbb{R})/PSL_n(\mathbb{Z}))$$

and let $\widehat{\beta} : PSL_n(\mathbb{R}) \times \widehat{X} \rightarrow \Lambda$ be the cocycle induced from β . Suppose that $i \circ \widehat{\beta} : PSL_n(\mathbb{R}) \times \widehat{X} \rightarrow H$ is equivalent to a cocycle taking values in a compact subgroup of H . Then Adams-Kechris [2, 2.4] implies that $\widehat{\beta}$ is equivalent to a cocycle taking values in a finite subgroup F of Λ ; and hence, by Adams-Kechris [2, 2.3], β is also equivalent to a cocycle taking values in F . But then a standard argument shows that there exists a Borel subset $\widetilde{Z} \subseteq \widetilde{X}$ with $\widetilde{\mu}_p(\widetilde{Z}) = 1$ such that \widetilde{f} maps \widetilde{Z} into a single $PGL_n(\mathbb{Q})$ -orbit, which is a contradiction. Thus $i \circ \widehat{\beta}$ is not equivalent to a cocycle taking values in a compact subgroup of H . For each $1 \leq \ell \leq t$, let $\pi_\ell : H \rightarrow PSL_n(\mathbb{Q}_{q_\ell})$ be the canonical projection and let $\widehat{\beta}_\ell : PSL_n(\mathbb{R}) \times \widehat{X} \rightarrow PSL_n(\mathbb{Q}_{q_\ell})$ be the cocycle defined by $\widehat{\beta}_\ell = \pi_\ell \circ i \circ \widehat{\beta}$. By Zimmer [22, 5.2.5], together with the methods of Adams-Kechris [2], $\widehat{\beta}_\ell$ is equivalent to a cocycle taking values in a compact subgroup K_ℓ of $PSL_n(\mathbb{Q}_{q_\ell})$. (More precisely, arguing as in the proof of Adams-Kechris [2, 3.5], we can easily reduce to the case when the range of the cocycle $\widehat{\beta}_\ell$ is Zariski dense in $PSL_n(\mathbb{Q}_{q_\ell})$.) It follows that if $\pi_0 : H \rightarrow PSL_n(\mathbb{R})$ is the canonical projection, then the cocycle

$$\widehat{\beta}_0 = \pi_0 \circ i \circ \widehat{\beta} : PSL_n(\mathbb{R}) \times \widehat{X} \rightarrow PSL_n(\mathbb{R})$$

is not equivalent to a cocycle taking values in a compact subgroup of $PSL_n(\mathbb{R})$. Hence, by Adams [1, 5.3], there exists a Lie group automorphism φ of $PSL_n(\mathbb{R})$ such that $\widehat{\beta}_0$ is equivalent to the cocycle $\widehat{\beta}_\varphi : PSL_n(\mathbb{R}) \times \widehat{X} \rightarrow PSL_n(\mathbb{R})$ defined by $\widehat{\beta}_\varphi(g, x) = \varphi(g)$. Arguing as in the proof of Adams [1, 5.4], $i \circ \beta$ is equivalent to a cocycle

$$\bar{\beta} : \Gamma \times \widetilde{X} \rightarrow H = PSL_n(\mathbb{R}) \times PSL_n(\mathbb{Q}_{q_1}) \times \cdots \times PSL_n(\mathbb{Q}_{q_t})$$

given by

$$\bar{\beta}(\gamma, x) = \langle \varphi(\gamma), \beta_1(\gamma, x), \dots, \beta_t(\gamma, x) \rangle,$$

