
Borel superrigidity and the classification problem for the
torsion-free abelian groups of finite rank

Simon Thomas∗

Abstract. In 1937, Baer solved the classification problem for the torsion-free abelian groups
of rank 1. Since then, despite the efforts of many mathematicians, no satisfactory solution has
been found of the classification problem for the torsion-free abelian groups of rank n ≥ 2. So
it is natural to ask whether the classification problem for the higher rank groups is genuinely
difficult. In this article, I will explain how this question can be partially answered, using ideas
from descriptive set theory and Zimmer’s superrigidity theory.
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1. Introduction

In this article, we shall discuss some recent work which partially explains why no
satisfactory system of complete invariants has yet been found for the torsion-free
abelian groups of finite rank n ≥ 2. Recall that, up to isomorphism, the torsion-free
abelian groups A of rank n are exactly the additive subgroups of the n-dimensional
vector space Qn which contain n linearly independent elements. Thus the classifica-
tion problem for the torsion-free abelian groups of rank n can be naturally identified
with the corresponding problem for

R(Qn) = {A � Qn | A contains n linearly independent elements}.
In 1937, Baer [3] solved the classification problem for the class R(Q) of torsion-
free abelian groups of rank 1 as follows. Let P be the set of primes. Suppose that
G ∈ R(Q) and that 0 �= x ∈ G. Then for each p ∈ P, the p-height of x is defined to
be

hx(p) = sup{n ∈ N | There exists y ∈ G such that pny = x} ∈ N ∪ {∞};
and the characteristic χ(x) of x is defined to be the sequence

〈hx(p) | p ∈ P〉 ∈ (N ∪ {∞})P.
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Two sequences χ1, χ2 ∈ (N ∪ {∞})P are said to belong to the same type, written
χ1 ≡ χ2, iff

(a) χ1(p) = χ2(p) for almost all primes p; and

(b) if χ1(p) �= χ2(p), then both χ1(p) and χ2(p) are finite.

Clearly ≡ is an equivalence relation on (N∪{∞})P. Furthermore, it is easily checked
that if G ∈ R(Q), then χ(x) ≡ χ(y) for all 0 �= x, y ∈ G. Hence we can define
the type τ(G) of G to be the ≡-equivalence class containing χ(x), where x is any
non-zero element of G. In [3], Baer proved that τ(G) is a complete invariant for the
isomorphism problem for the rank 1 groups.

Theorem 1.1 (Baer [3]). If G, H ∈ R(Q), then G ∼= H iff τ(G) = τ(H).

However, the situation is much less satisfactory in the case of the torsion-free
abelian groups of rank n ≥ 2. In the late 1930s, Kurosh [22] and Malcev [25]
found complete invariants for these groups consisting of equivalence classes of infinite
sequences 〈Mp | p ∈ P〉 of matrices, where each Mp ∈ GLn(Qp). Unfortunately,
as Fuchs [8] remarks in his classic textbook, the associated equivalence relation is
so complicated that the problem of deciding whether two sequences are equivalent
is as difficult as that of deciding whether the corresponding groups are isomorphic.
It is natural to ask whether the classification problem for the higher rank groups is
genuinely more difficult than that for the rank 1 groups. Of course, if we wish to
show that the classification problem for the groups of rank n ≥ 2 is intractible, it is
not enough merely to prove that there are 2ℵ0 such groups up to isomorphism: for
there are 2ℵ0 pairwise nonisomorphic groups of rank 1 and we have just seen that
Baer has given a satisfactory classification for this class of groups. In this article,
following Friedman-Stanley [7] and Hjorth–Kechris [14], we shall explain how to
use the more sensitive notions of descriptive set theory to measure the complexity of
the classification problem for the groups of rank n ≥ 2.

The basic idea is quite simple; namely, in order to understand the relative com-
plexity of these and other classification problems, we shall consider the question of
when one classification problem can be “explicitly reduced” to another. For example,
the classification problem for the rank n groups can be explicitly reduced to that for
the rank n + 1 groups by the map

R(Qn) → R(Qn+1)

A �→ A ⊕ Q

in the sense that
A ∼= B iff A ⊕ Q ∼= B ⊕ Q.

Of course, this observation is neither surprising nor particularly interesting; and we
shall be more concerned with the question of whether there exists an “explicit map”
in the opposite direction

f : R(Qn+1) → R(Qn)
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such that
A ∼= B iff f (A) ∼= f (B).

If we drop the requirement that f should be “explicit”, then such a map certainly
exists: since R(Qn+1) and R(Qn) both contain 2ℵ0 groups up to isomorphism, we
can simply use the Axiom of Choice to match up the isomorphism classes. However,
nobody would regard such a matching as a satisfactory reduction of one classification
problem to another. In order to give a precise formulation of this question, it is first
necessary to discuss some of the basic notions from the theory of Borel equivalence
relations.

Let (X, S) be a measurable space; i.e. a set X equipped with a σ -algebra S of
subsets of X. Then (X, S) is said to be a standard Borel space iff there exists a
complete separable metric d on X such that S is the σ -algebra of Borel sets of (X, d).
By a classic result of Kuratowski [21], if (X, S) is an uncountable standard Borel
space, then (X, S) is measurably isomorphic to the unit interval [ 0, 1] equipped with
its σ -algebra of Borel sets. The obvious examples of standard Borel spaces include
R, C and Qp, as well as the Cantor space

2C = {h | h : C → 2},
where C is any countably infinite set. Furthermore, identifying each subset B ⊆ C

with its characteristic function χB ∈ 2C , it follows that the power set P (C) is also a
standard Borel space. Less obviously, there is a uniform way to represent classes of
countable structures, such as groups, fields, graphs, etc., by the elements of suitable
standard Borel spaces. For example, in order to define the standard Borel space of
countable graphs, we first restrict our attention to the set C of graphs

� = 〈 N, E�〉
with vertex set N. After identifying each such graph � ∈ C with its edge relation
E� ∈ P (N × N), it is easily checked that C is a Borel subset of the standard Borel
space P (N×N); and this implies that C is also a standard Borel space. (For example,
see Kechris [20].) It should be relatively clear how to generalise the method of this
example to deal with other classes of countable structures. However, in this article,
we shall mainly be concerned with the classes of torsion-free abelian groups of rank
n ≥ 1 and the class of finitely generated groups; and these classes can be more
conveniently represented by the following more ad hoc spaces.

