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Abstract. Let n ≥ 3. We prove that if p 6= q are distinct primes, then the

classification problems for p-local and q-local torsion-free abelian groups of

rank n are incomparable with respect to Borel reducibility.

1. Introduction

This paper is a contribution to the project [10, 9, 2, 12, 19, 20] of trying to

understand the complexity of the classification problem for the torsion-free abelian

groups of finite rank. Recall that, up to isomorphism, the torsion-free abelian

groups of rank n are exactly the additive subgroups of the n-dimensional vector

space Qn which contain n linearly independent elements. In 1937, Baer [3] solved

the classification problem for the torsion-free abelian groups of rank 1. Since then,

despite the efforts of such mathematicians as Kurosh [13] and Malcev [14], no

satisfactory solution of the classification problem has been found for the torsion-free

abelian groups of rank n ≥ 2. Thus it was natural to ask whether the classification

problem was genuinely more difficult for the groups of rank n ≥ 2. In 1999, Hjorth

[9] proved that the classification problem for the rank 2 groups was strictly harder

than that for the rank 1 groups. A little later, building on work of Adams-Kechris

[2], Thomas [20] proved that the complexity of the classification problem increases

strictly with the rank n.

In this paper, we shall consider the complexity of the classification problem for

the p-local torsion-free abelian groups of finite rank. (Recall that an abelian group

A is said to be p-local iff A is q-divisible for every prime q 6= p.) In Thomas

[20], it was shown that the complexity of the classification problem for the p-local

torsion-free abelian groups also increases strictly with the rank n. However, this

left open the more natural question of whether the classification problem for the
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p-local torsion-free abelian groups of a fixed rank n was strictly easier than the

classification problem for arbitrary torsion-free abelian groups of rank n. In this

paper, we shall use Zimmer’s superrigidity theorem [22], together with Ratner’s

measure classification theorem [17], to prove that if n ≥ 3 and p 6= q are distinct

primes, then the classification problems for p-local and q-local torsion-free abelian

groups of rank n have incomparable complexities. This easily implies that the

classification problem for the p-local torsion-free abelian groups of rank n is indeed

strictly easier than that for arbitrary torsion-free abelian groups of rank n. In

order to give a precise formulation of our results, we need to make use of the notion

of Borel reducibility. (Here we follow the example of Friedman-Stanley [5] and

Hjorth-Kechris [10].)

Let X be a standard Borel space; i.e. a Polish space equipped with its associated

σ-algebra of Borel subsets. Then a Borel equivalence relation onX is an equivalence

relation E ⊆ X2 which is a Borel subset of X2. If E, F are Borel equivalence

relations on the standard Borel spaces X, Y respectively, then we say that E is

Borel reducible to F and write E ≤B F if there exists a Borel function f : X → Y

such that xEy iff f(x)Ff(y). We say that E and F are Borel bireducible and

write E ∼B F if both E ≤B F and F ≤B E. Finally we write E <B F if both

E ≤B F and F �B E. Most of the Borel equivalence relations that we shall

consider in this paper arise from group actions as follows. Let G be a lcsc group;

i.e. a locally compact second countable group. Then a standard Borel G-space is a

standard Borel space X equipped with a Borel action (g, x) 7→ g.x of G on X. The

corresponding G-orbit equivalence relation on X, which we shall denote by EX
G , is

a Borel equivalence relation. In fact, by Kechris [11], EX
G is Borel bireducible with

a countable Borel equivalence relation; i.e. a Borel equivalence relation E such that

every E-class is countable.

Throughout this paper, we shall identify the class of torsion-free abelian groups

of rank n with the set R(Qn) of subgroups of Qn of rank n. Notice that R(Qn) is

a Borel subset of the Polish space P(Qn) of all subsets of Qn and hence R(Qn) can

be regarded as a standard Borel space. (Here we are identifying P(Qn) with the

space 2Qn

of all functions h : Qn → {0, 1} equipped with the product topology.)
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Furthermore, the natural action of GLn(Q) on the vector space Qn induces a cor-

responding Borel action on R(Qn); and it is easily checked that if A, B ∈ R(Qn),

then A ∼= B iff there exists an element ϕ ∈ GLn(Q) such that ϕ(A) = B. Similarly,

we shall identify the class of p-local torsion-free abelian groups of rank n with the

standard Borel space R(p)(Qn) of p-local subgroups of Qn of rank n.

Definition 1.1. For each n ≥ 1 and prime p, the isomorphism relations on R(Qn)

and R(p)(Qn) will be denoted by ∼=n and ∼=(p)
n respectively.

With this notation, the main results of Thomas [20] say that (∼=n) <B (∼=n+1)

and (∼=(p)
n ) <B (∼=(p)

n+1) for each n ≥ 1 and each prime p. We are now also able to

state the main results of this paper.

Theorem 1.2. If n ≥ 3 and p 6= q are distinct primes, then ∼=(p)
n and ∼=(q)

n are

incomparable with respect to Borel reducibility.

Corollary 1.3. If n ≥ 3 and p is a primes, then (∼=(p)
n ) <B (∼=n).

Proof. If q 6= p is another prime, then (∼=(q)
n ) ≤B (∼=n) and (∼=(q)

n ) �B (∼=(p)
n ). �

Of course, it is trivially the case that (∼=(p)
1 ) <B (∼=1) for each prime p, since

there only exist two p-local torsion-free abelian groups of rank 1 up to isomorphism.

However, the following problem remains open.

Conjecture 1.4. (∼=(p)
2 ) <B (∼=2) for each prime p.