where each $\beta_\ell : \Gamma \times \tilde{X} \rightarrow PSL_n(\mathbb{Q}_{q_\ell})$ is a cocycle taking values in the compact subgroup K_ℓ of $PSL_n(\mathbb{Q}_{q_\ell})$. Since $PSL_n(\mathbb{Z}_{q_\ell})$ is an open subgroup of $PSL_n(\mathbb{Q}_{q_\ell})$, it follows that $PSL_n(\mathbb{Z}_{q_\ell}) \cap K_\ell$ has finite index in K_ℓ . Applying Adams-Kechris [2, 2.5], after replacing $(\tilde{X}, \tilde{\mu}_p)$ by a finite ergodic extension if necessary, we can suppose that β_ℓ takes values in the compact subgroup $PSL_n(\mathbb{Z}_{q_\ell})$ for each $1 \leq \ell \leq t$. Let $K = PSL_n(\mathbb{Z}_{q_1}) \times \dots \times PSL_n(\mathbb{Z}_{q_t})$ and $G = PSL_n(\mathbb{Q}_{q_1}) \times \dots \times PSL_n(\mathbb{Q}_{q_t})$. From now on, we shall identify G and $PSL_n(\mathbb{R})$ with the corresponding subgroups of H . In particular, this allows us to consider the commuting actions of K and $PSL_n(\mathbb{R})$ on H/Λ .

Let $S \subseteq H$ be a Borel transversal for H/Λ chosen so that $G \subseteq S$ and identify S with H/Λ by identifying each $s \in S$ with $s\Lambda$. Then the action of H on H/Λ induces a corresponding Borel action of H on S , defined by

$$h \cdot s = \text{the unique element in } S \cap hs\Lambda.$$

The associated cocycle $\rho : H \times S \rightarrow \Lambda$ is defined by

$$\begin{aligned} \rho(h, s) &= \text{the unique } \lambda \in \Lambda \text{ such that } (h \cdot s)\lambda = hs \\ &= (h \cdot s)^{-1}hs \end{aligned}$$

Recall that the induced action of H on

$$\hat{Y} = Y \times S = Y \times (H/\Lambda)$$

is defined by

$$h \cdot (y, s) = (\rho(h, s) \cdot y, h \cdot s).$$

Let $j : Y \rightarrow \hat{Y}$ be the Λ -equivariant map defined by $j(y) = (y, 1)$ and let $\hat{f} : \tilde{X} \rightarrow \hat{Y}$ be the map defined by $\hat{f} = j \circ \tilde{f}$. Then for all $\gamma \in \Gamma$,

$$(i \circ \beta)(\gamma, x) \cdot \hat{f}(x) = \hat{f}(\gamma \cdot x) \quad \text{for } \tilde{\mu}_p\text{-a.e. } x \in \tilde{X}.$$

Let $b : \tilde{X} \rightarrow H$ be a Borel map such that for all $\gamma \in \Gamma$,

$$\bar{\beta}(\gamma, x) = b(\gamma \cdot x)(i \circ \beta)(\gamma, x)b(x)^{-1} \quad \text{for } \tilde{\mu}_p\text{-a.e. } x \in \tilde{X};$$

and define $\bar{f} : \tilde{X} \rightarrow \widehat{Y}$ by $\bar{f}(x) = b(x) \cdot \widehat{f}(x)$. Then for all $\gamma \in \Gamma$,

$$\bar{\beta}(\gamma, x) \cdot \bar{f}(x) = \bar{f}(\gamma \cdot x) \quad \text{for } \tilde{\mu}_p\text{-a.e. } x \in \tilde{X}.$$

Next we shall study the distribution of $\bar{f}(\tilde{X})$ within \widehat{Y} . Since K is a compact group, it follows that $K \backslash H / \Lambda$ is a standard Borel space. Let $\eta : \widehat{Y} \rightarrow K \backslash H / \Lambda$ be the map defined by $\eta(y, s\Lambda) = Ks\Lambda$ and let $\omega = (\eta \circ \bar{f})_* \tilde{\mu}_p$. Then ω is a $\varphi(\Gamma)$ -invariant ergodic probability measure on $K \backslash H / \Lambda$. Furthermore, by definition, for any Borel subset $A \subseteq K \backslash H / \Lambda$,

$$\omega(A) = \tilde{\mu}_p(\{x \in \tilde{X} \mid (\eta \circ \bar{f})(x) \in A\}).$$

Since K has countable index in G , it follows that $PSL_n(\mathbb{R})$ has only countably many orbits on $K \backslash H / \Lambda$. Hence, since $\varphi(\Gamma)$ acts ergodically on $K \backslash H / \Lambda$, it follows that ω is concentrated on a single $PSL_n(\mathbb{R})$ -orbit Ω on $K \backslash H / \Lambda$. (The following proof is based on an unpublished argument of Dave Witte, which appeared in an early version of Adams [1]. It is very closely related to Lemma 4.6 of Furman [7].)