Example 1.2. Let n ≥ 1. Then R(Qn) is a Borel subset of the standard Borel space
P (Qn) and so R(Qn) is a standard Borel space. For later use, note that the natural
action of GLn(Q) on the vector space Qn induces a corresponding action on R(Qn);
and that if A, B ∈ R(Qn), then A ∼= B iff there exists an element ϕ ∈ GLn(Q) such
that ϕ[A] = B.
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Example 1.3 (Champetier [4]). The standard Borel space G of finitely generated
groups can be defined as follows. Let F be the free group on countably many gen-
erators X = {xi | i ∈ N}. Suppose that G is a finitely generated group and that
(g0, . . . , gn) is a finite sequence of generators. Then, by considering the homomor-
phism π : F → G defined by

π(xi) =
{

gi if 0 ≤ i ≤ n,

1 otherwise,

we see that G can be realized as a quotient F/N , where N is a normal subgroup which
contains all but finitely many elements of the basis X. (Of course, choosing a different
generating sequence usually results in a different realization.) Thus we can identify G
with the set of all such normal subgroups N of F . With this identification, G is a
Borel subset of the standard Borel space P (F ) and hence G is a standard Borel space.
As in Example 1.2, the isomorphism relation on the standard Borel space of finitely
generated groups is the orbit equivalence relation of a natural action of a suitable
countable group. More precisely, let Autf (F ) be the subgroup of Aut(F ) generated
by the elementary Nielsen transformations

{αi | i ∈ N} ∪ {βij | i �= j ∈ N},
where αi is the automorphism sending xi to x−1

i and leaving X� {xi} fixed; and βij is
the automorphism sendingxi toxixj and leavingX�{xi}fixed. Then the natural action
of Autf (F ) on F induces a corresponding action on the space G of normal subgroups
of F which contain all but finitely many elements of the basis X; and if N , M ∈ G
are two such normal subgroups, then F/N ∼= F/M iff there exists ϕ ∈ Autf (F ) such
that ϕ[N] = M . (For example, see Champetier [4] and Lyndon–Schupp [24].)

If X, Y are standard Borel spaces, then f : X → Y is a Borel map iff f −1(B) is
Borel for every Borel subset B ⊆ Y . Equivalently, f is Borel iff graph(f ) is a Borel
subset of X × Y . Now suppose that E, F are equivalence relations on the standard
Borel spaces X, Y respectively. (For example, X and Y could be spaces of countable
structures and E, F could be the corresponding isomorphism relations.) Then E is
Borel reducible to F , written E ≤B F , if there exists a Borel map f : X → Y such
that

xEy iff f (x)Ff (y).

E and F are Borel bireducible, written E ∼B F , if both E ≤B F and F ≤B E.
Finally we write E <B F if both E ≤B F and F �B E.

Remark 1.4. Of course, the notion of a Borel reduction f : X → Y from E to F is in-
tended to capture the intuitive idea of an “explicit reduction” from the E-classification
problem to the F -classification problem. For example, with a little practice, it is easily
checked that any given explicit map f : R → R is Borel. On the other hand, many
mathematicians are reluctant to accept that an arbitrary Borel map f : R → R should
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be regarded as explicit. However, it is not necessary for us to address this question,
since we will mainly be concerned with non-reducibility results; and for such results,
it is clearly preferable to work with the broadest possible class of maps. (It is perhaps
worth mentioning that the proofs of our main results actually show that there are no
measurable reductions between the relevant classification problems. By a well-known
theorem of Solovay [30], the existence of a non-measurable map requires an essential
use of the Axiom of Choice and so such maps are certainly not explicit.)

Example 1.5. For each n ≥ 1, let ∼=n be the isomorphism relation on R(Qn). Then
the map

R(Qn) → R(Qn+1),

A �→ A ⊕ Q,

is a Borel reduction from ∼=n to ∼=n+1. Hence

(∼=1) ≤B (∼=2) ≤B · · · ≤B (∼=n) ≤B · · ·
and our earlier question of whether the classification problem for the higher rank
groups is genuinely more difficult than that for the rank 1 groups can be interpreted
as the question of whether (∼=1) <B (∼=2).

Before discussing the solution of this problem, it will be helpful to give a brief
account of some of the theory of countable Borel equivalence relations. (A detailed
development of this theory can be found in Jackson–Kechris–Louveau [17].) If X

is a standard Borel space, then a Borel equivalence relation on X is an equivalence
relation E ⊆ X2 which is a Borel subset of X2. The Borel equivalence relation E is
said to be countable iff every E-equivalence class is countable. Most of the Borel
equivalence relations that we shall consider in this article arise from group actions as
follows. Let G be an lcsc group; i.e. a locally compact second countable group. Then
a standard Borel G-space is a standard Borel space X equipped with a Borel action
(g, x) �→ g · x of G on X. The corresponding G-orbit equivalence relation on X,
which we shall denote by EX

G , is a Borel equivalence relation. In fact, by Kechris [19],
EX

G is Borel bireducible with a countable Borel equivalence relation. Conversely, by
Feldman–Moore [6], if E is an arbitrary countable Borel equivalence relation on the
standard Borel space X, then there exists a countable group G and a Borel action of G

on X such that E = EX
G .

Example 1.6. As we pointed out in Examples 1.2 and 1.3, the isomorphism relations
on the spaces R(Qn) of torsion-free abelian groups of rank n and the space G of
finitely generated groups are the orbit equivalence relations of natural actions of
suitable countable groups. These actions are easily seen to be Borel and so each of
these isomorphism relations is a countable Borel equivalence relation.

With respect to Borel reducibility, the least complex countable Borel equivalence
relations are those which are smooth; i.e. those countable Borel equivalence rela-
tions E on a standard Borel space X for which there exists a Borel function f : X → Y
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into a standard Borel space Y such that xEy iff f (x) = f (y). Equivalently, the count-
able Borel equivalence relation E on X is smooth iff the quotient X/E is a standard
Borel space. (Here X/E denotes the set of E-classes equipped with the quotient Borel
structure.)

Example 1.7. The isomorphism relation on the standard Borel space of countable
divisible abelian groups is smooth. To see this, recall that if A is a countable divisible
abelian group, then A = D⊕T , where T is the torsion subgroup and D is torsion-free.
Let r0(A) ∈ N ∪ {∞} be the rank of D; and for each prime p, let rp(A) ∈ N ∪ {∞}
be the rank of the p-component Tp of T . Then the invariant

ρ(A) = (r0(A), r2(A), r3(A), . . . , rp(A), . . . )

determines A up to isomorphism.

Next in complexity come those countable Borel equivalence relations E which are
Borel bireducible with the Vitali equivalence relation E0 defined on 2N by xE0y iff
x(n) = y(n) for almost all n. More precisely, by Harrington–Kechris–Louveau [12],
if E is a countable Borel equivalence relation, then E is nonsmooth iff E0 ≤B E.
Furthermore, by Dougherty–Jackson–Kechris [5], if E is a countable Borel equiva-
lence relation on a standard Borel space X, then the following three properties are
equivalent:

(1) E ≤B E0.

(2) E is hyperfinite; i.e. there exists an increasing sequence

F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · ·
of finite Borel equivalence relations on X such that E = ⋃

n∈N Fn. (Here an
equivalence relation F is said to be finite iff every F -equivalence class is finite.)

(3) There exists a Borel action of Z on X such that E = EX
Z .

Example 1.8. As is easily checked, Baer’s classification of the rank 1 groups implies
that (∼=1) ∼B E0.

It turns out that there is also a most complex countable Borel equivalence rela-
tion E∞, which is universal in the sense that F ≤B E∞ for every countable Borel
equivalence relation F ; and, furthermore, E0 <B E∞. (Clearly this universality
property uniquely determines E∞ up to Borel bireducibility.) E∞ has a number of
natural realisations in many areas of mathematics, including algebra, topology and
recursion theory. (See Jackson–Kechris–Louveau [17].) For example, E∞ is Borel
bireducible with both the isomorphism relation for finitely generated groups [36] and
the isomorphism relation for fields of finite transcendence degree [37].

