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1. Introduction.

Let (M,g) be an n dimensional compact, smooth, Riemannian manifold
without boundary. For n = 2, the Uniformization Theorem of Poincaré says
that there exist metrics on M which are pointwise conformal to g and have
constant Gauss curvature. For n > 3, the well known Yamabe conjecture
states that there exist metrics on M which are pointwise conformal to g and
have constant scalar curvature. The Yamabe conjecture has been proved
through the work of Yamabe [Y], Trudinger [T], Aubin [A], and Schoen
[S1]. See Lee and Parker [LP] for a survey. See also Bahri and Brezis [BB],
Bahri [B], and Schoen [S2-3] for works on the problem and related ones.

Analogues of the Yamabe problem for compact Riemannian manifolds
with boundary have been studied by Cherrier, Escobar, and others. In
particular, Escobar proved in [E2] that a large class of compact Riemannian
manifolds with boundary are conformally equivalent to one with constant
scalar curvature and zero mean curvature on the boundary. See also [E3]-
[E5] for related results.

From now on in the paper, (M, g) denotes some smooth compact n di-
mensional Riemannian manifold with boundary, unless we specify otherwise.

We use M° to denote the interior of M, and Bé‘vf the boundary 05 M. Weguse
n— n—
n=1) B, to denote o +Th.g,
where v is the outward unit normal on &M with respect to g, and hg to de-
note the mean curvature of 8M with respect to the inner normal (balls in

R™ have positive mean curvatures).

1Partially supported by NSF grant DMS-9704488, a Rutgers University Research
Council Grant and a Rutgers University Minority Faculty Development Grant.

2Partially supported by the Alfred P. Sloan Foundation Research Fellowship and
NSF grant DMS-9706887.

L, to denote Ay—c(n) Ry, where ¢(n) is
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) Lrit u > 0 be some positive function on M, and consider the metric
g =u¥"=2g. The scalar curvature R; can be calculated as

4(n — n
i A S‘—Ql)u-ﬁg gl

and the mean curvature hj can be calculated as

D il
hs = == 2u »~2 Bou.
Thus the boundary value problem
(11) —Lgu = n(n — 2) Rum+2)/(n=2), u >0, in M°,
Byu = cu™ ("2 on M

for some constants R and c, is equivalent to saying that (M, g) has constant
scalar curvature in M° and constant mean curvature on M. We remark
that R can be taken to be 0, or +1 after scaling.

Consider the following eigenvalue problem on (M, g):

— Loy = Ay, in M°,
Bgp =0, on M.

Let A1 (M) denote the first eigenvalue. It is well know that

A (M) = -— fM (lV‘P‘? + C(n)Rg‘PQ) S nT_2 faM hg‘PQ
peH1(M)\{0} Ju #* 3

We say that a manifold M is of positive (negative, zero) type if \; (M) >0
(< 0,=0). This notion is conformally invariant. The R will be scaled to 1
—1, or 0, according to whether M is of positive, negative, or zero type. Wé
will use M. to denote the set of solutions of (1.1) in C2(M).

Consider

Q) = L Vel + ) Ryy)
(S lelm=3) =

for o € HY(M)\ {0}. It is clear that, up to some harmless positive constant,
% € Mo for any positive critical point of the functional Q.
The Sobolev quotient of (M, g) is given by

Q(M, g) = inf{Q(p) | ¢ € H'(M)\ {0}}.

The existence of conformal metrics with constant scalar curvature 811

It is clear that Q(M, g) is positive if the first eigenvalue of —L, is positive,
is negative if the first eigenvalue of —L, is negative, and is zero if the first
eigenvalue of —L, is zero.

Cherrier proved in [C] that, similar to the Yamabe problem, Q(M, g) is
achieved if

(1.2) Q(M, g) < Q(S}, o),

where (S7, go) denotes the standard half sphere. In the same paper he also
showed the regularity of solutions to such problems. For a large class of
manifolds, Escobar established (1.2) in [E2], thus showed Mg # ¢. In [E3],
Escobar obtained existence of solutions of (1.1) for the case of R = 0 and
¢ an arbitrary constant. More recently, Escobar showed in [E4] that, under
the same hypotheses as in [E2], there exist ¢* > 0 and ¢~ < 0 such that
M+ # ¢ and M, # ¢. Naturally one wonders whether M. # ¢ for all
¢ € R*. We proposed in [HL1] two conjectures concerning this. Before
stating the conjectures and the main result there, we first give the following
natural subcritical approximation of (1.1), introduced in [HL1],

_Lgu=n(n—2)up, ’U>0, in MD'.'
(*)p,e

Byu= cuPt)/2 on M,

herec € Rand 1 < p < (n+2)/(n—2). Let M, denote the set of solutions
of (¥)p,c in C2(M). Here, we have set R =1 to restrict ourselves to the case
for manifolds of positive type. As is well known, the existence problems are
more difficult for this case.

Conjecture 1. Let (M, g) be a smooth compact n dimensional Riemannian
manifold with boundary of positive type. Then for all c € R, M. # ¢.

Conjecture 2. Let (M, g) be a smooth compact n dimensional Riemannian
manifold with boundary of positive type which is not conformally equivalent
to the standard half sphere. Then for all € > 0, there exist positive constants
8 = &o(M, g,¢) and C = C(M, g,¢) > 0 such that

1/C<u(z)<C, VzeM; |ullcm <G,

for all u € ( Un+2)/(n—2)—8o<p<(n+2)/(n—2) U|c|53Mp.C)'

We have established in [HL1] both Conjecture 1 and Conjecture 2 when
(M, g) is a smooth compact n (n > 3) dimensional locally conformally
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flat Riemannian manifold of positive type with umbilic boundary, and have
shown in [HL1] that Conjecture 1 can be deduced from Conjecture 2. We re-
call that M has umbilic boundary if every boundary point is umbilic, i.e., the
second fundamental form at the point is a constant multiple of the metric.
In this paper, we establish Comjecture 1 when (M, g) is a smooth compact
n (n > 5) dimensional Riemannian manifold of positve type with at least
one non-umbilic point on M. More precisely, we have

Theorem 1.1. For n > 5, let (M, g) be a smooth compact n dimensional

Riemannian manifold of positve type with at least one non-umbilic point on
OM. Then M. # ¢ for allc € R.

Remark 1.1. Further existence results will be given in a forthcoming paper
[HL3].

In the remaining of this section, we describe our approach to the proof
of Theorem 1.1 and the issues involved.

We establish Theorem 1.1 by variational methods. It is easy to verify
that a nontrivial critical point of the functional

_1 2, n—2 2|, n—2 2
I(u)—-2 M[|Vu| +4(n“1)Rgu]+ y athu

_(n—2)2/ i (n=2) T

2 M(u ) 2(n—1)° aM(u Hidy

is a solution of (1.1). It is known that I € C?(H(M),R).
We find a nontrivial critical point of I (u) using the following Mountain
Pass Lemma of Amborsetti and Rabinowitz [AR].

Mountain Pass Lemma (MPL). Let X be a Banach space and I €
C'(X,R). Suppose that I(0) = 0 and that there ezists 0 # ug € X such that
I(uo) < 0. Let ' denote the set of continuous paths in X connecting 0 and
ug and define Inp = infer SUPye, I(u). Suppose that Inp > 0 and that I
satisfies the (PS) condition at level Inp. Then Iy, is a critical value of I.

The nonlinearities in our functional I are of critical growth. It is known
that, in general, the (PS) condition is not satisfied in the presence of such
nonlinearities. However, it will be verified in Appendix A (see Lemma 1.2
below) that I satisfies the (PS) condition below certain threshold level S.
Recovery of compactness of (PS) sequences below certain threshold level
was used by Brezis and Nirenberg in [BN], and has since been used in many
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contexts. Our contribution lies in reducing the verification of Inp's staying
below the threshold to an extremal problem on spherical caps with the
standard metric. See the end of this section and the beginning of section 3
for details.