Lemma 5.5. *ω is supported on a finite subset $\Omega_0 \subset \Omega$.*

Proof. By Shah [18, 1.4], since ω is a $\varphi(\Gamma)$ -invariant ergodic probability measure on the homogeneous $PSL_n(\mathbb{R})$ -space Ω and $\varphi(\Gamma)$ is a lattice in $PSL_n(\mathbb{R})$, there exists a (topologically) closed subgroup C of $PSL_n(\mathbb{R})$ containing $\varphi(\Gamma)$ such that ω is C -invariant and concentrated on a C -orbit. Because C contains $\varphi(\Gamma)$, it follows that $PSL_n(\mathbb{R})/C$ has finite volume. Hence, by the Borel Density Theorem, one of the following two possibilities holds:

- $C = PSL_n(\mathbb{R})$; or
- C is a discrete subgroup of $PSL_n(\mathbb{R})$.

First suppose that $C = PSL_n(\mathbb{R})$. Then there exists a lattice Δ of $PSL_n(\mathbb{R})$ such that the $\varphi(\Gamma)$ -space (Ω, ω) is isomorphic to $(PSL_n(\mathbb{R})/\Delta, m)$, where m is the Haar probability measure. But this means that $(PSL_n(\mathbb{R})/\varphi^{-1}(\Delta), m)$ is a factor of the Γ -space $(\tilde{X}, \tilde{\mu}_p)$, which contradicts Proposition 3.2. Hence C must be a discrete subgroup of $PSL_n(\mathbb{R})$. In particular, C is a countable group and so ω is concentrated on a countable subset Ω_0 of Ω . Since ω is a C -invariant probability measure, this implies that Ω_0 is actually a finite set. \square

Clearly $\Omega_0 \subset K \setminus H/\Lambda$ must be $\varphi(\Gamma)$ -invariant and so there exists a subgroup $\Gamma_0 \leq \Gamma$ such that $[\Gamma : \Gamma_0] < \infty$ and $\varphi(\Gamma_0)$ acts trivially on Ω_0 . Fix some element $Ks\Lambda \in \Omega_0$. After replacing $\bar{f} : \tilde{X} \rightarrow \hat{Y}$ by the map $\bar{f}'(x) = \pi_0(s)^{-1}\bar{f}(x)$ and $\varphi \in \text{Aut}(PSL_n(\mathbb{R}))$ by the automorphism $\varphi'(g) = \pi_0(s)^{-1}\varphi(g)\pi_0(s)$ if necessary, we can suppose that $s \in G$. (Recall that $\pi_0 : H \rightarrow PSL_n(\mathbb{R})$ denotes the canonical projection.) Since $\varphi(\Gamma_0)$ fixes $Ks\Lambda$, we have that $\varphi(\gamma)s \in Ks\Lambda$ for each $\gamma \in \Gamma_0$; and hence, applying the projection $\pi_0 : H \rightarrow PSL_n(\mathbb{R})$, we obtain that

$$\varphi(\gamma) \in \pi_0(\Lambda) = PSL_n(\mathbb{Z}[1/q_1, \dots, 1/q_t]) \leq PSL_n(\mathbb{R}).$$

In particular, the lattice $\varphi(\Gamma_0)$ of $PSL_n(\mathbb{R})$ satisfies $\varphi(\Gamma_0) \leq PSL_n(\mathbb{Q})$. Hence, by Margulis [15, IX.4.14], $\varphi(\Gamma_0)$ is commensurable with $PSL_n(\mathbb{Z})$. After replacing Γ_0 by a subgroup of finite index if necessary, we can suppose that $\varphi(\Gamma_0) \leq PSL_n(\mathbb{Z})$.