For many years, it was an open problem whether there existed infinitely many
countable Borel equivalence relations E such that E0 <B E <B E∞. This problem
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was finally resolved by Adams–Kechris [2], who used Zimmer’s superrigidity the-
ory [38] to show that there are actually 2ℵ0 such relations E up to Borel bireducibility.
More recently, Hjorth–Kechris [15] have found an “elementary” proof of this result;
i.e. a proof which requires no more background than the standard measure theory and
functional analysis which should be known by every mathematician.

Returning to our discussion of the complexity of the isomorphism relation ∼=n on
the standard Borel space R(Qn) of torsion-free abelian groups of rank n, we now see
that

(∼=1) ≤B (∼=2) ≤B · · · ≤B (∼=n) ≤B · · · ≤B E∞.

In [14], Hjorth–Kechris conjectured that (∼=2) ∼B E∞; in other words, the classi-
fication problem for the torsion-free abelian groups of rank 2 is already as complex
as that for arbitrary finitely generated groups. Of course, if true, this would have
completely explained the failure to find a satisfactory system of complete invariants
for the torsion-free abelian groups of rank n ≥ 2, since nobody expects such a system
to exist for the class of finitely generated groups. In [13], Hjorth provided some initial
evidence for this conjecture by proving that the classification problem for the higher
rank groups is indeed genuinely more difficult than that for the rank 1 groups.

Theorem 1.9 (Hjorth [13]). (∼=1) <B (∼=2).

However, the conjecture appeared considerably less plausible afterAdams–Kechris
[2] used Zimmer’s superrigidity theory [38] to prove that

(∼=∗
1) <B (∼=∗

2) <B · · · <B (∼=∗
n) <B · · ·

where (∼=∗
n) is the restriction of the isomorphism relation to the class of rigid torsion-

free abelian groups A ∈ R(Qn). Here an abelian group A is said to be rigid if its
only automorphisms are the obvious ones: a �→ a and a �→ −a. In particular,
it follows that none of the isomorphism relations ∼=∗

n is a universal countable Borel
equivalence relation. Soon afterwards, making essential use of the earlier work of
Hjorth [13] and Adams–Kechris [2], Thomas [31] proved the corresponding result for
the isomorphism relation ∼=n on the class R(Qn) of all torsion-free abelian groups of
rank n.

Theorem 1.10 (Thomas [31]). (∼=n) <B (∼=n+1) for all n ≥ 2.

Corollary 1.11. (∼=n) <B (E∞) for all n ≥ 1.

Unfortunately, while Theorem 1.10 shows that the relative complexity of the clas-
sification problem for the torsion-free abelian groups of rank n increases strictly with
the rank n, it says little about the absolute complexity of these problems. In particular,
it fails to answer the following:

Question 1.12. Is the classification problem for the torsion-free abelian groups of
rank 2 “genuinely difficult”?
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While it is difficult to imagine giving a precise formulation of Question 1.12, it
certainly includes the question of whether ∼=2 is an immediate successor of ∼=1 with
respect to Borel reducibility. In other words, does there exist a Borel equivalence
relation E such that

(∼=1) <B E <B (∼=2)?

In seeking such an equivalence relation E, it is natural to consider the classification
problem for various restricted classes of torsion-free abelian groups.

Definition 1.13. For each prime p and n ≥ 1, let Rp(Qn) be the standard Borel space
of all p-local subgroups A � Qn of rank n and let ∼=p

n be the isomorphism relation
on Rp(Qn).

Here an abelian group A is said to be p-local iff A is q-divisible for all primes
q �= p. Of course, if an abelian group A is q-divisible for all primes q, then A

is divisible and we have already seen that the divisible abelian groups are easily
classified. Consequently, all of the complexity of the classification problem for the
p-local groups is concentrated in the single prime p. In Thomas [31], it was shown
that if the prime p is fixed, then

(∼=p
1 ) <B (∼=p

2 ) <B · · · <B (∼=p
n ) <B · · · .

But this left open the more natural question of whether the classification problem for
the p-local torsion-free abelian groups of a fixed rank n ≥ 2 was strictly easier than
the classification problem for arbitrary torsion-free abelian groups of rank n. (It is
trivial that (∼=p

1 ) <B (∼=1), since there are only two p-local groups of rank 1 up to
isomorphism; namely, Q and Z(p) = {a/b ∈ Q | b is relatively prime to p}.) This
question was partially answered in Thomas [33], where it was shown that if n ≥ 3
and p �= q are distinct primes, then ∼=p

n and ∼=q
n are incomparable with respect to

Borel reducibility. Of course, this implies that if n ≥ 3, then (∼=p
n ) <B (∼=n) for

each prime p. Unfortunately, the argument in Thomas [33] made essential use of the
fact that if n ≥ 3, then SLn(Z) is a Kazhdan group; and, consequently, the problem
remained open when n = 2. This case was finally dealt with in Hjorth–Thomas
[16], which ultimately depends upon the fact that SL2(Z) satisfies a weak form of
the Kazhdan property; namely, SL2(Z) has Property (τ ) with respect to its family of
congruence subgroups. (For example, see Lubotzky [23].)

Theorem 1.14 (Hjorth–Thomas [16]). If p �= q are distinct primes, then the classifi-
cation problems for the p-local and q-local torsion-free abelian groups of rank 2 are
incomparable with respect to Borel reducibility.

Since it was already known [31] that (∼=1) <B (∼=p
2 ), it follows that

(∼=1) <B (∼=p
2 ) <B (∼=2)

for each prime p; and hence there exists an infinite antichain of countable Borel equiv-
alence relations which lie strictly between (∼=1) and (∼=2). With a little more effort,
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it is possible to show that there are uncountably many countable Borel equivalence
relations E such that

(∼=1) <B E <B (∼=2).

(It should be pointed out that the proof of the following result makes essential use
of the work of Kurosh–Malcev [22], [25], which was so unfairly dismissed earlier in
this section.)

Definition 1.15. If P ⊆ P is a set of primes, then an abelian group A is said to be
P -local iff A is q-divisible for all primes q /∈ P .

For example, an abelian group A is ∅-local iff A is divisible; while, on the other
hand, every abelian group is P-local. Clearly the class of P -local abelian groups is
included in the class of Q-local groups iff P ⊆ Q.

Theorem 1.16 (Thomas [35]). Let n ≥ 2. If P , Q are sets of primes, then the
classification problem for the P -local torsion-free abelian groups of rank n is Borel
reducible to that for the Q-local groups of rank n iff P ⊆ Q.

In particular, there exists an infinite chain {Rm | m ∈ N} of countable Borel
equivalence relations such that

(∼=1) <B R0 <B R1 <B · · · <B Rm <B · · · <B (∼=2);
and so ∼=2 is very far from being an immediate successor of ∼=1 with respect to Borel
reducibility.

Remark 1.17. It should be mentioned that IdR, E0 is the only known example (up
to Borel bireducibility) of a pair of countable Borel equivalence relations E, F such
that F is an immediate successor of E with respect to ≤B . On the other hand, there
are currently no countable Borel equivalence relations E with E0 ≤B E <B E∞ for
which it is known that no such countable Borel equivalence relation F exists.