Let us first introduce some quantities and define S.. Let

n—2

1 2
W mw%=(L+wP+pn-nP) ’

where T, = ——£5. Then u; solves

—Auy =n(n - 2)u£“+2)/("_2), in R},

‘%1 = —cu?“"“z), on 2, =0,
We also define
2n 2(n—-1
ag = / [Vug | by = ur™?; and dp=c R
R} R} oR?:

If we multiply the equation of u; by u; and integrate by parts, we obtain
the relation

(1.4) ag = n(n — 2) by + do.
Now we set
i B0 (n— 2)260.
7 2n-1)" 2(n-1)
This is the threshold level mentioned earlier.
As stated earlier, I satisfies (PS) at levels below S,. For simplicity, we do

not prove this here, instead we establish the following weaker result which
is, as well known, enough in establishing the existence result via (MPL).

Lemma 1.2. Suppose A\1(M) > 0. Let {u;} C H'(M) be a sequence of
functions satisfying,

(1.5) I(u;)) = b< S,
and
(1.6) Hdul

veHI(M)\{0} ||v||

Then after passing to a subsequence, either {u;} weakly converges in H'(M)
to some solution of (1.1) or converges strongly to 0 in H(M).
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The proof will be deferred to Appendix A. Since we are assuming
A1(M) > 0, it is easy to see that for some rg > 0 and ¢y > 0, we have
I(u) > €o,Vu with ||u|| = ro. For any nonzero u in H'(M), due to the
exlicit form of I, I(tu) < 0 for large t. Therefore, for any nonzero u, we can
take ug = tu for sufficiently large ¢ and define I,,,, as in the statement of
MPL. All we are left to prove is that

(1.7) omax I(tu) < S
for appropriate choice of u.

In the cases to be treated in this paper, i.e., when M is assumed to
have a non-umbilic point, we are going to choose a localized test function
to achieve (1.7) as follows. In local coordinates near a non-umbilic point of
OM, we choose u in the form of

(18) u(z) = €7 P(2) [ui(z/€) + 6¢(z/e)],

for some appropriate choice of ¢, where € and § are small parameters, ¥ is
a cut-off function to be specified later. For any u given in (1.8), if we take
¢ to be smooth with compact support, then we will show that, for €,6 > 0
small, we have

(1.9) omax I(tu) = Sc+ Q16 + Q20% + Q3 + o(€? + 6?),

where @ is a linear functional in ¢ given in (2.4), Q3 is a quadratic func-
tional in ¢ given in (7?), and Q3 is a number expressed in terms of n,c,
and geometric data of M at the point, as given in (2.9). We remark that
Q2 > 0, for any choice of ¢, as will be shown in section 3. It is clear from
(1.9) that a sufficient condition to achieve (1.7) is to find a ¢ such that

(1.10) Q1(¢) — 4Q2(8)Q3 > 0.

When ¢ < 0, @3 < 0 from the explicit expressions of Qs, and there is an
easy choice of ¢ to achieve (1.10). For ¢ > 0, Q3 > 0, and there is no obvious
choice of ¢ to achieve (1.10).

The novelty of our systematic search of the test function u in the form
(1.8) is to have reduced the search to an extremal problem in the Euclidean
half space. It comes from extremizing (1.10) in the form of

) Q2(¢)
S s, nt , Q?(qﬁ)) e
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This leads to the analysis of an eigenvalue problem on spherical caps with
Robin type boundary conditions. This is set up as (3.7) in section 3. (1.11)
can be expressed in terms of the eigenvalues y;’s, as given in (3.8). In section
3, we obtain recursive formulae for computing the eigenvalues u; and the
corresponding eigenfunctions. We also prove that the quadratic form Q, is
non-negative definite, and identify its kernel. For the verification of (3.8),
we need to express the first two terms in (3.8) explicitly in terms of the
eigenfunctions associated with us and p3. We also need some estimate on
po and p3. These are done in section 4. At the end of section 4, we complete
our proof of Theorem 1.1.

2. Expressions for Q;,Q2, @3 and the case of ¢ < 0.

In this section, we derive the expressions for Q,Qs, and Q3. As a prelim-
inary step, we will choose a test function u and compute maxo<i<oo I(tu).
We will specify u later. For the moment, we have, schematically, for ¢t > 0,

'E:I 3 (n 2 =

a (n—2)2
I t = - 2 _ _— — t n—
(e} =5t g 2(».»1_—1)”E e
where
n—2 n—2
= /M [|Vu|g -1 ngu2] Vg ) AM hg uszaM,
b=/ (ut) "2 duyy,

M

and

—C/ (‘u+) " dugy.

Simple calculus shows that

max I(tu) = s e = .
0<t<oo 2(n—1) 2(n—-1) ’
where t > 0 solves B 1
a=n(n—2)bt"2 +dt=-2,
from which we obtain

n—2

e {—d-}- Vd%+4n(n — 2)(;:&:}T

2n(n — 2)b
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We are going to choose u in the form of €_“_;2¢(:L‘) [u1(z/€) + 6¢(z/€)] in
local coordinates near a non-umbilic point, where € and ¢ are small param-
eters, 9 is a cut-off function, = 1 near the point, and ¢ € C°(R"). We will
show in the following that, for n > 5,

a=ag+ Agd+ Ay €8 + Az 6% + Aze® + o(€? + 6%),

b=bo+ Bod + By €§ + B28% + By €® + o(€® + 6?),

d=dp +D{]5+D1£5+ Dgtsz +D3€2 +0(62+52),

where the A;, B;, and D; are explicitly given in terms of ¢, but independent
of €, 6. From the equation satisfied by ¢, we find the relation

t=1+Tod+T eb+ Ty 6%+ T3e? + o(e® + &%),

where

Ag — n(n 2)30 — Do
dnby + Z5do !

Al —ﬂ(ﬂ ot 2]31 D]_
dnbo + 755 :

Ip =

T =

T2=
Ag—n(n—2)By~ Dy~ (4nBo+ 325 Do) To— (252b0+ i=gado) T3
- 4nbo+;r§do

1

As — n('n —2)B3 - D3
4nb(} A o 22d0

I3 =

Putting these into the expansion for maxo<¢<oco I(tu), we obtain

(2.1) max I(tu)

0<t<oo

=S+ = . [A{} (R—Z)gBo—n 2D0]+£ [Al—(n~—2)231—n_2D1:|
n—1 n—1

52

n—2 (n — 2) [Ao —n(n — 2)Bo —DO]2

2

L [ PR R 2 42
+2[A3 (n—2)"Bs n_lDa]+o(e + 6%).
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To evaluate the A;, B;, and D; in terms of ¢, we first set up convenient
coordinate systems. As in [El], we can assume that g has the property

h(0) = 0, and R;;(0) = 0. Let (z1,---,%,) be normal coordinates around
0 € 8M, such that the second ﬁmda.mental form of @M at 0 has a diagonal
form. Then &M can be expressed near 0 by

n—1
1
an= a1, Zae) = D ghat 4 D aipemizzk+ 029,

i=1 1<i j,k<n—1

So "_1 A; = 0. Recall that in a normal coordinate, g* has the following
expa.nsmn

5% T |
gt_:.' R o _Rik;ja:kx: + O(lxta)’

where R;j; denote the coefficients of the Riemann curvature tensor at 0;

and ,/g = /det(g;;) has the expansion

1
(22) V9 =1-cRiziz; + O(=*).
Let po be a positive number and consider the cylinder

Cpo = Cpo(0) = {(z1,- - :fn)‘“:%"'”'*'mi—l < pt,—po < Tp < po}

and
Ch = CF(0) = {(21,--- ,Zn) € Cpo|zn > 0}.