This paper is organised as follows. In Section 2, we shall recall some basic notions

and results from ergodic theory. In Section 4, we shall use the Kurosh-Malcev p-

adic localisation technique [13, 14] to show that the quasi-isomorphism relation on

R(p)(Qn) is essentially identical to the orbit equivalence relation induced by the

action of GLn(Q) on the standard Borel space Sn(Qp) of vector subspaces of the

n-dimensional vector space Qn
p over the p-adic field. (Recall that two groups A,

B ∈ R(p)(Qn) are said to be quasi-isomorphic iff there exists ϕ ∈ GLn(Q) such

that ϕ(A) ∩ B has finite index in both ϕ(A) and B.) In Section 3, we shall prove

two basic results concerning the dynamical properties of the action of PSLn(Z)

on Sn(Qp). In Section 5, we shall use the results of Sections 3 and 4, together

with Zimmer’s superrigidity theorem and Ratner’s measure classification theorem,
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to complete the proof of Theorem 1.2. The argument in Section 5 makes essential

use of ideas which were itroduced by Adams [1]. (These ideas can be regarded as

constituting a Borel version of a weak form of Furman’s superrigidity theorem [8].

For example, see the discussion in Thomas [21].)

We shall assume that the reader is familiar with the basic machinery of Zim-

mer’s superrigidity theory [22], including the notions of Borel cocycles and induced

actions. Clear accounts of this material can be found in Zimmer [22] and Adams-

Kechris [2]. In particular, Adams-Kechris [2, Section 2] provides a convenient intro-

duction to the basic techniques and results in this area, written for the non-expert

in the ergodic theory of groups.

Throughout this paper, Zp denotes the ring of p-adic integers and Fp denotes

the field with p elements.

2. Preliminaries

In this section, we shall recall some basic notions and results from ergodic theory.

Let G be a lcsc group and let X be a standard Borel G-space. Throughout this

paper, a probability measure on X will always mean a Borel probability measure;

i.e. a measure which is defined on the collection of Borel subsets of X. The

probability measure µ on X is G-invariant iff µ(g(A)) = µ(A) for every g ∈ G

and Borel subset A ⊆ X. If µ is G-invariant, then the action of G on (X,µ) is

said to be ergodic iff for every G-invariant Borel subset A ⊆ X, either µ(A) = 0 or

µ(A) = 1. In this case, we shall also say that µ is an ergodic probability measure.

The following characterization of ergodicity is well-known.

Proposition 2.1. If µ is a G-invariant probability measure on the standard Borel

G-space X, then the following statements are equivalent.

(i) The action of G on (X,µ) is ergodic.

(ii) If Y is a standard Borel space and f : X → Y is a G-invariant Borel

function, then there exists a G-invariant Borel subset M ⊆ X with µ(M) =

1 such that f � M is a constant function.

The action of G on X is said to be uniquely ergodic iff there exists a unique

G-invariant probability measure µ on X. In this case, it is well-known that µ must

be ergodic. (For example, see [4, Section I.3].)
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Suppose that Y is a standard Borel space and that f : X → Y is a Borel

function. Then for every probability measure ν on X, we can define a corresponding

probability measure f∗ν on Y by

(f∗ν)(A) = ν(f−1(A))

for every Borel subset A ⊆ Y . Now suppose that ν is G-invariant and that Y is also

a standard Borel G-space. Then the Borel function f : X → Y is said to be almost

G-equivariant iff for all g ∈ G, g · f(x) = f(g · x) for ν-a.e. x ∈ X. In this case, it

is easily checked that f∗ν is also G-invariant; and we say that (Y, f∗ν) is a factor

of (X, ν). It is also easily checked that if ν is ergodic, then f∗ν is ergodic. If f is a

finite-to-one function, then we say that (X, ν) is a finite extension of (Y, f∗ν).

Suppose that Γ is a countable group and that X is a standard Borel Γ-space

with an invariant ergodic probability measure µ. Let Λ 6 Γ be a subgroup such

that [Γ : Λ] <∞. Then a Λ-invariant Borel subset Z ⊆ X is said to be an ergodic

component for the action of Λ on X iff

• µ(Z) > 0; and

• Λ acts ergodically on (Z, µZ), where µZ is the probability measure defined

on Z by µZ(A) = µ(A)/µ(Z).

It is easily checked that there exists a partition Z1 t · · · t Zd of X into finitely

many ergodic components and that the collection of ergodic components is uniquely

determined up to µ-null sets. Furthermore, if the action of Γ on X is uniquely

ergodic, then the action of Λ on each ergodic component Z ⊆ X is also uniquely

ergodic.

Finally suppose that K is a compact second countable group and that L is a

closed subgroup. Then there exists a unique K-invariant probability measure µ

on the standard Borel K-space K/L. (For example, see [16, Theorem 3.17].) The

measure µ is called the Haar probability measure on K/L and can be described

explicitly as follows. Suppose that ν is the Haar probability measure on K and

let π : K → K/L be the canonical surjection. Then µ = π∗ν. In the remaining

sections, we shall make repeated use of the following easy observation. (A proof

can be found in Thomas [21, 2.2].)
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Lemma 2.2. Let K be a compact second countable group, let L 6 K be a closed

subgroup and let µ be the Haar probability measure on K/L. If Γ is a countable

dense subgroup of K, then the following properties hold.

(a) The action of Γ on K/L is uniquely ergodic; i.e. µ is the unique Γ-invariant

probability measure on K/L.

(b) Suppose that Λ 6 Γ is a subgroup such that [Γ : Λ] <∞ and that H = Λ is

the closure of Λ in K. Then the ergodic components for the action of Λ on

K/L are precisely the H-orbits {H · x | x ∈ K/L}.

(c) Suppose that Λ E Γ is a normal subgroup such that [Γ : Λ] < ∞ and let C

be the set of ergodic components for the action of Λ on K/L. Then Γ acts

as a transitive permutation group on C.