2. Superrigidity

In this section, we shall discuss the orbit equivalence superrigidity theorems of Zimmer
[38] and Furman [9], together with the corresponding Borel superrigidity theorems
of Adams–Kechris [1], [2] and Thomas [32], [34]. Then, in the next section, we shall
explain how to apply Borel superrigidity to the study of the classification problem for
the torsion-free abelian groups of finite rank.

Recall that, by Feldman–Moore [6], if E is a countable Borel equivalence relation
on the standard Borel space X, then there exists a countable group � and a Borel
action of � on X such that E = EX

� is the corresponding orbit equivalence relation.
However, it should be pointed out that the group � cannot be canonically recovered
from E; and it is usually very difficult to determine whether two given Borel actions
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of a pair �, � of countable groups give rise to Borel bireducible orbit equivalence
relations. Consequently, the fundamental question in the study of countable Borel
equivalence relations concerns the extent to which the data (X, EX

� ) determines the
group � and its action on X. In order for there to be any chance of recovering � from
this data, it is necessary to assume the following extra hypotheses:

(i) � acts freely on X; i.e. γ · x �= x for all 1 �= γ ∈ � and x ∈ X.

(ii) There exists a �-invariant probability measure μ on X.

For example, by Dougherty–Jackson–Kechris [5], if (i) holds and (ii) fails, then for
any countable group � ⊇ �, there exists a free Borel action of � on X such that
EX

� = EX
� . If � is finite, then EX

� is smooth and so we shall suppose throughout this
section that � is infinite. In this case, μ is necessarily nonatomic (i.e. μ({x}) = 0 for
every x ∈ X) and it follows that the probability space (X, μ) is measurably isomorphic
to the unit interval [ 0, 1] equipped with its Lebesgue measure.

It is also natural to assume that the following “indecomposability hypothesis”
holds:

(iii) � acts ergodically on (X, μ); i.e. every �-invariant Borel subset of X has
measure 0 or 1.

Thus, even when working in the purely Borel setting, it is useful to focus our attention
on those orbit equivalence relations which arise from free ergodic actions of countable
groups on probability spaces.

Example 2.1. Let � be any countable group. Then the shift action of � on 2� is
defined by

(γ · h)(δ) = h(γ −1δ), γ, δ ∈ �, h ∈ 2�.

Let μ be the usual product probability measure on 2� . Then μ is �-invariant and �

acts ergodically on (2�, μ). (For example, see Hjorth–Kechris [15].) Furthermore,
letting

(2)� = {h ∈ 2� | γ · h �= h for all 1 �= γ ∈ �}
be the free part of the action, it is easily checked that μ((2)�) = 1.

Now suppose that �, � are countable groups with free ergodic Borel actions on the
probability spaces (X, μ), (Y, ν) respectively. Then, by Dougherty–Jackson–Kechris
[5], the corresponding countable Borel equivalence relations EX

� and EY
� are Borel

bireducible iff there exist Borel complete sections A ⊆ X, B ⊆ Y such that the
restricted equivalence relations are isomorphic via a Borel bijection

f : ( A, EX
� � A ) ∼= ( B, EY

� � B ).

Here, for example, A ⊆ X is said to be a complete section of EX
� iff A intersects

every EX
� -class. In particular, it follows that μ(A), ν(B) > 0. However, there is no
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reason to suppose that f preserves the corresponding “rescaled” probability measures
μA, νB on A, B respectively, defined by μA(Z) = μ(Z)/μ(A), etc. If we add the
requirement that the map f should also be measure-preserving, then we pass from the
purely Borel setting into the richer measure-theoretic setting, where the fundamental
question now concerns the extent to which the data (X, EX

� , μ) determines the group �

and its action on X.

Definition 2.2. With the above hypotheses, the actions of �, � on (X, μ), (Y, ν) are
said to be weakly orbit equivalent iff there exist Borel subsets A ⊆ X, B ⊆ Y with
μ(A), ν(B) > 0 such that the restricted equivalence relations are isomorphic via a
measure-preserving Borel bijection

f : (A, EX
� � A, μA) ∼= (B, EY

� � B, νB).

If μ(A) = ν(B) = 1, then the actions are said to be orbit equivalent.

Warning 2.3. At first glance, it might appear that weak orbit equivalence implies
Borel bireducibility. However, this is not the case. In the measure-theoretic setting,
sets and maps are only considered modulo measure zero sets; and, in particular, the
Borel sets A, B in Definition 2.2 are not required to be complete sections.

Definition 2.4. The actions of �, � on (X, μ), (Y, ν) are said to be isomorphic iff
there exist

• invariant Borel subsets X0 ⊆ X, Y0 ⊆ Y with μ(X0) = ν(Y0) = 1,

• a measure-preserving Borel bijection f : X0 → Y0, and

• a group isomorphism ϕ : � → �

such that f (γ · x) = ϕ(γ ) · f (x) for all γ ∈ � and x ∈ X0.

If the actions of �, � on (X, μ), (Y, ν) are isomorphic, then they are clearly
orbit equivalent. The strongest conceivable superrigidity theorem would say that,
conversely, if the actions are (weakly) orbit equivalent, then they are necessarily
isomorphic. Of course, in order for anything like this to be true, it is necessary to
impose strong hypotheses on the groups involved. For example, Ornstein–Weiss [27]
have shown that if � and � are amenable groups, then any free ergodic actions of �,
� are orbit equivalent.

Definition 2.5. Let G be an lcsc group and let m be a fixed Haar measure on G. Then
a subgroup � � G is a lattice iff � is discrete and the covolume m(G/�) is finite.

Suppose now that � is a lattice in a connected simple Lie group G such that
R-rank(G) ≥ 2. For example, we can take � = SLn(Z) and G = SLn(R) for any
n ≥ 3. Then, while the lattice � is not uniquely determined by (X, EX

� , μ), Zimmer’s
orbit equivalence superrigidity theorem says that this data does uniquely determine
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the ambient Lie group G. More precisely, suppose that G0 and G1 are connected
centerless simple Lie groups of R-rank at least 2 and that �0, �1 are lattices in G0, G1
respectively. (In order to keep our account as transparent as possible, we shall mainly
focus on the case of lattices in connected centerless simple Lie groups.) Suppose
that �0, �1 have free ergodic Borel actions on the probability spaces (X0, μ0) and
(X1, μ1). Then, for each 0 ≤ i ≤ 1, there is a naturally associated induced action
of Gi on the standard Borel space

X̂i = Xi × (Gi/�i)

with invariant ergodic probability measure μ̂i = μi × mi , where mi is the Haar
probability measure on Gi/�i .

Theorem 2.6 (Zimmer [38]). With the above hypotheses, if the actions of �0, �1 on
(X0, μ0), (X1, μ1) are weakly orbit equivalent, then the induced actions of G0, G1

on (X̂0, μ̂0), (X̂1, μ̂1) are isomorphic. In particular, G0 ∼= G1.

Unfortunately, there are many examples of lattices �0, �1 with free ergodic Borel
actions on probability spaces (X0, μ0), (X1, μ1) for which there exists a Borel reduc-
tion f : X0 → X1 from E

X0
�0

to E
X1
�1

such that μ1(f [X0]) = 0 ; and hence Zimmer’s
orbit equivalence superrigidity theorem cannot be directly applied in the purely Borel
setting. However, it was an important insight of Adams–Kechris [2] that it is possible
to apply Zimmer’s more fundamental cocycle superrigidity theorem. (The notion of
a cocycle will not be defined in this article. Clear accounts of the theory of cocycles
can be found in Zimmer [38] and Adams–Kechris [2]. In particular, Adams–Kechris
[2] provides a convenient introduction to the basic techniques and results in this area,
written for the non-expert in the ergodic theory of groups.)