Let 3 be a smooth cut-off function such that ¥ =1 on C),, is supported in
Capo, and |V¥| < C/po, |V%)| < C/ p§ for some consta.nt C. In the following,

we will assume n > 4 and will choose u = ¥(z) € —27 [ui(z/€) + ¢(z/€)]
and evaluate the A;, B;, Di,i = 0,1,2,3, €, > 0 will be chosen small, 9 is
a cut-off function, and ¢ is assumed to have compact support and will be
chosen later.

/ |Vui§dvg=/. |Vu|3dvg+f |V ul2dv,.
M CpoNM M\C)

0

We calculate the two integrals above separately. First

/ Vul2dv, = O(p3™e"%)
M\Cpq
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by a simple computation. Next

/ |Vul2dv,
CppNM

1
= [Vu 2de, do’ — = R; 'k![ u;wx;ay dr,dz’
fc:,,unM | 3 2Ry M 5

]

+0( / 1P| Vul? day, do').
CpoNM

The first integral gives

")
f |Vu|*de,, do’ = / |Vu|%dz,, de’ — / |Vu)|?dz, do',
CpoNM Byt Jo
with

f |Vu|?dz, dz’
"

]

= / " |V [2dz,d2’ + 62 f X \V|*dznd2’ + 26 f Vu, - V¢

o/« Coole Coose

=a0+52f Vo> +26 | Vui-Vé+0(p2 ") + 0(62 + €2),
Rﬂ.

and

f(=") fle2')/e
f / Vultde, do = f f {IVur |2 +26Vu; -V + 82|V 2]
By Jo B V0

We evaluate them separately.

.f(ez’)/f
Ln 1 /

Fo/=

€ 2)%(|2'|2 + T2
=—ZAif (=22 +T2)
2 7ol 1+ |22+ T2

2 (n—22(2+T3
+ const.e /n-l (1 T |Z'|2 +T]:2)“ ZiZ Z),

(n—2)252Tc (n— 1)(|z"|2 +T‘z s
i 4 / 1+ 122 + T2)n+1 ZM) + E(e)

n — 2)262T, n—1)(|ZP+T2) -1
=( 4)5 /n_ ((1 +)18|2|+Tc2)3+1 Z’\i 2)2+E(£)

y==]
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due to E‘_l Ai = 0 and symmetry, here and in the following E(¢) denotes
a quantity with the following estimate

O(e?) when n > 6,
E(e) = O(€* log £2) when n = 5,
O(€2po) when n = 4.

The other two terms are estimated as

(ez') /e
[Bn——l / |v¢'|2 = O

pole

flest) e n-1
f B f Vi V= S3X f Vuy(#,0) - V(< 0)22 + ofe).
Brore 10 i=1 F=
A simple estimate gives
fc _ IVulaf da, de’ = B(9),

and

(n— 2)_2 Z Rijkl] & UULL T, dr,dx

ppN

= B ZiZjZpz|
‘ /c {Z AP + ]z — TP

po/e i,l{ﬂ

) zizjzg(zn — Tt) (2n — Te)zjzr21
* L P S o = T+ 2o T [ o= T

] (#n — Tc)*252 2, £2
+jzkmm AT 7Pt ooy | T E©) + o€ +87).

Using the symmetry of the Riemann curvature tensor and Ry,(0) = 0, the
first 4 terms of the right hand side above can be combined to become

2-/‘ { R.. ZiZj2k2]
€ kil
Coute uzu A+ [P+ [2a — TP

2TcZn)z_Tzk Cztzjzk
Ry jkn -2
+Z gk (1+|Z'|2+lz —T2)" ZR‘J"“(1+|zr|2+|z —T 2 [
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They all vanish because of the symmetry of the Riemann curvature tensor
and R,,(0) = 0. Therefore

Z Rijn / UWT; T dTpdr’ = E(e) + o(es2 + 62).
CooNM

The other two terms in the expression for a can be estimated simply as

/ Ru’=0 (/ Ix]uz) +0 (/ pou?
M MNCy, (C2pp \Cpp )N M
po/e 2p0/e
=0 (e3f (1+ r)4_"dr) + 0 (62,00 1+ r)sq"dr)
0

Po/e
= B(e),

using Ry(0) = 0. Using the fact that g is geodesic normal coordinate near 0
and that hy(0) = 0, we have

o= [ (@, £, 1) e
oM B

2pg

+o(/ h
Bn—l

g(x!,f(mr))u(xf, f(g:!))2|xfl2dx!)
2p0
+ E(e) + 0(62 + 48%)

- [ Bt 17

2pp i=1

+O(f3.,_

2p0

) u(z’, f(z’))2|z']2dm’) + E(e) + o(€* + 62),

where in the last estimate we used the Taylor expansion for h,(z/, f(z’))
near z’' = 0. Now

O, w1 Pa) =o( [ ¢

= E(e),

= -2),.712 7./
1 €2+|m"'2)n l-'ﬂ'l d:r)

The existence of conformal metrics with constant scalar curvature 821
and

/B"— Za,m,u(m f(2))?

2pp i=1

=€ [B“ . Za,zap(ez Fle2"){uy (2, f(e2')/€)?

2pp/e i=1

+ 20w (2, f(fz’ (92, f(e2') [€) + 8°4(<, f(e2') [€)*}
Za,ziw(ez F(e2)?uy(2', f(e2')/€)?

B;pollé i=1
| 252 || ’
(0] 25/ |—d "1 +0 | €5 —_— 2
i ( o T+ 17 By, (L+ |22

-f S assb(e, f(e2)ur(, f(ed) e+ ofe + 5.

2pg/e 1=1

We require that ¥ (z) = ¢(|z|) for the following estimate. Using the theo-

rem of the mean on v(ez’, f(e2'))?u1 (2, f(e2')/€)?® with respect to the last
component, we compute the remaining integral above by

ol Za,zﬂl)(ez , f(€2')?ur (2, f(e2')/€)?

2pg/e i=1
-1

= f Zaizﬂ,{)(ez 0)%u;(2',0)%d2’

BRCS

2p0/¢ 1=1
M (e2) /el + |Tel | f(e2') el ,
+O (6 f;p;!!t i (1+ szl )n— )
|2'[%1f (e2') /€|
o (“/misferps)

=0+0 (¢ R oo I AT
s " Jop P “ Uy A+ [P
Pa/<

2pp/e
14
o|é TS
( /20 Joges, T 1P

= E(e) + o(€?),
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where on the third line of the above computation, we used the symmetry of
Yu; and the oddness of z;. Putting these together, we obtain, for n > 5,

Ag=2 Vuy - Vo,

R}

n—1
== [ Vui(,0)- V(0
=1 Rn-1

ay= [ Ve,

+

pe DT [ (=D TD -1 (ZAZ ) .

4 Rt (1422 + T2)nH

Next we compute the expansion for b. Since ¢ is assumed to have compact
support, we have u™ = u as long as we choose § small. Then

2n_ 2n_
b= / un-2dyy + / un-2dy,
CpoNM M\C,,

= / unz_:'ﬁdvg + O(é%).
CponM

In view of R;;(0) = 0 and (2.2), it follows that

_2n_ 2n ' f(:l:’) 2
/ un-2dv, =/ un—2dr,dz’ — / un—2dz,dz’
CooNM Cro o | /0

+0 (/ |x|3u%dvg) + 0(e%)
CpoNM

=f umdzndx -
i

n—
PO BPD

f(z,‘) 2‘1
/ un-2dz,dz’ + O(ed).
0

The existence of conformal metrics with constant scalar curvature 823

The first integral can be computed as

2n
/ un—=2
+
CPD

=/+ (u1+5¢)%

po/e
2 2 nt2 n(n + —
=/ {ui‘-z +5_nui\-—2¢+52(—2) uj 2¢2}+O(£ +62)
C+/ n—2 2)
po/e

= [ e ™ -=¢+52_——”(”+23 g2 4o+ 62),
w L n—2" 2)

and the second integral can be computed as

RS flez')/e A
f / aa =[ / (u1 + 6¢) "3
Byt Jo B"_l

nt2
_ ned ZA f ur = (2, 0)¢(<, 0)22

n—1

2
e2nT, ( il z\,z-) )
dz' + E(€) + o(e* + &
4 ro-1 (14 |z"|2 + ‘['2)n+1 o ( ) ( )

Consequently, for n > 5,

2n s
BO 3 n—2 R" ul ¢,
n—1
n —1_'-5
- Ai . 0)¢(z',0)22,
T o i 060
n(n + 2) = .9
By = uy” 9%,
2T n=22 Jpy !
2
n—1
nT, (Es=1 /\ng ) .
Byt .