Let $\tilde{X}_0 = \{x \in \tilde{X} \mid (\eta \circ \bar{f})(x) = Ks\Lambda\}$. Clearly $\omega(\{Ks\Lambda\}) = 1/|\Omega_0|$ and so $\tilde{\mu}_p(\tilde{X}_0) = 1/|\Omega_0| > 0$. Recall that G is contained in the distinguished Borel transversal S of H/Λ . Consequently, for each $x \in \tilde{X}_0$, there exist $\bar{f}_1(x) \in Y$ and $k_x \in K$ such that $\bar{f}(x) = (\bar{f}_1(x), k_x s)$. Now suppose that $x \in \tilde{X}_0$ and $\gamma \in \Gamma_0$ satisfy

$$\bar{\beta}(\gamma, x) \cdot \bar{f}(x) = \bar{f}(\gamma \cdot x).$$

Define $c, d \in K$ by $\bar{\beta}(\gamma, x) = \varphi(\gamma)c$ and $d = \langle 1, \varphi(\gamma)^{-1}, \dots, \varphi(\gamma)^{-1} \rangle$. Note that

$$\varphi(\gamma)ck_x s = ck_x s d \lambda,$$

where $\lambda = \langle \varphi(\gamma), \dots, \varphi(\gamma) \rangle \in \Lambda$. It follows that

$$(\bar{f}_1(\gamma \cdot x), k_{\gamma \cdot x} s) = (\varphi(\gamma) \cdot \bar{f}_1(x), ck_x s d).$$

Hence the Borel map $\bar{f}_1 : \tilde{X}_0 \rightarrow Y$ has the property that for all $\gamma \in \Gamma_0$,

$$\bar{f}_1(\gamma \cdot x) = \varphi(\gamma) \cdot \bar{f}_1(x) \quad \text{for } \tilde{\mu}_p\text{-a.e. } x \in \tilde{X}_0.$$

Since $\tilde{\mu}_p(\tilde{X}_0) > 0$, there exists an ergodic component \tilde{X}_1 for the action of Γ_0 on \tilde{X}_0 such that $\tilde{X}_1 \subseteq \tilde{X}_0$; and clearly we can suppose that

$$\bar{f}_1(\gamma \cdot x) = \varphi(\gamma) \cdot \bar{f}_1(x)$$

for all $\gamma \in \Gamma_0$ and $x \in \tilde{X}_1$. Furthermore, by the ergodicity of the action of Γ_0 on \tilde{X}_1 , we can suppose that there exists an ergodic component Y_1 for the action of $\varphi(\Gamma_0)$ on Y such that $\bar{f}_1(\tilde{X}_1) \subseteq Y_1$. Since Γ_0 preserves the probability measure

$(\tilde{\mu}_p)_{\tilde{X}_1}$ on \tilde{X}_1 , it follows that $\varphi(\Gamma_0)$ preserves the probability measure $(\bar{f}_1)_*(\tilde{\mu}_p)_{\tilde{X}_1}$ on Y_1 ; and since the action of $\varphi(\Gamma_0)$ on Y_1 is uniquely ergodic, this implies that $(\bar{f}_1)_*(\tilde{\mu}_p)_{\tilde{X}_1} = (\mu_q)_{Y_1}$. But this means that $(V^{(k)}(n, \mathbb{Q}_q), \mu_q)$ is a virtual quotient of $(\tilde{X}, \tilde{\mu}_p)$, which contradicts Theorem 3.3. This completes the proof of Theorem 4.7.