Theorem 2.7 (Adams–Kechris [2]). With the above hypotheses, if E
X0
�0

≤B E
X1
�1

,
then G0 is involved in G1; i.e. there exist Lie subgroups N � H � G1 such that
G0 ∼= H/N . Consequently, if E

X0
�0

∼B E
X1
�1

, then G0 ∼= G1.

Corollary 2.8 (Adams–Kechris [2]). There exist infinitely many countable Borel
equivalence relations up to Borel bireducibility.

In fact, by considering Borel actions of suitable S-arithmetic groups for various
(possibly infinite) sets of primes S, Adams–Kechris [2] were able to prove that there
are 2ℵ0 such relations up to Borel bireducibility.

Corollary 2.9 (Adams–Kechris [2]). There exist countable Borel equivalence rela-
tions which are incomparable with respect to Borel reducibility.

The methods introduced by Adams–Kechris [2] are suitable for distinguishing
between orbit equivalence relations of the form EX

� and EY
�, where � and � are lattices

in nonisogeneous higher rank semisimple Lie groups. More generally, they can be
used to show that the countable Borel equivalence relations arising from suitably
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chosen actions of “large” linear groups cannot be Borel reducible to those arising
from the actions of “smaller” linear groups. For example, as we shall see in the next
section, a variant of Theorem 2.7 can be used to prove that if n ≥ 2, then the orbit
equivalence relation arising from the action of GLn+1(Q) on the standard Borel space
R(Qn+1) of torsion-free abelian groups of rank n + 1 is not Borel reducible to that
arising from the action of GLn(Q) on R(Qn); in other words, (∼=n+1) �B (∼=n). Since
we have already observed that (∼=n) ≤B (∼=n+1), this implies that (∼=n) <B (∼=n+1);
i.e. that the complexity of the classification problem for the torsion-free abelian groups
of rank n increases strictly with the rank n.

However, the methods of Adams–Kechris [2] are not as well-suited for those prob-
lems which involve distinguishing between orbit equivalence relations arising from
different actions of the same countable group; e.g. the isomorphism relations for the
p-local torsion-free abelian groups of rank 2, which arise as the orbit equivalence
relations of the actions of GL2(Q) on the standard Borel spaces Rp(Q2). The next
breakthrough occurred when Adams [1], by combining the use of Zimmer’s cocycle
superrigidity theorem with Ratner’s measure classification theorem [29], developed a
method for distinguishing between the orbit equivalence relations arising from suit-
ably chosen actions of (not necessarily distinct) lattices �, � in the same higher
rank semisimple Lie group G. (This idea had already been successfully exploited in
the measure-theoretic setting by Zimmer [39] and Furman [9].) It quickly became
clear that Adams’ techniques were applicable to a wide range of natural problems
concerning countable Borel equivalence relations. For example, combining the ideas
of Adams [1] and Gefter–Golodets [10], it is straightforward to show that if n ≥ 3,
then the orbit equivalence relations arising from the following uncountable family of
SLn(Z)-actions are pairwise incomparable with respect to Borel reducibility.

Example 2.10 (Gefter–Golodets [10]). Fix some integer n ≥ 2 and for each nonempty
set ∅ �= J ⊆ P of primes, let

Kn(J ) =
∏
p∈J

SLn(Zp),

where Zp is the ring of p-adic integers. Then Kn(J ) is a compact group and we
can regard SLn(Z) as a subgroup of Kn(J ) via the diagonal embedding. Let μJ be
the Haar probability measure on Kn(J ) and let EJ be the orbit equivalence relation
arising from the free action of SLn(Z) on Kn(J ) via left translations. By the Strong
Approximation Theorem [28], SLn(Z) is a dense subgroup of Kn(J ) and this implies
that SLn(Z) acts ergodically on (Kn(J ), μJ ).

Theorem 2.11 (Thomas [32]). Fix some integer n ≥ 3. If J0 �= J1 are distinct
nonempty subsets of P, then EJ0 and EJ1 are incomparable with respect to Borel
reducibility.

The measure-theoretic analogue of this result was proved earlier by Gefter–Golo-
dets [10], who showed that for distinctJ0 �= J1, the actions of SLn(Z)on (Kn(J0), μJ0)
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and (Kn(J1), μJ1) are not weakly orbit equivalent. More recently, Furman [9] has
shown that for many free ergodic actions of lattices � on probability spaces (X, μ),
both the group � and its action on X are “almost uniquely determined” by the orbit
equivalence relation EX

� and the measure μ. More precisely, in our particular case,
Furman’s result takes the following form. (It is easily seen that if J0 �= J1, then the
actions of SLn(Z) on (Kn(J0), μJ0) and (Kn(J1), μJ1) are not virtually isomorphic.
Thus the following result is strictly stronger than that of Gefter–Golodets [10].)

Theorem 2.12 (Furman [9]). Let n ≥ 3 and let J be a nonempty subset of P. Suppose
that � is an arbitrary countable group with a free ergodic action on the probability
space (Y, ν). If the actions of SLn(Z), � on the probability spaces (Kn(J ), μJ ),
(Y, ν) are weakly orbit equivalent, then:

(a) SLn(Z) and � are virtually isomorphic; and

(b) the actions of SLn(Z), � on the probability spaces (Kn(J ), μJ ), (Y, ν) are
virtually isomorphic.

Here two countable groups G0, G1 are said to be virtually isomorphic iff there
exist subgroups Hi � Gi of finite index and finite normal subgroups Ni � Hi for
i = 0, 1 such that H0/N0 ∼= H1/N1; and the free ergodic actions of G0, G1 on the
probability spaces (X0, μ0), (X1, μ1) are said to be virtually isomorphic iff, after
passing to ergodic components, the induced actions of H0/N0, H1/N1 on the factor
spaces (X0, μ0)/N0, (X1, μ1)/N1 are isomorphic.

No analogues of Furman’s results have yet been proved in the purely Borel setting,
where all of the currently known superrigidity results impose very restrictive condi-
tions on both the domain and the range of the relevant Borel bireduction. However, it
seems reasonable to conjecture that the corresponding strengthening of Theorem 2.11
also holds in this setting.

Conjecture 2.13. The conclusion of Theorem 2.12 remains true if weak orbit equiv-
alence is replaced by Borel bireducibility.

It is not known whether the analogue of Theorem 2.11 also holds when n = 2.
Here the main obstacle is the failure of Zimmer’s cocycle superrigidity theorem for
the low rank Lie group SL2(R). For the same reason, it is also not known whether
or not these SL2(Z)-actions are (weakly) orbit equivalent. Since SL2(Z) contains the
free group F2 on two generators as a subgroup of finite index, a positive solution of
the following problem would also provide uncountably many “natural” F2-actions
which are pairwise neither Borel bireducible nor weakly orbit equivalent. Currently
only three nonsmooth F2-actions are known up to Borel bireducibility. On the other
hand, in the measure-theoretic setting, Gaboriau–Popa [11] have recently constructed
uncountably many F2-actions which are pairwise not weakly orbit equivalent.