2
& Jpo 1+ 2R+ TR

To compute d, we note, using the expansion of g and of &M around 0, that
the volume form of &M has the following expansion on M N Cy,,

d volgpyr = (1 e 6 z (an_',r qu)xng 2 Z A2m2 + 0(|I |2)) dz'.

{,5=1
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Recall again that R;;(0) = 0, so we have

2(n—-1)
d=c/ u -2 d volgy
oM

2(n-—-1) 2(n—1)
cf u n-2 dvolaM-[-c/ u n-2 d volgpy
aMNCy, aM\Cﬂo

= c/B {(u,1 +5¢.)( f(“"))}

Po/t
2 n—1 9 n—1
f.,J =1 i=
2(n-1)
=C_/ ul"“2 9 . 2(‘1’]. 1) “__56(5-[- ( l)n 37562¢2
-t n-2 (n-221

ez & &l
(z’, f_(e__)) ( Z Rumitiz; + Z )% 2) dz' + o(e® + 62)

i,5=1
= A=l [ f(ed) (2 n-1
= c‘/“;:{l—/t Uy ( - ) (1 S e 6 JZ;I an_gzglj ToaET Z )\2 2) dz'
w = f(ezf) ’ f(ezr) !
' (nhQ) : B:o_lsul ( )‘?5(2, € )dz

4 (&:12))’;052fn_1 ui._z ( f(fz')) ( , fe )) d2 + o(€? + 62).

Po/e

We calculate the right hand side of the above term by term,

jy
=C/"-,,{ 2(':%z(f-' 0)+—[u1(z zn)'(:“-"fl” ﬂ@

+%a—6-2§ u1(z’,zn)ﬂ'%l] e [@]2}&]*“’(62‘?‘52)
=c/n_/!{ 1("'1':2_1(2: 0)+—-“;ﬂ—[1451(2,::,,)_5%l ~'0( Zz\,z)
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1 82 2(n—1)
*3022 ["1(2 (i ]

n—1 2
(% 2, /\c'zf) } d? + o(€? + 6?)
zn=0 i=1

2

Ant) & 2 2 4 52

_d0+_ B 1322 [ul(z Fol = ] 2,=0 (2Aiz£) e
ce? 9 Anzl) 2 / 2, 52
—d0+?/n_ 32[“1(2 Zn) " ] zn:o(zl)\tzs dz' + o(e” + &%)

where we have used the fact that 21—1 A; = 0, and the radial symmetry
of u; to conclude that one of the integrals is zero. The second term in the
expansion for d is easy:

2(n-1 ! 2 n—-1 el
% _— e (Zlv _‘f(zz )) % Ryinjzizi + Z X222 | d2
Pool ij=1 i=1
ce? 2(n—1 1 n—-1 n—1
= ? -/ i Uy n—2 (Z’,O) g Rm'njz;zj + Z AEZ? dzf == 0(62 " 62)
po/e i,j=1 i=1
s T 13~ 2.2 o By <0
= n—2 A
T f Iy Uy (Z ’ 0) '3_ i‘jz_l RanZ:ZJ + ‘Z; A‘ z; dz' + o(e + 6 )
C€2 2(n-1) ; 1 n—1 n—1 | 2 "
27/“_1 Uy (Z!O) §t=1 Rmmz +§/\ d2 +0(€ +4 )
ce 2::1 ! 1 2 = 2,2 ! 2 2
= —2- =F Uy 2 (Z ) 0) (E,"Rnnzl + (g /\i)zl dz -+ 0(6 + ) )

2 [n-l 2(n—1)
= ce? ( E )\3) f u, "% (,0)23d2’ + o(€? + 52).
n—1

In the above we have used the symmetry of u; and R,, = 0. Next we
calculate the third term in the expansion for d.

w ot (. 52) (. 02) o0

& 2(n—1)c v (PO
- /;3 & {ul (#,0)¢(<,0)
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b [ )P )] | [ L] L o 07

P 2(n - 1)(: uﬁ z,- Z" Zf
- s (<, 0)¢(Z,0)d
(n—1)c
+o(e? +52)-

The last term in the expansion for d is

e P ()0 (1)
(n — )ne

= Wéﬂ f Tk u.{l—i_i(z’! 0)‘?52(2’,0)0'.2 + 0(52 afi 52)

Putting these together, we have
cf?' 32 2(n—1
d=d0+?fn_ 322 [Uq(z Zi) "-2] ey Z/\z dz"
2 '2 n=1
+%/n_ = OJ(ZA“)dz

_2(71. = 1)C uﬁ zf z’ z"

(n—2) 6 A (#',0)¢(2',0)d

n—l)c

(n__z)é an 182:,, u;(z Zn) —'3(;5(2 z")] |z —o(Ai .27)
(n—1)nc

T m—2p 62/ l“iﬂ (,0)¢%(2', 0)dz’ + o(€” + 8%).

Thus

2(n—1)c e

1

-1
{:1 2);2 /n—1 Bz,, ul(z z")" 2(;!3(2 zﬂ)] |zn=¢]zi2dz’

Dy H f ;—2 (',0)¢%(, 0)d,
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n—1
2!11—11
c 2 ey 2
= §§:Aif s 7 (4,0)zd
i=1 R

oo — Z: =
8 Rn-1 82% . s

Recall that

R (z Xiz? ) dz'.

(23)  jmax I(tu)=5c+ Qo6 + Q166 + Q26% + Q€ + o(€® + 6°),

where
1 2 n—2
Qo= 5(/10—(“— 2)“Bo = 190)1
1 n—2
Q1—§(A1~(ﬂ—2)231—n_191),
oA din. . TETE
Q2= 3 {Az (n—2)°Bs — — 1D

n—2
2ag + 2n(n — 2)bo

Q3=§(A3—(n—2) Ba—n——_fba).

e

[Ao — n(n —2)Bo — Dg]z} ,

We evaluate the Q's in terms of ¢, using the above calculations.
Qo = V'ulVgiJ n(n—2)/ qu—c] “‘zq& 0,

and

ln—-l
=§;Ae/

{—Vul(z 0) - Voé(2', 0)zZ+ n(n— 2)u1’7‘(z 0)¢(Z, 0)z?
Rn-1

a0 SR '
_c-g; [ul (2, 2n) "2 (2 ,zn)] lzﬂ=0z?} dz

1 n—1 2

_Cn " aulqﬁ( 0)}
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; _/ i {—V'Hl(Z', 0) - V'¢(2',0)

+nln =21+ Tl (,00(2,0) 2,

15
2

where we have used the boundary condition satisfied by u; and V'uy(2/,0)

to denote ( {2, 0),4~ e
0z & "

integral above, we obtain

(2.4)
n—1 Ag n—1

Q=) 3 / H{ (Z Bjjw (2, 0)) $(<,0)22 + V'uy (£, 0) - V'22 4(<,0)
i=1 j=1

n+2
(= 2)(1+ T2)uf (2, 0)6(, 0042}

——(2',0)). Integrating by parts in the first

n—1 /\i 2
PP /I;M {—(n =21 +T2) - 1+ + T i~ (<, 0)