3. Groups acting on p-adic spaces

In this section, we shall prove two basic results concerning the dynamical prop-

erties of the action of PSLn(Z) on the standard Borel space Sn(Qp) of nontrivial

proper subspaces of the n-dimensional vector space Qn
p over the p-adic field. For

the rest of this paper, we shall fix some integer n ≥ 3 and let Γ = PSLn(Z).

Definition 3.1. If 0 ≤ k ≤ n, then V (k)(n,Qp) denotes the standard Borel space

consisting of the k-dimensional vector subspaces of Qn
p .

It is easily checked that the compact group PSLn(Zp) acts transitively on

V (k)(n,Qp). (For example, see Thomas [21, 6.1].) Thus we can identify V (k)(n,Qp)

with the coset space PSLn(Zp)/L, where L is a suitably chosen closed subgroup of

PSLn(Zp). Let µp be the corresponding Haar probability measure on V (k)(n,Qp).

Since Γ is a dense subgroup of PSLn(Zp), Lemma 2.2 applies to the action of Γ on

V (k)(n,Qp).

The following entropy argument is a slight variant of the proof of Corollary B(2)

of Furman [8].

Proposition 3.2. Suppose that (X̃, µ̃p) is a finite ergodic extension of the Γ-space

(V (n−1)(n,Qp), µp). Then (X̃, µ̃p) does not have any factors of the form

(PSLn(R)/∆,m) ,

where ∆ is a lattice in PSLn(R) and m is the Haar probability measure.
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Proof. Suppose that (PSLn(R)/∆,m) is a factor of (X̃, µ̃p). Then for all γ ∈ Γ, the

corresponding entropies satisfy h(PSLn(R)/∆, γ) ≤ h(X̃, γ). However, h(X̃, γ) = 0

for all γ ∈ Γ; while if γ ∈ Γ corresponds to an element of SLn(Z) which has at least

one eigenvalue off the unit circle, then h(PSLn(R)/∆, γ) > 0. �

Next suppose that X1, X2 are standard Borel Γ-spaces with invariant ergodic

probability measures µ1, µ2 respectively. Then (X2, µ2) is said to be a virtual

quotient of (X1, µ1) iff there exist:

(i) a subgroup Γ0 6 Γ with [Γ : Γ0] <∞,

(ii) an embedding ϕ : Γ0 → Γ,

(iii) ergodic components Z1, Z2 for the actions of Γ0, ϕ(Γ0) on X1, X2 respec-

tively, and

(iv) a Borel function f : Z1 → Z2

such that the following conditions are satisfied:

(a) f∗(µ1)Z1 = (µ2)Z2 ; and

(b) f(γ · x) = ϕ(γ) · f(x) for all γ ∈ Γ0 and x ∈ Z1.

By the Margulis Superrigidity Theorem [15], the embedding ϕ : Γ0 → Γ extends

to a Lie group automorphism of PSLn(R) and hence we necessarily also have that

[Γ : ϕ(Γ0)] < ∞. (We have used the term “virtual quotient” rather than “virtual

factor” because of the slight twisting permitted in clause (b).)

Theorem 3.3. Suppose that (X̃, µ̃p) is a finite ergodic extension of the Γ-space

(V (n−1)(n,Qp), µp). If q 6= p and 1 ≤ k ≤ n − 1, then (V (k)(n,Qq), µq) is not a

virtual quotient of (X̃, µ̃p).

The following result was proved in Thomas [21, Section 6] for the special case

when k = 1. The proof for arbitrary k is essentially identical. For the sake of

completeness, we shall sketch the main points of the proof. In the following argu-

ment, Kt = kerψt denotes the congruence subgroup of PSLn(Zq) arising from the

canonical surjection

ψt : PSLn(Zq) → PSLn(Zq/q
tZq).

Lemma 3.4. Suppose that 1 ≤ k ≤ n − 1 and that Λ 6 Γ is a subgroup such that

[Γ : Λ] <∞. Let Z be an ergodic component for the action of Λ on V (k)(n,Qq) and
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for each subgroup ∆ 6 Λ with [Λ : ∆] < ∞, let e(∆, Z) be the number of ergodic

components for the action of ∆ on Z.

(a) If ∆ E Λ is a normal subgroup with [Λ : ∆] < ∞, then e(∆, Z) = bqr for

some r ≥ 0 and some divisor b of |PSLn(Fq)|.

(b) For each N ≥ 0, there exists a normal subgroup ∆ E Λ with [Λ : ∆] < ∞

such that e(∆, Z) ≥ N .

Proof. To see that 3.4(a) holds, let H = Λ and N = ∆ be the closures of Λ, ∆ in

PSLn(Zq) respectively. Then we can suppose that Z is an orbit ofH on V (k)(n,Qq)

and that the set C of ergodic components for the action of ∆ on Z consists of the

orbits of N on Z. Clearly H acts transitively on C. Hence 3.4(a) follows from the

fact that K1 is a pro-p group. Finally 3.4(b) is an easy consequence of the fact that

if at is the number of orbits of Kt on V (k)(n,Qq), then at →∞ as t→∞. �

Lemma 3.5. Suppose that (X̃, µ̃p) be a finite ergodic extension of the Γ-space

(V (n−1)(n,Qp), µp) and that Λ 6 Γ is a subgroup such that [Γ : Λ] < ∞. Let Z̃

be an ergodic component for the action of Λ on X̃ and for each subgroup ∆ 6 Λ

with [Λ : ∆] < ∞, let e(∆, Z̃) be the number of ergodic components for the action

of ∆ on Z̃. Then there exists a constant c such that whenever ∆ E Λ is a normal

subgroup with [Λ : ∆] <∞, then e(∆, Z̃) = bpr for some r ≥ 0 and b ≤ c.