Conjecture 2.14. If J0 �= J1 are distinct nonempty sets of primes, then the actions
of SL2(Z) on (K2(J0), μJ0) and (K2(J1), μJ1) are neither comparable with respect
to Borel bireducibility nor weakly orbit equivalent.
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We obtain a more manageable problem if we replace the lattice SL2(Z) by

�S = SL2(Z[1/p1, . . . , 1/pt ]),
where S = {p1, . . . , pt } is a nonempty finite set of primes. Of course, �S is no longer
a lattice in SL2(R). However, if we identify �S with its image under the diagonal
embedding into

G = SL2(R) × SL2(Qp1) × · · · × SL2(Qpt ),

then �S is a lattice in G and Zimmer’s cocycle superrigidity theorem holds for G.
Furthermore, by Margulis–Tomanov [26], the analogue of Ratner’s measure classifi-
cation theorem also holds for G. For each nonempty (possibly infinite) set of primes
J such that S ∩J = ∅, let EJ

S be the orbit equivalence relation arising from the action
of �S on

K2(J ) =
∏
p∈J

SL2(Zp)

by left translations, where �S is regarded as a subgroup of K2(J ) via the diagonal
embedding.

Theorem 2.15 (Thomas [34]). Suppose that S0, S1 are nonempty finite sets of primes
and that J0, J1 are nonempty (possibly infinite) sets of primes such that S0 ∩ J0 =
S1 ∩ J1 = ∅. If (J0, S0) �= (J1, S1), then E

J0
S0

and E
J1
S1

are incomparable with respect
to Borel reducibility.

The proof of Theorem 2.15 easily extends to the more general situation of �S-
actions on homogeneous K2(J )-spaces. For example, it is well-known that the com-
pact group SL2(Zp) acts transitively on the projective line Qp ∪ {∞} over the field of
p-adic numbers.

Theorem 2.16 (Thomas [34]). Suppose that p, q are primes and that S, T are finite
nonempty sets of primes such that p /∈ S, q /∈ T . If (p, S) �= (q, T ), then the orbit
equivalence relations of �S , �T on the projective lines Qp ∪ {∞}, Qq ∪ {∞} are
incomparable with respect to Borel reducibility.

As we shall see in the next section, a variant of Theorem 2.16 can be used to prove
that if p �= q are distinct primes, then the classification problems for the p-local and
q-local torsion-free abelian groups of rank 2 are incomparable with respect to Borel
reducibility.

3. The classification problem for the torsion-free abelian groups of
finite rank

In this final section, we shall explain how to apply Borel superrigidity to the study of the
classification problem for the torsion-free abelian groups of finite rank. First we shall
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sketch the proof of Theorem 1.10, which says that the complexity of the isomorphism
relation ∼=n for the torsion-free abelian groups of rank n increases strictly with the
rank n. This will be followed by a sketch of the proof of Theorem 1.14, which says
that if p �= q are distinct primes, then the classification problems for the p-local and
q-local torsion-free abelian groups of rank 2 are incomparable with respect to Borel
reducibility.

Recall that for each m ≥ 1, the isomorphism relation ∼=m is precisely the orbit
equivalence relation arising from the natural action of GLm(Q) on the standard Borel
space R(Qm) of torsion-free abelian groups of rank m. In the last section, we saw
that if � is a lattice in a higher rank centerless simple Lie group G and � has a free
ergodic action on the probability space (X, μ), then the orbit equivalence relation
EX

� “encodes” the ambient Lie group G. More precisely, suppose that � is also a
lattice in a centerless simple Lie group H and that � has a free ergodic action on the
probability space (Y, ν). By Theorem 2.7, if EX

� ≤B EY
�, then G is involved in H ;

and, in particular, it follows that dim G ≤ dim H . This certainly suggests that the
orbit equivalence relation of GLn+1(Q) on R(Qn+1) should not be Borel reducible to
the orbit equivalence relation of GLn(Q) on R(Qn). Unfortunately, we cannot apply
Theorem 2.7 directly to our situation, since:

(i) GLm(Q) is not a lattice.

(ii) There does not exist a GLm(Q)-invariant probability measure on R(Qm).

(iii) GLm(Q) does not act freely on R(Qm).

Fortunately, none of these difficulties is insurmountable. Suppose that n ≥ 2 and that
f : R(Qn+1) → R(Qn) is a Borel reduction from ∼=n+1 to ∼=n. First, following the
example of Hjorth [13] and Adams–Kechris [2], we shall use the following result to
deal with points (i) and (ii).

Theorem 3.1 (Hjorth [13]). For each m ≥ 2, there exists a nonatomic SLm(Z)-
invariant ergodic probability measure μ on R(Qm).

In fact, Hjorth [13] has shown that for each prime p ∈ P, there exists a nonatomic
SLm(Z)-invariant ergodic probability measure μp on R(Qm) which concentrates on
the Borel subspace Rp(Qm) of p-local groups. Later in this section, we shall sketch
a proof of this result in the special case when m = 2.

Continuing the proof of Theorem 1.10, let E be the orbit equivalence relation
arising from the action of the subgroup SLn+1(Z) of GLn+1(Q) on R(Qn+1). Then
we can regard f as a countable-to-one Borel homomorphism from E to ∼=n; and
Theorem 1.10 is an easy consequence of the following result. (As we shall see, most
of our effort during the proof of Theorem 3.3 will go into dealing with point (iii).)

Definition 3.2. If E, F are equivalence relations on the standard Borel spaces X, Y ,
then the Borel map f : X → Y is a Borel homomorphism from E to F iff

xEy implies f (x)Ff (y) for all x, y ∈ X.
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Theorem 3.3 (Thomas [32]). Let m ≥ 3 and let X be a standard Borel SLm(Z)-space
with an invariant ergodic probability measure μ. Suppose that 1 ≤ n < m and that
f : X → R(Qn) is a Borel homomorphism from EX

SLm(Z) to ∼=n. Then there exists
an SLm(Z)-invariant Borel subset M with μ(M) = 1 such that f maps M into a
single ∼=n-class.

Hence, letting μ be a nonatomic SLn+1(Z)-invariant ergodic probability mea-
sure on R(Qn+1), there exists an SLn+1(Z)-invariant Borel subset M ⊆ R(Qn+1)

with μ(M) = 1 such that f maps M into a single ∼=n-class C. However, this is
impossible, since f −1(C) consists of only countably many SLn+1(Z)-orbits. Hence
(∼=n) <B (∼=n+1) for all n ≥ 2.

Next we shall sketch the proof of Theorem 3.3. Suppose that m ≥ 3 and that X

is a standard Borel SLm(Z)-space with an invariant ergodic probability measure μ.
Suppose further that 1 ≤ n < m and that f : X → R(Qn) is a Borel homomorphism
from EX

SLm(Z) to ∼=n. We shall make use of the following variant of Theorem 2.7,
which is a straightforward consequence of Zimmer’s cocycle superrigidity theorem
[38] and the ideas of Adams–Kechris [2].