—o(n—2)(1+ |+ Tﬂ)u;j-"f (/,0)
+n(n -1+ T2uf (2,0} 90,002

' -
2 fm_l(" = 2)(1+ |21 + T2)u; ™ (2, 0)4(<, 0)22

1
=_"Z‘1§/ (n~2)22¢(,0)  ,
“ 2 Jpnt (1+ |22 + T2)/2

Next

1 4 =
Q2 _ 5 {‘/}.‘1 |V¢‘2 s n(n+ 2) Lﬂ ui’?:fff)g + nT, /anui‘_g (z*',(])(ﬁ?(z’,(})

Y RO ai T [2 e w 2n/ i

2a0 + 2n(n — 2

_2(:_:530 fR u?z(z',o)é(z’,ﬂ)] }

1 ot
-3 { Jug 1980 =42 [ uF 40 [ w0060
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n—2 =2
il n
+2a0+2n(n~2)bg[ nfiul ¢

o 2
2T, fR ﬂ_lu;-z(z’,om(z',{))] }

Finally
@=3 {_w’ e (Z A‘Z)
L [ Sl
;((2—3)2; f W™ (7, 0)2de
28 2 o] (E4) )

s 2
_ (n—2)’T. n(l+ T2 - |2) "Zf Aiz2
T snt (LF [P A T2 | 5
2(n-1)

i c(n—2) Hnl) 5 22 o
4.(?’1— )Z /.R‘n 1 ( 0) d

_ (n—2°T. n(1+T2 - |Z]?) ("i " )
TR et L R T2)n+1 ‘
(n — 2)°T, AT
4n—1) Jan (14|22 +TET

+

Writing the integrals in polar coordinates, and using the following elemen-
tary relations(the proof of which will be sketched in Appendix C)

o n+2 e 00 n+2
(2.6) / - dr =2 - / a dr, for n > 4,
0 0

(1+ r2)n+l 2n (1+r?)n
o0 rn n—1 [*® pnt2
. — = y fi 24,
(2.7) .[0 Ao dr 2n+1_/ (1+T2)ndr orn >4
3Un 2
ey [ ea=s [ dda=g [ edue=
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where ¢,_o denotes the area of the standard sphere 8”2, Q3 can be sim-
plified as

(2.9)
29°T, 3=n 1— r2)pnt2
Qa_%(nﬁ) (0 W ) ]Sn_z(z,\g,)dg

e ([ rtaert) (04

o (£0) ([ )

=~ T(1+ T2 Z,\

here, g, denotes 5“8'(3‘(“1_)3)2( Jo. § +:;),,_ dr). In the above, we have also

used "_] Xi = 0 to obtain the relation

62 (f&sﬁ) & =23 | e
i=1

i=1

We note that Q3 is a constant depending only on n,T,, and E;:]l A In
particular, it is independent of ¢.
We would like to choose ¢ and € > 0, § > 0 small such that

(2.10) Jmax. I(tu) < S,

which would lead to I, < S.. It is clear from (2.3) that, in order for (2.10)
to hold, it suffices to find a ¢ such that

(2.11) Qf —4Q2Q3 > 0.

From the expression of Qs, it is clear that if ¢ < 0, then Q3 < 0 and (2.11)
can be satisfied easily. This proves the existence of a solution of (1.1) in the
case ¢ < 0. So we are only left to deal with the case of ¢ > 0. Since Q3
is independent of ¢, @ is a linear functional of ¢, and Q3 is a quadratic
functional of ¢, the verification of (2.11) in this case leads to an eigenvalue
problem on R, which may have independent interest. We will formulate
and study this eigenvalue problem in the next section. Before we leave this
section, we summarize our results of this section as
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Proposition 2.1. For ¢ <0, there ezists a solution of (1.1). For ¢ > 0, if

Q2(¢)
(212) 4Q3(Ql(¢ £0 Q1(¢)? ) ol

then (1.1) has a solution.

Remark 2.1. We remark that, although we required ¢ to have compact
support in evaluating the Q;’s, there is no need to restrict ¢ to have compact
support in the extremal problem in Proposition 2.1. For, if (2.12) holds, a
density argument can easily produce a ¢ with compact support satisfying
(2.11). The precise space for ¢ is spelled out in the next section.

3. A related eigenvalue problem on spherical caps.

Because of the geometric invariance properties of the conformal Laplace op-
erator, it is more transparent to translate the expressions for Q;, Q2 onto
the round sphere. This is done as follows. Let II be the stereographic pro-
jection from the unit sphere in R™*1 centered at (0,---,0,T,0) onto the
hyperplane £,4+1 = 0. More specifically, let (£1, -+ ,£n+1) be the coordinates
of R™*! taking (0,-- ,0,T,,0) as its origin and (z1,--- , 2,) be the coordi-
nates of R™, which is 1dent1ﬁed with the hyperplane &,41 = 0. We take the
unit sphere to be

T {(gla'“ 1£n+1) = Rn+1| €%+ +E._.-21 +£ﬁ+1 = 1}

Then, under the transformation IT : (&1, -+ ,&n+1) — (21, ,2a), We have
( 2z
; = 1<i<n-1
& (¥ 7P+ |m-Tp 1St=r 1
o 2(zn —T¢)
(3.1) W Eﬂ 2 1 + |ZI|2 + Izﬂ R Tc|2!
P TIPS [~ TP

Let £ =II"!(R%). It is a spherical cap on S™. For a function ¢(z) defined
on R7%, we define a function ®(£) on £ by

n—2

) "
#(z) = ®(¢) (1+|z’[2+lzn—Tc|2) :
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Note that the standard metric on X is given by
2 Y
(3'2) dssphere (1 1 ‘zf|2 i 'Zu L Tclz) |dz|".

The conformal Laplace operators (Lg4, By) enjoy the following conformal
invariance property:

L, .4, (w™'9) =u "3 Ly(9),
B 4, (u™'¢) =u""7By().

Using (3.3), we can compute the mean curvature of 8% to be

(3.3)

2 ( 2 ==
n—2\1+4+ |22+ |z, — T|2

2 ( 2 ] i
z2n=0 1 A 'z,lz 4 |zﬂ = Tclz) T

o
fR1|V¢|2=—]R“¢A¢+ por

OR}

and

- /R : PLygzp2(4) + /(9 " ¢B)4,p2(4)

~_-f [|v.1>|2+ M.p?] _n—2 [ @2,
5 4 2 ox

Using (3.1), it is elementary to conclude that the linear functional Q; of ¢

given in (2.4) satisfies
-1
(n 2))\ /‘ ®
€)=

1

Q1=-

- f y GLG)

where f(¢) = - 30} 1’;—_;_&’\—‘ z2. In the following, we may abuse notation

to write Q1(®) for Q; to indicate its linear dependence on ®. Using (3.1)
again, we find, for u; as given in (1.3),

/ et e
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f -2¢,2 f @2
8 “
2
= P,
R;; 0P J‘f
t;a“‘_Ei / P
/aa;z 0= 578 Jps

Putting these together, we find that the quadratic form Q2 of ¢ given in

(?7?) satisfies
=3 {[B (V&2 - nd?) +ch82«1>‘~’}

+2n[aofn_(:—2)bo] {Tc aij_n.[z:@}z.

Again, we will write Q2(®, ®) for Q2 above to indicate its quadratic depen-
dence on . We also use Q2(®, ¥) to denote the bilinear form obtained from
symmetrization from the quadratic form Q2(®, ®), i.e.,

Qu(®, %) = 2 [Qu(@+ 1,8 +1) ~ Q@ ~ ¥, &~ V)]

Let |X|, |0Z| denote the volumes of ¥ and 9%, respectively, with respect to
the standard metric on S™. From the metric relation (3.2), it is elementary
to check that

2 » n,
s p— 13 n— -_— 2n :
IE' _/1;'1 (1 + IZ"II2 + lZn e Tclz) 2 ./ 1 “ bn

|aE| / ( 2 )“_1 21'1—!. / Z(r%l 2nr—ldo
c =c = C u = .
ory \1+[2']2 + |2 — Tcf? oRn

Using ¢ = —(n — 2)T, and (1.4), we easily obtain

ag +n(n —2)by = 2n_1 ( n|X| — T.|0%)).
Define a linear operator M by

Tc fan ®—n fz ®
M®) = =7 o5T—ni3|
Note that M(1) = —1. Define & = ® + M(®). Then M(®) = 0, and it is
routine to check that

@u@,0)=3{ [ (var-ne?) +7. [ o7} + HE Ty
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< %{/S (1véP - nd?) +TC/BE<T>2}
= Qa2(9, ).