Proof. Let π : X̃ → V (n−1)(n,Qp) be the factor map and let Z = π(Z̃). Then Z

is an ergodic component for the action of Λ on V (n−1)(n,Qp). Furthermore, by

ergodicity, we can suppose that there exists a constant ` such that |π−1(z)| = `

for all z ∈ Z. Let ∆ E Λ be a normal subgroup with [Λ : ∆] < ∞ and let

{Ai | 1 ≤ i ≤ e} be the ergodic components for the action of ∆ on Z. By Lemma

3.4, e = bpr for some r ≥ 0 and some divisor b of |PSLn(Fp)|. For each 1 ≤ i ≤ e,

let Ãi = π−1(Ai). Then each Ãi is the union of at most ` ergodic components for the

action of ∆ on Z̃. Since ∆ E Λ, it follows that Λ acts transitively on {Ai | 1 ≤ i ≤ e}

and hence each Ãi contains the same number of ergodic components. �

Proof of Theorem 3.3. Suppose that (V (k)(n,Qq), µq) is a virtual quotient of (X̃, µ̃p).

Thus there exist:

(i) a subgroup Γ0 6 Γ with [Γ : Γ0] <∞,

(ii) an embedding ϕ : Γ0 → Γ,
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(iii) ergodic components Z̃, Z for the actions of Γ0, ϕ(Γ0) on X̃, V (k)(n,Qq)

respectively, and

(iv) a Borel function f : Z̃ → Z

such that the following conditions are satisfied:

(a) f∗(µ̃p)eZ = (µq)Z ; and

(b) f(γ · x) = ϕ(γ) · f(x) for all γ ∈ Γ0 and x ∈ Z̃.

Let t ≥ 0 be arbitrary. By Lemma 3.4, there exists a normal subgroup ∆ E ϕ(Γ0)

with [ϕ(Γ0) : ∆] < ∞ such that qt divides e = e(∆, Z). Let {Ai | 1 ≤ i ≤ e}

be the ergodic components for the action of ∆ on Z; and for each 1 ≤ i ≤ e, let

Ãi = f−1(Ai). Then each Ãi is the union of a finite number of ergodic components

for the action of ϕ−1(∆) on Z̃. Arguing as in the proof of Lemma 3.5, we see

that each Ãi contains the same number of ergodic components and so e divides

e(ϕ−1(∆), Z̃). But if we choose t sufficiently large, this clearly contradicts Lemma

3.5. �

4. The Kurosh-Malcev p-adic localisation technique

In this section, we shall first use the Kurosh-Malcev p-adic localisation technique

[13, 14] to relate the classification problem for p-local torsion-free abelian groups

to the orbit equivalence relation induced by the action of GLn(Q) on the standard

Borel space Sn(Qp) of vector subspaces of the n-dimensional vector space Qn
p over

the p-adic field. Then we shall complete the proof of Theorem 1.2, modulo a

superrigidity result which we shall prove in Section 5.

Suppose that A, B ∈ R(Qn). Then A and B are said to be quasi-equal , written

A ≈ B, iff A ∩ B has finite index in both A and B. We say that A and B are

quasi-isomorphic, written A ∼ B, if there exists ϕ ∈ GLn(Q) such that ϕ(A) ≈ B.

By Thomas [20, Section 3], ≈ and ∼ are both countable Borel equivalence relations

on R(Qn).

Definition 4.1. For each A ∈ R(p)(Qn), let Â = Zp ⊗A.

We shall regard each Â as a subgroup of Qn
p in the usual way; i.e. Â is the

subgroup consisting of all finite sums

γ1a1 + γ2a2 + · · ·+ γtat,
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where γi ∈ Zp and ai ∈ A for 1 ≤ i ≤ t. By Lemma 93.3 [6], there exist integers

0 ≤ k, ` ≤ n with k + ` = n and elements vi, wj ∈ Â such that

Â =
k⊕

i=1

Qpvi ⊕
⊕̀
j=1

Zpwj .

Definition 4.2. For each A ∈ R(p)(Qn), let VA =
⊕k

i=1 Qpvi.

Theorem 4.3. If A, B ∈ R(p)(Qn), then

(a) A ≈ B iff VA = VB;

(b) A ∼ B iff there exists π ∈ GLn(Q) such that π(VA) = VB.

Proof. 4.3(a) was proved in Thomas [20, 4.7]. To see that 4.3(b) holds, consider the

canonical extension of the action of GLn(Q) on Qn to an action on Qn
p . Suppose

that π ∈ GLn(Q) and let π(A) = C. Then it is clear that π(Â) = Ĉ and this

implies that π(VA) = VC . Thus 4.3(b) follows from 4.3(a). �

Theorem 4.4. Suppose that A ∈ R(p)(Qn) and that dimVA = n − 1. Then for

each B ∈ R(p)(Qn), we have that A ∼ B iff A ∼= B.

Proof. By Exercises 32.5 and 93.1 [6], for every group C ∈ R(p)(Qn), we have that

dimQp VC = n− dimFp C/pC.

In particular, dimFp A/pA = 1. It follows that |A/qA| ≤ q for every prime q; and

so the result follows from Proposition 92.1 [6]. �

Definition 4.5. Let e1, . . . , en be the standard basis of Qn
p . Suppose that S is a

Qp-subspace of Qn
p of dimension 0 ≤ k ≤ n. Then

σ(S) =
(
S ⊕ Zpei1 ⊕ · · · ⊕ Zpein−k

)
∩Qn,

where i1 < · · · < in−k is the lexicographically least sequence such that

Qn
p = 〈S, ei1 , . . . , ein−k

〉.

Theorem 4.6. If S is a Qp-subspace of Qn
p of dimension 0 ≤ k ≤ n, then

(a) σ(S) ∈ R(p)(Qn);

(b) Vσ(S) = S.
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Proof. Arguing as in the proof of Fuchs [6, 93.5], we easily obtain that

Zp ⊗ σ(S) = S ⊕ Zpei1 ⊕ · · · ⊕ Zpein−k
.

