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PHILIPP LÜCKE AND SIMON THOMAS

Abstract. It is consistent that there exists a nonprincipal ultrafilter U over N

such that every automorphism of the corresponding ultraproduct
Q

U Sym(n)

is inner.

1. Introduction

Suppose that U is a nonprincipal ultrafilter over N and that
∏
U Sym(n) is the

corresponding ultraproduct of the finite symmetric groups. If CH holds, then∏
U Sym(n) is a saturated structure and hence

|Aut(
∏

U
Sym(n) )| = 2ℵ1 > ℵ1 = |

∏
U

Sym(n)|.

(For example, see Chang-Keisler [1].) In particular, if CH holds, then
∏
U Sym(n)

has many outer automorphisms. Of course, it is well-known that if n 6= 6, then

every automorphism of Sym(n) is inner; and consequently, it appears to be difficult

to exhibit an explicit example of an outer automorphism of
∏
U Sym(n). The main

result of this paper confirms that this is indeed a genuine difficulty.

Theorem 1.1. It is consistent that there exists a nonprincipal ultrafilter U over N

such that every automorphism of
∏
U Sym(n) is inner.

No knowledge of set theory is needed in order to understand the proof of Theorem

1.1, which is a purely algebraic consequence of the following remarkable result on

ultraproducts of the fields Fp of prime order p. (Recall that a structure M is said

to be rigid if the identity map is the only automorphism of M.)
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Theorem 1.2 (Shelah [6]). It is consistent that there exists a nonprincipal ultra-

filter F over the set P of primes such that the field
∏
F Fp is rigid.

This paper is organized as follows. In Section 2, we will recall the notion of

an internal automorphism of an ultraproduct; and prove that if the field
∏
F Fp is

rigid, then every automorphism of
∏
F PSL2( Fp) is internal. In Section 3, we will

recall two basic results concerning regular permutation representations. Finally, in

Section 4, we will present the proof of Theorem 1.1.

2. The group of internal automorphisms

In this section, we will recall the notion of an internal automorphism of an

ultraproduct; and prove that if the field
∏
F Fp is rigid, then every automorphism

of
∏
F PSL2( Fp) is internal.

Suppose that Gi, i ∈ I, are groups and that U is a nonprincipal ultrafilter over

the index set I. Then an automorphism ϕ ∈ Aut(
∏
U Gi ) is said to be internal if

there exist automorphisms ϕi ∈ Aut(Gi) such that for all (xi)U ∈
∏
U Gi,

ϕ( (xi)U ) = ( ϕi(xi) )U .

The group of internal automorphisms of
∏
U Gi is denoted by Int(

∏
U Gi ). Clearly

we have that

Inn(
∏

U
Gi ) E Int(

∏
U

Gi ) 6 Aut(
∏

U
Gi ).

Example 2.1. Recall that if n 6= 6, then every automorphism of Sym(n) is inner.

It follows that if U is any nonprincipal ultrafilter over N, then

Int(
∏

U
Sym(n) ) = Inn(

∏
U

Sym(n) ).

Hence Theorem 1.1 is equivalent to the consistency of a nonprincipal ultrafilter U

over N such that

Aut(
∏

U
Sym(n) ) = Int(

∏
U

Sym(n) ).

Lemma 2.2. If F is a nonprincipal ultrafilter over the set P of primes such that

the field
∏
F Fp is rigid, then

Aut(
∏

F
PSL2( Fp) ) = Int(

∏
F

PSL2( Fp) ).
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Proof. From now on, if K is any field and
(

a b
c d

)
∈ SL2(K), then

[
a b
c d

]
denotes the

corresponding element of PSL2(K). Following Kegel-Wehrfritz [3, 1.L.6], we can

define an isomorphism
∏
F PSL2( Fp) → PSL2(

∏
F Fp ) byap bp

cp dp


F

7→

(ap)F (bp)F

(cp)F (dp)F


By a well-known theorem of Schreier and van der Waerden [4], if K is any field

with |K| > 3, then every automorphism of PSL2(K) is induced via conjugation by

an element of

PΓL2(K) = PGL2(K) o Aut(K).

In particular, since the field
∏
F Fp is rigid, every automorphism of PSL2(

∏
F Fp )

is induced via conjugation by an element of PGL2(
∏
F Fp ). This implies that

every automorphism of
∏
F PSL2( Fp) is induced via conjugation by an element of∏

F PGL2( Fp) and hence

Aut(
∏

F
PSL2( Fp) ) = Int(

∏
F

PSL2( Fp) ).

�

3. Regular permutation representations

In this section, we will recall two basic results concerning regular permutation

representations. Here the left regular permutation representation of the group H is

the embedding λ : H → Sym(H) defined by λ(h)(x) = h x; and the right regular

permutation representation of H is the embedding ρ : H → Sym(H) defined by

ρ(h) = xh−1. The proof of Theorem 1.1 makes use of the following well-known

result. (For example, see Hall [2, Theorem 6.3.1].)