Theorem 3.4 (Thomas [31]). Let m ≥ 3 and let X be a standard Borel SLm(Z)-space
with an invariant ergodic probability measure μ. Suppose that H � G(Q), where G

is an algebraic Q-group such that dim G < m2 − 1, and that H acts freely on the
standard Borel H -space Y . If f : X → Y is a Borel homomorphism from EX

SLm(Z)

to EY
H , then there exists an SLm(Z)-invariant Borel subset M ⊆ X with μ(M) = 1

such that f maps M into a single H -orbit.

As we mentioned earlier, the action of GLn(Q) on R(Qn) is not free: in fact, for
each A ∈ R(Qn), the stabilizer of A in GLn(Q) is precisely the automorphism group
Aut(A) of A. Thus we are not yet in a position to apply Theorem 3.4.

Remark 3.5. This is actually a serious problem. The proof of Theorem 3.4 makes
essential use of Zimmer’s cocycle superrigidity theorem; and if H does not act freely
on Y , then it impossible to define the associated cocycle on which the proof depends.

From now on, let Ax = f (x) ∈ R(Qn). Roughly speaking, our strategy will be
as follows. Suppose that there exists a Borel subset X0 ⊆ X with μ(X0) = 1 and
a fixed subgroup L � GLn(Q) such that Aut(Ax) = L for all x ∈ X0. Then the
equivalence relation ∼=n� f (X0) will be induced by a free action of the quotient group
H = NGLn(Q)(L)/L on the Borel subset

Y = {A ∈ R(Qn) | Aut(A) = L}
of R(Qn). Hence, provided that the quotient group H is isomorphic to a subgroup of an
algebraic Q-group G(Q) with dim G < m2 − 1, we can apply Theorem 3.4. But why
should X0 and L exist? Imagine for the moment that there are only countably many
possibilities for the subgroup Aut(Ax) � GLn(Q). Then there exists a Borel subset
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Z ⊆ X with μ(Z) > 0 and a fixed subgroup L � GLn(Q) such that Aut(Ax) = L

for all x ∈ Z. Since SLm(Z) acts ergodically on (X, μ), it follows that

X0 = {γ · x | γ ∈ SLm(Z) and x ∈ Z}.
has μ-measure 1. Let g : X → SLm(Z) be a Borel function such that g(x) · x ∈ Z

for all x ∈ X0. Then, replacing f by the Borel homomorphism f ′ defined by
f ′(x) = f (g(x) · x), we can suppose that Aut(Ax) = L for all x ∈ X0.

Unfortunately, this approach does not work, since there are uncountably many
possibilities for the subgroup Aut(Ax) � GLn(Q). In order to get around this dif-
ficulty, we shall shift our attention from the isomorphism relation on R(Qn) to the
coarser relation of quasi-isomorphism. This relation was first introduced in Jónsson
[18], where it was shown that the class of torsion-free abelian groups of finite rank has
a better decomposition theory with respect to quasi-isomorphism than with respect to
isomorphism. This decomposition theory will not concern us in this article. Rather
we shall exploit the fact that much of the number-theoretical complexity of finite
rank torsion-free abelian groups is lost when they are only considered up to quasi-
isomorphism; and this turns out to be enough to ensure that there are only countably
many possibilities for the group of quasi-automorphisms of A ∈ R(Qn).

Definition 3.6. If A, B ∈ R(Qn), then A and B are said to be quasi-equal, written
A ≈n B, iff A ∩ B has finite index in both A and B.

Definition 3.7. If A, B ∈ R(Qn), then A and B are said to be quasi-isomorphic iff
there exists ϕ ∈ GLn(Q) such that ϕ[A] ≈n B.

It is easily checked that ≈n is a countable Borel equivalence relation on R(Qn).
For each A ∈ R(Qn), let [A] be the ≈n-class containing A. We shall consider the
induced action of GLn(Q) on the set of ≈n-classes. In order to describe the setwise
stabilizer in GLn(Q) of a ≈n-class [A] , it is first necessary to introduce the notions
of a quasi-endomorphism and a quasi-automorphism. If A ∈ R(Qn), then a linear
transformation ϕ ∈ Matn(Q) is said to be a quasi-endomorphism of A iff there exists
an integer m > 0 such that mϕ[A] � A. In other words, ϕ is a quasi-endomorphism
of A iff there exists an integer m > 0 such that mϕ ∈ End(A). It is easily checked that
the collection QE(A) of quasi-endomorphisms of A is a Q-subalgebra of Matn(Q);
and, of course, this implies that there are only countably many possibilities for QE(A).
A linear transformation ϕ ∈ Matn(Q) is said to be a quasi-automorphism of A iff ϕ is
a unit of the Q-algebra QE(A); and the group of quasi-automorphisms of A is denoted
by QAut(A).

Lemma 3.8 (Thomas [31]). If A ∈ R(Qn), then QAut(A) is the setwise stabilizer
of [A] in GLn(Q).

In particular, there are only countably many possibilities for the setwise stabilizer
of [A] in GLn(Q). Hence, arguing as above, we can suppose that there exists a Borel
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subset X0 ⊆ X with μ(X0) = 1 and a fixed subgroup L � GLn(Q) such that L is
the setwise stabilizer of [Ax] for all x ∈ X0; and this implies that the quotient group
H = NGLn(Q)(L)/L acts freely on the corresponding set Y = {[A] | QAut(A) = L}
of ≈n-classes.

Lemma 3.9 (Thomas [31]). There is an algebraic Q-group G with dim G < m2 − 1
such that H � G(Q).

Consequently, we are now positioned to apply Theorem 3.4 … except for one
last complication. Unfortunately, the equivalence relation ≈n is not smooth and this
means that Y is not a standard Borel space. However, this turns out not to be a serious
difficulty. As shown in Thomas [31], the equivalence relation ≈n is hyperfinite (which
is only slightly more complicated than smooth) and Theorem 3.4 is easily extended
to cover induced free actions on quotients of standard Borel spaces by hyperfinite
equivalence relations.

Remark 3.10. The above argument does not go through in the case when n = 1
because of the failure of Zimmer’s cocycle superrigidity theorem for the low rank Lie
group SL2(R). However, as we mentioned earlier, this case had already been dealt
with by Hjorth [13], who gave a completely elementary proof that (∼=1) <B (∼=2),
based upon the fact that GL1(Q) = Q∗ is amenable and GL2(Q) is nonamenable.

In the remainder of this section, we shall sketch the proof of Theorem 1.14. This
involves trying to understand the orbit equivalence relation ∼=p

2 of the classical group
GL2(Q) on the highly non-classical space Rp(Q2) of p-local torsion-free abelian
groups of rank 2. Fortunately, using the invariants of Kurosh–Malcev [22], [25], it is
possible to replace Rp(Q2) by a much more intelligible space.

Definition 3.11. For each prime p, let Ep be the orbit equivalence relation arising
from the natural action of GL2(Q) on the projective line Qp ∪ {∞} over the field of
p-adic numbers.

Theorem 3.12 (Thomas [31]). (∼=p
2 ) ∼B (Ep).

Thus Theorem 1.14 is an immediate consequence of the following result.

Theorem 3.13 (Hjorth–Thomas [16]). If p �= q are distinct primes, then the orbit
equivalence relations Ep, Eq of GL2(Q) on the projective lines Qp ∪{∞}, Qq ∪{∞}
are incomparable with respect to Borel reducibility.