The result follows. �

We are now ready to begin the proof of Theorem 1.2. Suppose p 6= q are distinct

primes and that h : R(p)(Qn) → R(q)(Qn) is a Borel map such that A ∼= B iff

h(A) ∼= h(B). Let

f : V (n−1)(n,Qp) → Sn(Qp) =
n−1⋃
k=0

V (n)(n,Qq)

be the Borel map defined by f(S) = V(h◦σ)(S). Applying Theorems 4.3, 4.4 and

4.6, we see that if S, T ∈ V (n−1)(n,Qp), then the following three statements are

equivalent:

(1) S and T lie in the same GLn(Q)-orbit;

(2) σ(S) ∼= σ(T );

(3) (h ◦ σ)(S) ∼= (h ◦ σ)(T ).

Applying Theorem 4.3 once again, we also see that the following two statements

are equivalent:

(i) f(S) and f(T ) lie in the same GLn(Q)-orbit;

(ii) (h ◦ σ)(S) ∼ (h ◦ σ)(T ).

It follows that if S, T ∈ V (n−1)(n,Qp) lie in the same GLn(Q)-orbit, then f(S)

and f(T ) lie in the same GLn(Q)-orbit; and also that if ∆ is a GLn(Q)-orbit

on V (k)(n,Qq) for some 1 ≤ k ≤ n − 1, then f−1(∆) is a countable subset of

V (n−1)(n,Qp).

Now consider the measure-preserving action of SLn(Z) on
(
V (n−1)(n,Qp), µp

)
.

Since SLn(Z) acts ergodically on V (n−1)(n,Qp), it follows that there exists a fixed

1 ≤ k ≤ n − 1 and an SLn(Z)-invariant Borel subset X ⊆ V (n−1)(n,Qp) with

µp(X) = 1 such that f(S) ∈ V (k)(n,Qq) for all S ∈ X. However, this clearly

contradicts the following theorem, which will be proved in Section 5. This completes

the proof of Theorem 1.2.
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Theorem 4.7. Suppose that n ≥ 3 and that 1 ≤ k ≤ n − 1. Let p 6= q be distinct

primes and suppose that f : V (n−1)(n,Qp) → V (k)(n,Qq) is a Borel map such that

for all x, y ∈ V (n−1)(n,Qp),

• if SLn(Z) · x = SLn(Z) · y, then GLn(Q) · f(x) = GLn(Q) · f(y).

Then there exists a Borel subset Z ⊆ V (n−1)(n,Qp) with µp(Z) = 1 such that f

maps Z into a single GLn(Q)-orbit.

5. The proof of Theorem 4.7

In this section, we shall prove Theorem 4.7. (Our argument will make essential

use of the techniques introduced by Adams [1]. As we mentioned in Section 1,

these techniques can be regarded as constituting a Borel version of a weak form

of Furman’s superrigidity theorem [8].) Suppose that n ≥ 3 and that p 6= q are

distinct primes. Let 1 ≤ k ≤ n and let f : V (n−1)(n,Qp) → V (k)(n,Qq) be a Borel

map such that for all x, y ∈ V (n−1)(n,Qp),

• if SLn(Z) · x = SLn(Z) · y, then GLn(Q) · f(x) = GLn(Q) · f(y).

Suppose that there does not exist a Borel subset Z ⊆ V (n−1)(n,Qp) with µp(Z) = 1

such that f maps Z into a single GLn(Q)-orbit. For the remainder of this section,

we shall work with the corresponding actions of Γ = PSLn(Z) and PGLn(Q) on

V (n−1)(n,Qp), V (k)(n,Qq) respectively. Let

Y = {y ∈ V (k)(n,Qq) | g · y 6= y for all 1 6= g ∈ PGLn(Q)}.

In other words, Y is the Borel subset of V (k)(n,Qq) where PGLn(Q) acts freely.

Lemma 5.1. There exists a Γ-invariant Borel subset X ⊆ V (n−1)(n,Qp) with

µp(X) = 1 such that f(x) ∈ Y for all x ∈ X.

In the proof of Lemma 5.1, we shall make use of the following cocycle reduction

result. (Throughout this section, Q denotes the algebraic closure of Q. If we

strengthen the hypotheses by assuming that G is an algebraic Q-group and that

H 6 G(Q), then Theorem 5.2 is an easy consequence of [20, Theorem 2.3]. However,

an examination of its proof shows that [20, Theorem 2.3] also holds when Q is

replaced by Q.)
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Theorem 5.2. Let n ≥ 3 and let Ω be a standard Borel PSLn(Z)-space with an

invariant ergodic probability measure µ. Suppose that H 6 G(Q), where G is an

algebraic Q-group such that dimG < n2−1, and that Z is a standard Borel H-space

on which H acts freely. If f : Ω → Z is a Borel function such that for all x, y ∈ Ω,

PSLn(Z) · x = PSLn(Z) · y implies H · f(x) = H · f(y),

then there exists an PSLn(Z)-invariant Borel subset M ⊆ Ω with µ(M) = 1 such

that f maps M into a single H-orbit.

Suppose that Lemma 5.1 is false. There exists a Γ-invariant Borel subset X of

V (n−1)(n,Qp) with µp(X) = 1 such that f(x) /∈ Y for all x ∈ X. We shall consider

the induced action of GLn(Q) on the exterior power V =
∧k(Qn

q ). Let e1, . . . , en

be the standard basis of Qn
q . Let d =

(
n
k

)
and let B = {bj | 1 ≤ j ≤ d} be the

corresponding “standard basis” of V ; i.e. B consists of the vectors ei1 ∧ · · · ∧ eik
,

where i1 < · · · < ik. Then Qd ∩ V denotes the collection of vectors v ∈ V of the

form

v = a1b1 + · · ·+ adbd,

where each aj ∈ Q ∩ Qq. The subspace E 6 V is said to be a Q-subspace iff

there exists a (possibly empty) collection of vectors w1, . . . ,wt ∈ Qd ∩ V such that

E = 〈w1, . . . ,wt〉. Clearly if E, F 6 V are Q-subspaces, then E ∩ F is also a

Q-subspace. In particular, for each 1-dimensional subspace 〈v〉 of V , there exists a

unique minimal Q-subspace E such that 〈v〉 6 E.