Because of E::ll Ai = 0 and the coordinate symmetry, it is also easy to see
that

Q1(®) = Q1(®).

Therefore we may work on the space X = {® € H}(Z) : M(®) = 0} and
drop the“on ®. Define, for A\;,--- ,A\p—1 € R, with E““l Xi=0

i Q2(®, ‘1’)
) 1’\ et = f
(3.4) Q(n,c, A\ An-1) d»eHl(E),Ql(‘l’)#O Q2(‘I’)
Q2(2,9)

T eex, i@ QD)
We first state

Proposition 3.1. Q(n,c,A1,:++ ,An—1) > 0. Furthermore, a minimizer
® € X of (3.4) exists, and ® satisfies
(3.5) AdD+nd® =0,

8,04+ T.® = uf,

with some Lagrange multiplier p # 0. Here v denotes the unit outward
normal of 0X.

We will provide an elementary proof of Proposition 3.1 later. For now
we remark that, if ® is as in Proposition 3.1, then ®/u € X is also a
minimizer of Q(n,¢, A1 - -+ , An—1). It satisfies (3.5) with f replacing uf. For
convenience, we will use this normalization x = 1 in (3.5).

The homogenous version of (3.5) is of relevance:

{A¢+n¢ =0,

(3.6)
av@ + Tcé = 0.

Integrating both sides of the first equation of (3.6) over ¥ and using the
boundary condition in the second equation, we find that any solution of
(3.6) is in X. We observe that the kernel of the quadratic form Q; in H!(Z)
consists of linear combinations of constants and solutions of (3.6). This can
be easily seen by writing

Qu(®,¥) = 5 { [E [~A® — n(® + M(®))] ¥
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5 [a.,cb+Tc(<1>+M(¢)J]tI!},
ox

and noting that if ® is in the kernel of Q2, then ® + M(®) is a solution of
(3.6), thus ®, module a constant M(®), is a solution of (3.6). Conversely,
by noting that any solution of (3.6) is in X and that 1+ M(1) =0, it is
obvious that the sum of any solution of (3.6) and any constant is in the
kernel of Q. It will be shown below that, if we choose the center of X as the
north pole and choose corresponding Euclidean coordinates ((i,--- s Gt )s
then the restrictions of {(1,++* ,(a} to X form a basis of the space of solu-
tions of (3.6). Consequently, Ker Q2 := {® € H'(Z)| Q2(®,¥) =0,V ¥ €
HY(Z)} = span{1,(1,(2," - ,(n}. More generally, we will consider the eigen-
value problem

3.7) {A'I) +n® =0,

0,2+ T.2 =pud.
We summarize the relevant results concerning (3.7) in

Proposition 3.2. In the case of T < 0, the eigenvalues of (3. 7) have
the distribution {o < 0 = py < pg---}, with po = T + T‘r and
lim; oo pti = o0. We can choose a complete set of eigenfunctions,
'I>(1) - tb(ko) @{1) Q(kl) <I>(1} ..+, so that their restrictions to 0%
for‘m an orthonormal baszs of L2 (0X). Here k; denotes the multiplicity of
the eigenvalue p;. Furthermore, ko = 1, and the eigenspace associated with
po is spanned by the restriction of (ny1 to X; k1 = n, and the eigenspace
associated with p, is spanned by the restrictions of (1,--+ ,(n to X.

Remark 3.1. In the case of T, > 0, the statements in Proposition 3.2,
module obvious modifications, continue to hold. In particular, in the case
of T, = 0, a modification is that the restrictions of the eigenfunctions to OX
span the L? orthogonal complement of constants in L*(8%). The proof is
also essentially the same as the proof of Proposition 3.2, which we will give
after we first use the set up here to simplify the condition in Proposition 2.1.
In section 4 we will also give explicit forms of eigenfunctions associated with
po and ps3, which are needed for explicit verification of the condition in
Proposition 2.1.

For now we remark that, due to Proposition 3.2, we could choose (I)((]U
to be a constant multiple of {nt1. Expand f = 3 .50 1<j<k, f}‘)'I)E’). Then
f}i) — faz ftI)Ej). Since the restriction of (,4+1 to L is a constant and
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Joss f =0 due to Z::ll Ai = 0 and the symmetry of 8%, so ffﬂ) = 0. Let
® be a solution of (3.5) with g = 1. Then, multiplying the first equation of
(3.5) by ® and integrating by parts, we obtain

Q2(2,®) = %Ql(‘i’)—

Thus 1
Q(n,c, A1, -, Anm1) = 30,(®)°
Multiplying tIJEj ) to the first equation in (3.5) and integrating by parts, we
obtain
f 789 = y; f 83y
8z axr
Thus

[1a= = 4P [ asf

i>1,1<5<k:

(i) 2
_ oy
w>0,1<i<k; M

Therefore, the condition in Proposition 2.1 is equivalent to

(3)j2
(38) 3 l-u > 2Qs.

Hi }oalﬁski

We now give the proof of Proposition 3.2.

Proof of Proposition 3.2. We first derive the formulas for the eigenvalues
of (3.7). Let (r,0) be the geodesic polar coordinates on ¥ centered at the
center of ¥, where r is the geodesic distance on ¥ from the center. We
remark that cosr = —T./4/1 + T2 on 8X. We can write

dsgphere = dr? + sin®r d6?, gecS*L,
Thus 1
Asphereq) = &, + (’ﬂ = 1) cotr &, + — D) Ag®.
s r

Using the method of separation of variables, we write ®(r, ) = E(r)¥(6).
Then, from the first equation of (3.7), we obtain

E.,.+(n—-1)cotr E,+nE+a’§?E-_—0?
Al = MV,
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From the second equation above, it is standard that A = A = —k(n+k—2),
for k=0,1,2,---. The second equation of (3.7) becomes
Er(r)
=T+ ———| -

We make a change of variable { = cosr and set F(¢) = E(r). We remark
that, since we are considering only the case of T. < 0, the relevant range for
¢ in Proposition 3.2 is 0 < ¢ < 1. However, most of what follows holds for
—-1< (< 1. Using

E, = —sinr F'({),
E,, = —cost F'(¢) + sin’ r F"((),

the equation for E transforms into

k(n+k—2)
=
¢ = +1 are the singular points of (3.9). The indicies of (3.9) at { = *1
can be easily found to be a = k/2, or @ = —(n + k — 2)/2. Since we
look for F which is regular near ¢ = 1, the latter index is discarded. Set
F(¢) = (1 = ¢?)*2G(¢). From (3.9), we obtain

(BVi)  (1-¢HG"(Q) — (2k+n)(G'(Q) + (1 - K)(k +n)G() =0.

Denote a solution of (EVi) by Gy. Differentiating both sides of (EVk),
we find that G},(¢) satisfies (EVi41). We will use this relation to find the
solutions of (EV;). (EV4) is the easiest to solve. Setting k =1 in (EVg), we
obtain

(3.9) (1= ¢HF"(¢) = nCF'(¢) +nF(¢) - F(¢)=0.