Sketch proof of Theorem 3.12. Following Kurosh–Malcev [22], [25], we shall de-
scribe how to assign points VA ∈ Qp ∪ {∞} to the p-local groups

{A ∈ Rp(Q2) | A � Q ⊕ Q, Z(p) ⊕ Z(p)}
such that:

• A ∼= B iff the corresponding points VA, VB lie in the same GL2(Q)-orbit;
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• for each point V ∈ Qp ∪ {∞}, there exists a corresponding group A such that
VA = V .

The result then follows easily from the fact that there are only countably many groups
A ∈ Rp(Q2) such that A ∼= Q ⊕ Q, Z(p) ⊕ Z(p).

It is first necessary to discuss the p-adic completion Â of each p-local group
A ∈ Rp(Q2), which is defined as follows. For the remainder of this proof, we shall
regard Q2 as an additive subgroup of the 2-dimensional vector space Q2

p over the field
of p-adic numbers; and we shall regard GL2(Q) as a subgroup of GL2(Qp). For each
A ∈ Rp(Q2), let Â = Zp ⊗ A; i.e. Â is the subgroup of Q2

p consisting of all finite
sums

γ1a1 + γ2a2 + · · · + γtat ,

where γi ∈ Zp and ai ∈ A for 1 ≤ i ≤ t . Then, while A usually has a very complex
structure, Â always decomposes into a direct sum of copies of Zp and Qp. In fact,

assuming that A � Q ⊕ Q, Z(p) ⊕ Z(p), there exist elements vA, wA ∈ Â such that

Â = QpvA ⊕ ZpwA.

(See Fuchs [8].) Let VA = QpvA. If A ∼= B, then there exists ϕ ∈ GL2(Q) such
that ϕ[A] = B. This implies that ϕ[Â] = B̂ and it follows easily that ϕ[VA] = VB .
Conversely, suppose that there exists ϕ ∈ GL2(Q) such that ϕ[VA] = VB . Since
the nontrivial proper Zp-submodules of Qp are precisely {p�Zp | � ∈ Z}, after
composing ϕ with a suitable transformation v �→ p�v if necessary, we can suppose

that ϕ[Â] = B̂. Since Â ∩ Q2 = A and B̂ ∩ Q2 = B, it follows that ϕ[A] = B.
Thus the GL2(Q)-orbit of the point VA ∈ Qp ∪ {∞} is a complete invariant for those
A ∈ Rp(Q2) such that A � Q ⊕ Q, Z(p) ⊕ Z(p). �

Remark 3.14. It is now easy to prove that for each prime p ∈ P, there exists a
nonatomic SL2(Z)-invariant ergodic probability measure μp on R(Q2) which con-
centrates on the Borel subspace Rp(Q2) of p-local groups. We have just seen how
to assign a corresponding point VA ∈ Qp ∪ {∞} to each A ∈ Rp(Q2) such that
A � Q ⊕ Q, Z(p) ⊕ Z(p). Conversely, for each point V ∈ Qp ∪ {∞}, there exists a
corresponding group A such that VA = V . In fact, there exist countably many such
groups. However, if we restrict our attention to the SL2(Z)-invariant Borel subset
X(Q2) consisting of those A ∈ Rp(Q2) such that

(i) A � Q ⊕ Q, Z(p) ⊕ Z(p),

(ii) Z2
(p) � A and Z2

(p) � pA,

then we obtain a one-to-one correspondence. In summary, the map

X(Qm) → Qp ∪ {∞},
A �→ VA,
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is a Borel bijection satisfying ϕ[VA] = Vϕ[A] for all ϕ ∈ SL2(Z) and A ∈ X(Q2).
Hence the result follows from the observation that there exists a nonatomic SL2(Z)-
invariant ergodic probability measure νp on Qp ∪ {∞}. To see this, recall that the
compact group K = SL2(Zp) acts transitively on Qp ∪ {∞}. Hence, letting L be the
stabilizer in K of some point of Qp ∪ {∞}, we can identify the K-spaces Qp ∪ {∞}
and K/L. Let νp be the Haar probability measure on K/L. Since SL2(Z) is a dense
subgroup of K , it follows that νp is the unique SL2(Z)-invariant probability measure
on K/L and hence SL2(Z) acts ergodically on (K/L, νp).

The above argument easily generalizes to show that for all m ≥ 2, there ex-
ists a nonatomic SLm(Z)-invariant ergodic probability measure μp on R(Qm) which
concentrates on the Borel subspace consisting of those A ∈ Rp(Qm) such that
dim A/pA = 1. (For example, see Thomas [31].)

Finally we shall sketch the proof of Theorem 3.13. Recall that if S = {p1, . . . , pt }
is a nonempty finite set of primes, then

�S = SL2(Z[1/p1, . . . , 1/pt ]).
Also let �∅ = SL2(Z). As we shall see, Theorem 3.13 is an easy consequence of the
following variant of Theorem 2.16, together with a crucial result of Hjorth [16].

Theorem 3.15 (Thomas [34]). Suppose that p �= q are distinct primes and that S is
a (possibly empty) finite set of primes. Let

• E1 be the orbit equivalence relation induced by the action of SL2(Z[1/q]) on
Qp ∪ {∞}, and

• E2 be the orbit equivalence relation induced by the action of �S on Qq ∪ {∞}.
If f : Qp ∪ {∞} → Qq ∪ {∞} is a Borel homomorphism from E1 to E2, then there
exists a μp-measure 1 subset which is mapped to a single E2-class.

Remark 3.16. The basic theme of Borel superigidity theory is that, under suitably
strong hypotheses, every nontrivial Borel homomorphism is a “slight perturbation”
of a virtual homomorphism of the corresponding measure-preserving permutation
groups. In the statement of Theorem 3.15, the group SL2(Z[1/q]) was chosen because
its actions on Qp ∪ {∞} and Qq ∪ {∞} are extremely incompatible; namely, while
SL2(Z[1/q]) preserves the p-adic probability measure on Qp ∪ {∞}, there are no
SL2(Z[1/q])-invariant probability measures on Qq ∪ {∞}.

Sketch proof of Theorem 3.13. Suppose that f : Qp ∪ {∞} → Qq ∪ {∞} is a Borel
reduction between the orbit equivalence relations induced by the GL2(Q)-actions.
Then we can regard f as a countable-to-one Borel homomorphism between the
SL2(Z[1/q])-action on Qp ∪ {∞} and the GL2(Q)-action on Qq ∪ {∞}. Using a
suitable Cocycle Reduction Theorem of Hjorth [16], we can “adjust” f to obtain a
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countable-to-one Borel homomorphism f ′ : Qp ∪ {∞} → Qq ∪ {∞} between the
orbit equivalence relation induced by the SL2(Z[1/q])-action on Qp ∪ {∞} and the
orbit equivalence relation induced by the �S-action on Qq ∪ {∞} for some finite set
of primes S, which contradicts Theorem 3.15. �

In view of Remark 1.17, it would be interesting to know whether ∼=p
2 is an imme-

diate successor of ∼=1 with respect to ≤B . Equivalently:

Question 3.17. Let Ep be the orbit equivalence relation arising from the action of
GL2(Q) on the projective line Qp ∪{∞} over the field of p-adic numbers. Does there
exist a (countable) Borel equivalence relation E such that E0 <B E <B Ep?
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