REFERENCES

- [1] S. Adams, *Containment does not imply Borel reducibility*, in: Set Theory: The Hajnal Conference (Ed. S. Thomas), DIMACS Series, vol. 58, American Mathematical Society, 2002, pp. 1–23.
- [2] S. R. Adams and A. S. Kechris, *Linear algebraic groups and countable Borel equivalence relations*, J. Amer. Math. Soc. **13** (2000), 909–943.
- [3] R. Baer, *Abelian groups without elements of finite order*, Duke Math. Journal **3** (1937), 68–122.
- [4] M. B. Bekka and M. Mayer, *Ergodic Theory and Topological Dynamics of Group Actions on Homogeneous Spaces*, London Math. Soc. Lecture Notes Series **269**, Cambridge University Press, 2000.
- [5] H. Friedman and L. Stanley, *A Borel reducibility theory for classes of countable structures*, Journal of Symbolic Logic **54** (1989), 894–914.
- [6] L. Fuchs, *Infinite Abelian Groups*, Pure and Applied Mathematics Vol. 36, Academic Press, 1970.
- [7] A. Furman, *Gromov’s measure equivalence and rigidity of higher rank lattices*, Ann. of Math. **150** (1999), 1059–1081.
- [8] A. Furman, *Orbit equivalence rigidity*, Ann. Math. **150** (1999), 1083–1108.
- [9] G. Hjorth, *Around nonclassifiability for countable torsion-free abelian groups*, in: Abelian groups and modules (Dublin, 1998), Trends Math., Birkhäuser, Basel, 1999, 269–292.
- [10] G. Hjorth and A. S. Kechris, *Borel equivalence relations and classification of countable models*, Annals of Pure and Applied Logic **82** (1996), 221–272.
- [11] A. S. Kechris, *Countable sections for locally compact group actions*, Ergodic Theory and Dynamical Systems **12** (1992), 283–295.
- [12] A. S. Kechris, *On the classification problem for rank 2 torsion-free abelian groups*, J. Lond. Math. Soc. **62** (2000), 437–450.
- [13] A. G. Kurosh, *Primitive torsionsfreie abelsche Gruppen vom endlichen Range*, Ann. Math. **38** (1937), 175–203.
- [14] A. I. Malcev, *Torsion-free abelian groups of finite rank* (Russian), Mat. Sbor. **4** (1938), 45–68.
- [15] G. A. Margulis, *Discrete Subgroups of Semisimple Lie Groups*, Erg. der Math. und ihrer Grenz., **17**, Springer-Verlag, 1991.

- [16] V. Platonov and A. Rapinchuk, *Algebraic Groups and Number Theory*, Academic Press, 1994.
- [17] M. Ratner, *On Raghunathan's measure conjecture*, Ann. Math. **134** (1991), 545-607.
- [18] N. Shah, *Invariant measures and orbit closures on homogeneous spaces for actions of subgroups generated by unipotent elements*, in: Proceedings of the International Colloquium on Lie Groups and Ergodic Theory (Mumbai, 1996). Edited by S. G. Dani, Narosa Publishing House, New Delhi, 1998. ISBN 81-7319-235-9 (distributed by American Mathematical Society).
- [19] S. Thomas, *On the complexity of the classification problem for torsion-free abelian groups of rank two*, Acta Math. **189** (2002), 287-305.
- [20] S. Thomas, *The classification problem for torsion-free abelian groups of finite rank*, J. Amer. Math. Soc. **16** (2003), 233-258.
- [21] S. Thomas, *Superrigidity and countable Borel equivalence relations*, Annals Pure Appl. Logic **120** (2003), 237-262.
- [22] R. Zimmer, *Ergodic Theory and Semisimple Groups*, Birkhäuser, 1984.
- [23] R. Zimmer, *Groups generating transversals to semisimple Lie group actions*, Israel J. Math. **73** (1991), 151-159.

MATHEMATICS DEPARTMENT, RUTGERS UNIVERSITY, 110 FRELINGHUYSEN ROAD, PISCATAWAY, NEW JERSEY 08854-8019, USA

E-mail address: `sthomas@math.rutgers.edu`