Lemma 3.1. If H is any group, then:

(a) CSym(H)( λ[ H ] ) = ρ[ H ]; and

(b) CSym(H)( ρ[ H ] ) = λ[ H ].

If H is any group, then the holomorph of H is the subgroup Hol(H) of Sym(H)

defined by

Hol(H) = λ[ H ] o Aut(H).
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It is easily checked that Hol(H) = ρ[ H ] o Aut(H). The proof of Theorem 1.1 also

makes use of the following result. (For example, see Hall [2, Theorem 6.3.2].)

Lemma 3.2. If H is any group, then

NSym(H)( λ[ H ] ) = NSym(H)( ρ[ H ] ) = Hol(H).

Finally recall that if Ω is any set, then a subgroup L of Sym( Ω ) is said to be

regular if for each pair of (not necessarily distinct) elements x, y ∈ Ω, there exists

a unique element π ∈ L such that π(x) = y. In this case, the permutation group

( L, Ω ) is isomorphic to the left regular permutation representation of L in Sym( L );

and, of course, is also isomorphic to the right regular permutation representation.

4. The proof of Theorem 1.1

In this section, we will present the proof of Theorem 1.1. Throughout, we fix

a nonprincipal ultrafilter F over the set P of primes such that the field
∏
F Fp is

rigid. For each prime p ∈ P, let Γp = PSL2( Fp). Let GF =
∏
F Sym( Γp ) and

HF =
∏
F Γp. Then it is clearly enough to show that every automorphism of GF

is inner.

For each prime p ∈ P, let λp : Γp → Sym( Γp ) and ρp : Γp → Sym( Γp ) be the

left regular and right regular permutation representations. Consider the action of

GF on HF defined by

(πp)F · (γp)F = ( πp(γp))F .

Then, identifying the group GF with its image under the corresponding embedding

GF → Sym( HF ), we have that
∏
F λp[ Γp ] corresponds to the image λ[ HF ] of

the left regular permutation representation of HF . Also notice that under this

identification,

Alt( HF ) 6 GF 6 Sym( HF ).

Hence, by Scott [5, 11.4.7], it follows that Aut( GF ) is precisely the normalizer of

GF in Sym( HF ).

Next let Γ = PSL2( Z ). Then it is well-known that Γ is generated by the

following two elements:

a =

1 1

0 1

 b =

1 0

1 1


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For each prime p ∈ P, let ap, bp ∈ PSL2( Fp) be the images of a, b ∈ PSL2( Z )

under the canonical surjective homomorphism PSL2( Z ) → PSL2( Fp); and define

the elements α, β ∈
∏
F Sym( Γp ) by α = (ρp(ap))F and β = (ρp(bp))F . Applying

Lemma 3.1, since Γp = 〈 ap, bp 〉, it follows that

CSym( Γp )( ρp(ap), ρp(bp) ) = λp[ Γp ];

and hence, by  Loś’s Theorem [1],

CGF ( α, β ) =
∏

F
λp[ Γp ].

Now suppose that π ∈ Aut(GF ) is any automorphism. Let π(α) = (gp)F and let

π(β) = (hp)F . Then

CGF ( (gp)F , (hp)F ) =
∏

F
∆p,

where ∆p = CSym( Γp )( gp, hp ). Recall that if we will identify GF with its image

under the embedding GF → Sym( HF ), then

CGF ( α, β ) =
∏

F
λp[ Γp ]

corresponds to the image λ[ HF ] of the left regular permutation representation of

HF ; and since π corresponds to conjugation by a suitable element of the normalizer

of GF in Sym( HF ), it follows that
∏
F ∆p also corresponds to a regular subgroup

of Sym( HF ). This easily implies that

A = { p ∈ P | ∆p is a regular subgroup of Sym( Γp ) } ∈ F .

Furthermore, by Thomas [7], there exists a first-order sentence σ such that if L is

any group, then

L � σ ⇐⇒ L ∼= PSL2(K) for some field K.

Since
∏
F ∆p

∼=
∏
F λp[ Γp ] ∼= PSL2(

∏
F Fp ), it follows that

B = { p ∈ P | ∆p
∼= PSL2(K) for some field K } ∈ F .

If p ∈ A ∩ B, then |∆p| = |Γp| and it follows that ∆p and λp[ Γp ] are isomorphic

regular subgroups of Sym( Γp ), which implies that ∆p is conjugate to λp[ Γp ] inside

Sym( Γp ). It follows that
∏
F ∆p is conjugate to

∏
F λp[ Γp ] inside GF . Hence, after

adjusting π by an inner automorphism of GF if necessary, we can suppose that

π[
∏

F
λp[ Γp ] ] =

∏
F

λp[ Γp ].
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Applying Lemma 3.2, it follows that π corresponds to conjugation by an element

of Hol( HF ) = λ[ HF ] o Aut( HF ). By Lemma 2.2,

Aut( HF ) = Aut(
∏

F
PSL2( Fp) ) = Int(

∏
F

PSL2( Fp) );

and hence λ[ HF ]oAut( HF ) corresponds to a subgroup of GF . Thus π is an inner

automorphism of GF , as required.
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