(1-¢HC1(Q) - 2 +n)¢G1(Q) =0,

from which we easily obtain
_n+2
Gi(¢Q)=AQ-¢) 7,
for some constant A. Thus
¢ nt2
Gi(Q) =4 [ A=) Fn+B,

for some constant B. Since we need a regular F;, weset A=0and B=1
to obtain /
F=(1-¢%n.
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G is a singular solution of (EV2). However, using standard ODE theory,
we find the general solution of (EV}) to be

1
(1-¢3)—# {A/ (1—7%)"2dn + B} 7
¢
for some constants A and B. The obvious choice is to set
1
G2 = (1= )= [ =) r2an
¢

Thus :
Fy() = (1 - ¢3)~2 [ (1= 522y,
¢

Now it is obvious that we should set, for & = 4

dk'“sz (C)

Gi(§) = aF2

Therefore,

k—2
Ru(¢) = (1= (22220,

We remark that the Gy defined above will not be identically zero and thus
we have obtained nontrivial solutions for (EVi) which is smooth near ¢=1
for any k > 2. This is because G3(¢) is smooth in —1 < (<1 andis not a
polynomial in ¢, which can be seen either from the explicit expression of G
or from the following argument: if G5 were a polynomial of order [, then,
G2 is a nonzero constant which should be a solution of (EVit2). That is
impossible by direct inspection.
We will also need the following properties of Gy:

(310)  fork>2, Gi(()#0, and G}(()/Gk(¢) <O,

in the range —1 < { < 1. We now establish these properties. Suppose the
contrary, i.e., Gk({o) = 0, or G},(¢o)/Gx((o) > 0 at some —1 < Go < 1. In the
first situation, we may assume that G}(¢o) > 0, and in the second situation,
We may assume that Gi({o) > 0. We note from (EV;) that Gy() >0
whenever G (¢) = 0 and G(¢) is positive. Using this observation, it is easy
to prove that Gj(¢) can not have a positive local maxima in <(<l1
and therefore Gj(¢) and Gi(¢) will be positive for (o < ¢ < 1. Since G is
smooth near ¢ = 1, sending ¢ to 1 in (EV;) would lead to a contradiction.
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Next we derive the formula for Gy. Since G, is a solution of (EV}), it is
easy to figure out the choice for G should be Go(¢) = ¢, which implies that
Fo(§) =¢. _ _

At this point we introduce y; to denote the eigenvalue of (3.7) associated
with Ax. Using the fact that { = —T¢./\/1 + T2 on 8%, we have the formula

pe =T+ B O TRO &
L g _dRQ/d

T I+ TR

with ¢ evaluated at —T./+/1 + T2. Therefore,

1
Ho = TC S is
and
m=T.-T.=0.
From (3.11), we also deduce
5 (€)

=(1=-k)T— —2—,

(3'12) Hi ( ) mgk@)

with ¢ evaluated at —T./+/1 + T2.

We next prove that pp < yy for 1 < k < I. Since we have proved
that Fi, F; # 0 in the range —1 < { < 1, we may assume Fy, Fj > 0 for
—1 < ¢ < 1. From (3.9), we deduce easily

(FLF - RR) 1 - ¢)3]
+ [ (n+1-2)—k(n+k—2)](1-¢?)F2RF =0,

which gives, for k < [,
n '}
[(F,;H ~ RF)(1- 8)7] e ek S,

from which we obtain F}(¢)/Fx(¢) > F{(¢)/Fi(¢). With (3.11), we conclude

that pp < w. il
We now observe that, since L?(0X) has a complete basis in terms of

the eigenfunctions I'E) of the Laplace operator Agn-1, the corresponding
®{(r,8) = Ey(r)¥{)(6), when restricted to 9%, naturally form a basis of



840 Zheng-Chao Han and YanYan Li

L*(0T)(recall that Fi(¢) # 0 for all k > 0 in the range 0 < ( < 1). In
particular, the corresponding eigenfunctions associated with Mo are spanned
by

&S (r,6) = cosr,

and those associated with u; are spanned by
‘I'(l‘}(r, 0) =sinr wg‘)(e), I=1,--,n,

where {'Ifgl)(ﬁ), w&z’(e), “ee ,‘Ifﬁ") ()} can be taken as the coordinate func-
tions of S~ and forms a basis of the space of eigenfunctions of Agn-1 asso-
ciated with A; = 1 — n. We remark that ‘I'El)(r, ), (Iigz}(‘r,e), ?Qg")(r, 8)
are precisely the coordinate functions (3, 2, ,Cn, and Dy is {41, when
we rotate the Euclidean coordate £;,--- , £, so that the (n+1-axis passes
through the center of . We also denote by {*I)g)} a basis of eigenfunctions
associated with uj obtained as above through separation of variables, and
remark that, for notational simplicity, we do not normalize the (I)g) 's to have
unit L?(8X) norm at this moment.

To complete the proof of Proposition 3.2, we only need to show that the
eigenvalues {44} we have found above are the only eigenvalues of (3.7), and
that the eigenfunctions obtained for each i using seperation of variables
span the eigenspace associated with p;. Let @ be an eigenfunction of (3.7)
associated with some x. Multiplying the first equation of (3.7) by (I),(:) and
integrating by parts over I, we obtain

o) [ 590 o,
oz

Writing ® = sz ai@iﬂ on 9%. It follows that p = p; for some 4, and ai =0
for any k # i and arbitrary I. Then & — ¥ aE(ID'w satisfies the first equation
in (3.7) and vanishes on 8% together with its normal derivative on 8Z. This
implies that & — 3", af@fl) =0in X. Proposition 3.2 is thus established.

Before we proceed further, we also deduce a recursion formula for puy,
which may be of independent interest.

Lemma 3.3.

(1+ Tc?)(k —1) + Top

(3.13) k1 = (n + k) To(k—1) + pg ’

k> 2.
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Furthermore, when T, < 0, we have the estimates

1
(3.14) —Te(k—1) < pp < (~Tc - ﬁ) (k—1), k>2.

Proof of Lemma 3.3. For k > 2, we divide both sides of (EVk) by G}, to
obtain

Gk($)
”(O —k)(k+ _..JF_:(]-
Expressing Gj/G, in terms of p, and G}{/G) in terms of pig41, and also

: - Fpsied
not1ng(=7£—,?2=, 1-¢ = 1372 Ve have

]

—-k)
—kTe — pic41 T (n+k)(1 =
Jorn O Y AT ) -

from which we deduce (3.13). The first im_equalit_',_r of (3.11?) followsofr?‘;::

(3.12) and (3.10). This inequality implies, in pa.l:tlcular,. t a;; ,gkl 5 ;

k > 2. Using this in (3.13), we obtain the ?o.e-cond inequality o t( t a;mther
" Before providing the proof of Proposition 3.1, we first state

useful
Proposition 3.4. For all ® € H'(Z),

== . 1 J bination Of 1&(11 CZ:' tte )Cﬂ;
Purthermore, Qa(®,®) = 0 iff ® is a linear com 2
and for some A > 0,Q2(®,®) 2 A||¢|1%11(E),V¢I> € .(Kei' Q2), wh;;:
(Ker Q2)* is the orthogonal complement of Ker Q2 in H'(X) under

inner product.

Proof of Proposition 3.4. We will provide a proof using the knowledge of
the eigenvalues of (3.7). We first make the

de Hl(z),f $? = 1} is achieved.
o8

Claim: min {Qg(@, d)
Assuming the Claim for the moment, and letting ® be a minimizer, then

A® +n(®+M(@) =0,
8,8 + T, (@ + M(®)) = ud,
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where the Lagrange multipler p is min{Qz(®,®)|® € H(%), Jox 3% = 1}.
Integrating both sides of the first equation over ¥ and using the boundary
condition in the second equation, we see easily that pu [(x ® =0. f ® is a
non-zero constant on 0%, then p has to be zero and we are done. If ® is not
a constant, then ® = & + M(®) is a nontrivial solution of

Ad4+nd =0,
a0 +Td =pu(d- dyfond).