For each k-dimensional subspace S = 〈s1, . . . , sk〉 of Qn
q , let

[S] = 〈s1 ∧ · · · ∧ sk〉

be the corresponding 1-dimensional subspace of V .

Claim 5.3. For each x ∈ X, there exists a proper Q-subspace E of V such that

[f(x)] 6 E.

Proof. For each x ∈ X, there exists a noncentral element g ∈ GLn(Q) and an

eigenspace E for the induced action of g on V such that [f(x)] 6 E. Clearly E is

a proper Q-subspace of V . �
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Recall that the Effros Borel space on V is the standard Borel space consisting

of the set

F (V ) = {Z ⊆ V | Z is a closed subset of V }

equipped with the σ-algebra generated by the sets of the form

{Z ∈ F (V ) | Z ∩ U 6= ∅},

where U varies over the open subsets of V . For each x ∈ X, let Ex ∈ F (V ) be

the unique minimal Q-subspace such that [f(x)] 6 Ex; and let m : X → F (V )

be the Borel map defined by m(x) = Ex. Since there are only countably many

possibilities for Ex, there exists a Borel subset X0 ⊆ X with µp(X0) > 0 and a

fixed Q-subspace E such that Ex = E for all x ∈ X0. Let X1 = Γ ·X0. Since µp is

ergodic, it follows that µp(X1) = 1. After slightly adjusting f if necessary, we can

suppose that Ex = E for all x ∈ X1. (More precisely, let c : X1 → X1 be a Borel

function such that c(x) ∈ Γ · x ∩ X0 for all x ∈ X1. Then we can replace f with

f ′ = f ◦ c.)

Now suppose that x, y ∈ X1 and that y ∈ Γ · x. Then there exists g ∈ GLn(Q)

such that g · [f(x)] = [f(y)]. We claim that

g ∈ R = {ϕ ∈ GLn(Q | ϕ(E) = E}.

To see this, note that g(E) is also a Q-subspace and that [f(y)] 6 E∩g(E). Hence,

by the minimality of E, we must have that g(E) = E.

Next let x ∈ X1 and suppose that ϕ ∈ R satisfies ϕ · [f(x)] = [f(x)]. Then [f(x)]

is contained in the eigenspace W of ϕ corresponding to some eigenvalue λ ∈ Q. By

the minimality of E, we must have that E 6 W and so ϕ(v) = λv for all v ∈ E.

Let H 6 PGL(E) be the group of projective linear transformations induced by R

on the set of 1-dimensional subspaces of E. Then we have just shown that

• H acts freely on the standard Borel space Z = {h · [f(x)] | h ∈ H and x ∈

X1};

• if x, y ∈ X1 and y ∈ Γ · x, then there exists an element h ∈ H such that

h · [f(x)] = [f(y)].

Claim 5.4. There exists an algebraic Q-group G with dimG < n2 − 1 such that

H 6 G(Q).
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Proof. Clearly it is enough to show that the Q-subspace E is not GLn(Q)-invariant.

To see this, note that SLn(Zp) acts transitively on the subset {[S] | S ∈ V (k)(n,Qq)}.

In particular, for each bj ∈ B and x ∈ X1, there exists g ∈ SLn(Zp) such that

g · [f(x)] = bj . Since E is a proper subspace of V , it follows that E is not SLn(Zp)-

invariant. Because SLn(Z) is a dense subgroup of SLn(Zp), it follows that E is not

SLn(Z)-invariant. �

By Theorem 5.2, there exists a Γ-invariant Borel subsetM ⊆ X1 with µp(M) = 1

such that {[f(x)] | x ∈ M} is contained in a single H-orbit on Z. But this means

that f maps M into a single GLn(Q)-orbit on V (k)(n,Qq), which is a contradiction.

This completes the proof of Lemma 5.1.

Let α : Γ×X → PGLn(Q) be the Borel cocycle defined by

α(γ, x) · f(x) = f(γ · x)

for all γ ∈ Γ and x ∈ X. For each matrix M ∈ GLn(Q), let [M ] be the correspond-

ing element of PGLn(Q). Let A = Q∗/(Q∗)n and let δ : PGLn(Q) → A be the

homomorphism defined by

δ(g) = det(Mg)(Q∗)n,

where Mg ∈ GLn(Q) satisfies [Mg] = g. Then ker δ = PSLn(Q). Consider the

cocycle δ ◦ α : Γ×X → A. By Zimmer [22, 9.1.1], since Γ is a Kazhdan group and

A is an amenable group, δ ◦ α is equivalent to a cocycle taking values in a finite

subgroup F 6 A. It easily follows that α is equivalent to a cocycle α′ taking values

in L = δ−1(F ). (For example, see the proof of Adams-Kechris [2, 6.1].) Clearly

[L : PSLn(Q)] <∞. Hence by Adams-Kechris [2, 2.5], there exists a finite ergodic

extension (X̃, µ̃p) of (X,µp) such that the lift α̃ : Γ× X̃ → L of α′ is equivalent to

a cocycle β taking values in PSLn(Q). Let f̃ : X̃ → Y be the corresponding Borel

function such that for all γ ∈ Γ,

β(γ, x) · f̃(x) = f̃(γ · x) for µ̃p-a.e. x ∈ X̃.

Then it is clear that there does not exist a Borel subset Z̃ ⊆ X̃ with µ̃p(Z̃) = 1

such that f̃ maps Z̃ into a single PGLn(Q)-orbit. By Zimmer [23, 2.2], since

Γ is a Kazhdan group, β is equivalent to a cocycle β′ taking values in a finitely

generated subgroup of PSLn(Q). To simplify the notation, we shall suppose that
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β′ = β. So there exists a finite set of primes q1, . . . , qt such that β takes values

in Λ = PSLn(Z[1/q1, . . . , 1/qt]). By Zimmer [22, 10.1.1], if we identify Λ with its

image under the diagonal embedding into

H = PSLn(R)× PSLn(Qq1)× · · · × PSLn(Qqt),

then Λ is a lattice in H. Let i : Λ → H denote the diagonal embedding.

Now consider the induced Borel action of PSLn(R) on

X̂ = X̃ × (PSLn(R)/PSLn(Z))

and let β̂ : PSLn(R) × X̂ → Λ be the cocycle induced from β. Suppose that

i ◦ β̂ : PSLn(R) × X̂ → H is equivalent to a cocycle taking values in a compact

subgroup of H. Then Adams-Kechris [2, 2.4] implies that β̂ is equivalent to a

cocycle taking values in a finite subgroup F of Λ; and hence, by Adams-Kechris

[2, 2.3], β is also equivalent to a cocycle taking values in F . But then a standard

argument shows that there exists a Borel subset Z̃ ⊆ X̃ with µ̃p(Z̃) = 1 such

that f̃ maps Z̃ into a single PGLn(Q)-orbit, which is a contradiction. Thus i ◦ β̂

is not equivalent to a cocycle taking values in a compact subgroup of H. For

each 1 ≤ ` ≤ t, let π` : H → PSLn(Qq`
) be the canonical projection and let

β̂` : PSLn(R) × X̂ → PSLn(Qq`
) be the cocycle defined by β̂` = π` ◦ i ◦ β̂. By

Zimmer [22, 5.2.5], together with the methods of Adams-Kechris [2], β̂` is equivalent

to a cocycle taking values in a compact subgroupK` of PSLn(Qq`
). (More precisely,

arguing as in the proof of Adams-Kechris [2, 3.5], we can easily reduce to the case

when the range of the cocycle β̂` is Zariski dense in PSLn(Qq`
).) It follows that if

π0 : H → PSLn(R) is the canonical projection, then the cocycle

β̂0 = π0 ◦ i ◦ β̂ : PSLn(R)× X̂ → PSLn(R)

is not equivalent to a cocycle taking values in a compact subgroup of PSLn(R).

Hence, by Adams [1, 5.3], there exists a Lie group automorphism ϕ of PSLn(R)

such that β̂0 is equivalent to the cocycle β̂ϕ : PSLn(R) × X̂ → PSLn(R) defined

by β̂ϕ(g, x) = ϕ(g). Arguing as in the proof of Adams [1, 5.4], i ◦ β is equivalent to

a cocycle

β̄ : Γ× X̃ → H = PSLn(R)× PSLn(Qq1)× · · · × PSLn(Qqt
)
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given by

β̄(γ, x) = 〈ϕ(γ), β1(γ, x), . . . , βt(γ, x)〉,

where each β` : Γ × X̃ → PSLn(Qq`
) is a cocycle taking values in the compact

subgroup K` of PSLn(Qq`
). Since PSLn(Zq`

) is an open subgroup of PSLn(Qq`
),

it follows that PSLn(Zq`
) ∩ K` has finite index in K`. Applying Adams-Kechris

[2, 2.5], after replacing (X̃, µ̃p) by a finite ergodic extension if necessary, we can

suppose that β` takes values in the compact subgroup PSLn(Zq`
) for each 1 ≤ ` ≤ t.

Let K = PSLn(Zq1)× · · · × PSLn(Zqt
) and G = PSLn(Qq1)× · · · × PSLn(Qqt

).

From now on, we shall identify G and PSLn(R) with the corresponding subgroups

of H. In particular, this allows us to consider the commuting actions of K and

PSLn(R) on H/Λ.

Let S ⊆ H be a Borel transversal for H/Λ chosen so that G ⊆ S and identify

S with H/Λ by identifying each s ∈ S with sΛ. Then the action of H on H/Λ

induces a corresponding Borel action of H on S, defined by

h · s = the unique element in S ∩ hsΛ.

The associated cocycle ρ : H × S → Λ is defined by

ρ(h, s) = the unique λ ∈ Λ such that (h · s)λ = hs

= (h · s)−1hs

Recall that the induced action of H on

Ŷ = Y × S = Y × (H/Λ)

is defined by

h · (y, s) = (ρ(h, s) · y, h · s).

Let j : Y → Ŷ be the Λ-equivariant map defined by j(y) = (y, 1) and let f̂ : X̃ → Ŷ

be the map defined by f̂ = j ◦ f̃ . Then for all γ ∈ Γ,

(i ◦ β)(γ, x) · f̂(x) = f̂(γ · x) for µ̃p-a.e. x ∈ X̃.

Let b : X̃ → H be a Borel map such that for all γ ∈ Γ,

β̄(γ, x) = b(γ · x)(i ◦ β)(γ, x)b(x)−1 for µ̃p-a.e. x ∈ X̃;
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and define f̄ : X̃ → Ŷ by f̄(x) = b(x) · f̂(x). Then for all γ ∈ Γ,

β̄(γ, x) · f̄(x) = f̄(γ · x) for µ̃p-a.e. x ∈ X̃.

Next we shall study the distribution of f̄(X̃) within Ŷ . Since K is a compact

group, it follows that K\H/Λ is a standard Borel space. Let η : Ŷ → K\H/Λ be

the map defined by η(y, sΛ) = KsΛ and let ω = (η ◦ f̄)∗µ̃p. Then ω is a ϕ(Γ)-

invariant ergodic probability measure on K\H/Λ. Furthermore, by definition, for

any Borel subset A ⊆ K\H/Λ,

ω(A) = µ̃p({x ∈ X̃ | (η ◦ f̄)(x) ∈ A}).

Since K has countable index in G, it follows that PSLn(R) has only countably

many orbits on K\H/Λ. Hence, since ϕ(Γ) acts ergodically on K\H/Λ, it follows

that ω is concentrated on a single PSLn(R)-orbit Ω on K\H/Λ. (The following

proof is based on an unpublished argument of Dave Witte, which appeared in an

early version of Adams [1]. It is very closely related to Lemma 4.6 of Furman [7].)

Lemma 5.5. ω is supported on a finite subset Ω0 ⊂ Ω.

Proof. By Shah [18, 1.4], since ω is a ϕ(Γ)-invariant ergodic probability measure

on the homogeneous PSLn(R)-space Ω and ϕ(Γ) is a lattice in PSLn(R), there

exists a (topologically) closed subgroup C of PSLn(R) containing ϕ(Γ) such that ω

is C-invariant and concentrated on a C-orbit. Because C contains ϕ(Γ), it follows

that PSLn(R)/C has finite volume. Hence, by the Borel Density Theorem, one of

the following two possibilities holds:

• C = PSLn(R); or

• C is a discrete subgroup of PSLn(R).

First suppose that C = PSLn(R). Then there exists a lattice ∆ of PSLn(R)

such that the ϕ(Γ)-space (Ω, ω) is isomorphic to (PSLn(R)/∆,m), where m is the

Haar probability measure. But this means that
(
PSLn(R)/ϕ−1(∆),m

)
is a factor

of the Γ-space (X̃, µ̃p), which contradicts Proposition 3.2. Hence C must be a

discrete subgroup of PSLn(R). In particular, C is a countable group and so ω is

concentrated on a countable subset Ω0 of Ω. Since ω is a C-invariant probability

measure, this implies that Ω0 is actually a finite set. �
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Clearly Ω0 ⊂ K\H/Λ must be ϕ(Γ)-invariant and so there exists a subgroup

Γ0 6 Γ such that [Γ : Γ0] < ∞ and ϕ(Γ0) acts trivially on Ω0. Fix some element

KsΛ ∈ Ω0. After replacing f̄ : X̃ → Ŷ by the map f̄ ′(x) = π0(s)−1f̄(x) and

ϕ ∈ Aut(PSLn(R)) by the automorphism ϕ′(g) = π0(s)−1ϕ(g)π0(s) if necessary,

we can suppose that s ∈ G. (Recall that π0 : H → PSLn(R) denotes the canonical

projection.) Since ϕ(Γ0) fixes KsΛ, we have that ϕ(γ)s ∈ KsΛ for each γ ∈ Γ0;

and hence, applying the projection π0 : H → PSLn(R), we obtain that

ϕ(γ) ∈ π0(Λ) = PSLn(Z[1/q1, . . . , 1/qt]) 6 PSLn(R).

In particular, the lattice ϕ(Γ0) of PSLn(R) satisfies ϕ(Γ0) 6 PSLn(Q). Hence, by

Margulis [15, IX.4.14], ϕ(Γ0) is commensurable with PSLn(Z). After replacing Γ0

by a subgroup of finite index if necessary, we can suppose that ϕ(Γ0) 6 PSLn(Z).

Let X̃0 = {x ∈ X̃ | (η ◦ f̄)(x) = KsΛ}. Clearly ω({KsΛ}) = 1/|Ω0| and

so µ̃p(X̃0) = 1/|Ω0| > 0. Recall that G is contained in the distinguished Borel

transversal S of H/Λ. Consequently, for each x ∈ X̃0, there exist f̄1(x) ∈ Y and

kx ∈ K such that f̄(x) = (f̄1(x), kxs). Now suppose that x ∈ X̃0 and γ ∈ Γ0 satisfy

β̄(γ, x) · f̄(x) = f̄(γ · x).

Define c, d ∈ K by β̄(γ, x) = ϕ(γ)c and d = 〈1, ϕ(γ)−1, . . . , ϕ(γ)−1〉. Note that

ϕ(γ)ckxs = ckxsdλ,

where λ = 〈ϕ(γ), . . . , ϕ(γ)〉 ∈ Λ. It follows that

(f̄1(γ · x), kγ·xs) = (ϕ(γ) · f̄1(x), ckxsd).

Hence the Borel map f̄1 : X̃0 → Y has the property that for all γ ∈ Γ0,

f̄1(γ · x) = ϕ(γ) · f̄1(x) for µ̃p-a.e. x ∈ X̃0.

Since µ̃p(X̃0) > 0, there exists an ergodic component X̃1 for the action of Γ0 on X̃0

such that X̃1 ⊆ X̃0; and clearly we can suppose that

f̄1(γ · x) = ϕ(γ) · f̄1(x)

for all γ ∈ Γ0 and x ∈ X̃1. Furthermore, by the ergodicity of the action of Γ0 on

X̃1, we can suppose that there exists an ergodic component Y1 for the action of

ϕ(Γ0) on Y such that f̄1(X̃1) ⊆ Y1. Since Γ0 preserves the probability measure
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(µ̃p) eX1
on X̃1, it follows that ϕ(Γ0) preserves the probability measure (f̄1)∗(µ̃p) eX1

on Y1; and since the action of ϕ(Γ0) on Y1 is uniquely ergodic, this implies that

(f̄1)∗(µ̃p) eX1
= (µq)Y1 . But this means that (V (k)(n,Qq), µq) is a virtual quotient

of (X̃, µ̃p), which contradicts Theorem 3.3. This completes the proof of Theorem

4.7.
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