If T # 0, we multiply the first equation above by ® and integrate by parts
over X to obtain pg faz: $o® = 0. Here we have used the observation that
®g is a non-zero constant on AX. Using this observation again, we conclude
that faz =0 If T, = 0, then @3 = 0 on 9%, and 8,P is a constant on
9. Multiplying the first equation above by ®¢ and integrating by parts
over L, we obtain again [ az'i’ = 0. Going back to the equation satisfied
by & and recalling that ® is nontrivial in this situation, we conclude from
Proposition 3.2 that u = p;, and y; > 0 because the only possible nega-
tive eigenvalue is pp when 7, < 0 and non-trivial eigenfunctions associated
with pp take non-zero constant values on 8%, but we have just proved that
[ & = 0. So we have proved that ming - p2_; Q2(®,®) = p > 0. In fact,
it is equal to 0 because of the presence of? the kernel of Q9. This provides a
proof for the first part of Proposition 3.4. The second part of Proposition 3.4
follows from our knowledge of solutions of (3.6).

Proof of the Claim. Let ®; be a minimizing sequence for min{Qs(®, ®)|® €
HY(Z), [55 ®? = 1}. It will subconverge to a minimizer, provided that
J ®? stays bounded. Suppose, on the contrary, that i 'b_f — 00. Define
®; = ®;/||®i||z2(x). Then, after passing to a subsequence, ®; — &, weakly
in H(X), and ®; — @ in L3(Z), where $, satisfies

Q2(i’ooa‘i’oo) <0,
(3.15) 1Pll2zy =1,

(boo = 0.

axr

This implies, from the last boundary condition above and the expression of
Qz, that

2 2
F 12_ %2 n z
(3.16) fz Vel = byt o ( /E @m) <0.
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In the case T. < 0, (3.16) implies that the first eigenvalue, A1(X), of Agn
on ¥ with the zero Dirichlet boundary condition is less than or equal to
n. On the other hand, the first eigenvalue, A;(S%), of Ag» on the half-
sphere S with the zero Dirichlet boundary condition is equal to n, and
from the variational characterization for such eigenvalues, A\1(X) > A\1(S%),
since £ C S%. This is a contradiction.

In the case T, > 0, (3.16), together with the obvious fact

(3.17) 0 < n|Z| — T,|0| < nom,

- 2 1 5 A
[V®oo|? — n/ (@m e %,)
sn sn On Jsn

2
= f o (/ @m)
v On v

<0,

implies that

= 0 from (3.15).
8%

here we have extended ®., to be 0 on S™ \ Z noting O

However, the first eigenvalue estimate on S™ says

Lorese-n] (f—:—nfnf)gzﬂ,

with equality iff f is a first degree spherical harmonic. The extended ®,
being equal to 0 on an open set, obviously can’t be a first degree spherical
harmonic. Thus we have reached a contradiction. The Claim thus holds in
all cases.

Remark 3.2. (3.17) actually holds without the restriction of T, > 0, so the
proof of the Claim in that paragraph works for all cases. Separate proofs
were given above to avoid a necessary (though simple) calculation to verify
(3.17).

Proof of Proposition 3.1. Observe that, from the coordinate symmetry
and the assumption 33771\ = 0, we find Q;(® — @) =0, if d— ¥ €
KerQs. Thus, for a minimizing sequence {®;} for (3.4), we may assume that
®; € (KerQz)*. We may also assume that Q;(®;) = 1 by scaling. From
Proposition 3.4, Q2(®,®) > X||®|[3y, for any @ € (KerQ,)*. It follows
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easily from this that a subsequence of {®;} weakly converges in H!(Z) to
a minimizer ®. It is routine to check that ® satisfies the Euler-Lagrange
equation (3.5). The u in (3.5) can’t be zero, otherwise, @ is in the kernel of
Q2, which implies Q;(®) = 0 in view of the observation above. This violates
the constraint @1 (®) = 1. The positivity of Q(n,c, A1, , Aa—1) is obvious
now.

4. The case of ¢ > (..

We will proceed to estimate Q(n, ¢, A1, ++ , \n—1). We first write down the
precise transformation from £ to (:

Ci =£€) 2'=1,---,ﬂ-1,
Cn = _chn + €n+1
VI+T2 '’
En - Tz::gﬂ.-i-l

Cﬂ.‘l'l = \/@ .

Therefore, on 8%, we have

2 2122

2’?= g;‘ = (1+Tc)C1. i S%Sﬂ—l
(1-&n+1)? A+ 1+T2¢)2

We will make use of the eigenvalues pz and p3. For this purpose, we first
remark that a basis for the space of eigenfunctions of Agn-1 associated
with A2 = —2n can be taken as the restrictions to 8% of {¢? — m, j=
1,--+,n—1;¢(j,1 < i < j < n}. The {;(;’s are mutually orthogonal to each
other, and are orthogonal to the ¢} — ;{ﬁm’s, in L?(8%). However, the

(R — ;(I_II_—TE)-’S are not orthogonal to each other. Note, however, that in (3.8)
all we need to compute is the square of the L?(8X) norm of the component
f@ of f in span{¢} — srimy,d = 1, ,n = 1;¢¢j,1 < i < j < n).
For obvious symmetry reasons, the integrals on 9% of z} with (;(; is zero,
for i # j. So if we set tl'g) = CJ?— F(H-LTET"? = 1,:--,n, we can write
f@ =32t fDgY). A direct calculation, using (2.8), shows that

; 202 1
G2 _ g . 3
[92 Sekin faz: {CJ n(1+12) | n2(1+12) }

Lb v ]
_(1+T:2ﬁ-“fﬂ-l{9? ”+‘“2}
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: 0
(lettmg (/== ﬁ)
1 3051 20,1  On—
(14 T2)F {n(n+2)_ R }
2(n—1)opn—1
n2(n +2)(1+T2)F
which is independent of j and will be denoted as I. A similar computation
gives, for i # 7,

2 2
Gl _ 20 Gt 1
[ % —.[az{gcj A1+ 12) 3+ T2

1 026 0 +6; 1
== n+3 il st 9
A+THF Jeer |7 B »

e
(lettmg { = m)

_ 1 { T 2001 b ﬂ',,_l}
1 +T2)% In(n+2) n? n?

_ 2001
 r2(n+2)(1+12)%F

which is also independent of %, j, and is actually equal to —n—ij. Now

n—1
@)2 _ ()2 / gP2 1 37 7@ 5@ f IOR0)
15 S [P0 [ o

i#i
n—1
I 2) (2
= (Z |f:§2)|2) e (Z 54 ))
=1 i#j
1 n—1 '
_nh [0 . )

The fi(z)‘s are determined by

n—1 ;
S0 [ wpu = [ )
i=1 ax ax
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The coefficient matrix of this linear system of algebraic equations is

I .__IZ_ “aw awe _.,_12_
2 n—1 n—1
R T
n-—1 n—-1 n—1
- 7
R T — N £
n—1 n—1 I

whose inverse is given as (it will be verified that I # 0)

2 4 =il

(n—l) I 2 aww ]
nlp : :
1 1 2

Therefore

Observe that E;‘;ll lIJgj} = —'I!(zn). Using }:;‘;11 A; = 0 and coordinate
symmetry, we find that

n—1
5. ] oy = o.
s o

Thus
(n—1)

2 _
L= nly

s,
(i3
and

nil fi(z} = O'

i=1

We now obtain a simplified expression for

-1
o= 2 (3 50
oy n—1 = J
n—1

_n=1 @)’
~ ol fg{(/faszz) '

We next carry out a similar computation using the thi;‘d eigenvalue of Agn-1.
Let ‘IJ%’ ) = (2 - '(n_-l-zT(lHr_T?T)C"’ 1< j <n. Then ‘I!E,f) are eigenfunctions of

(4.1)
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Agn-1 corresponding to A3 = —3(n+1). Similar to the computation done for
\Il%") 's, we denote by £®) the component of f in spa.n{‘lf_gl}, ‘If:(f), e ,\3(3"_1}},
and write f® = Z;‘;ll f}s}'l'gﬂ. We first compute, for 1 < j < n,

[n= [ (43 - +T3))2¢:
1 2 1

" _ 4 65 02do
(1+T3)%'E gn—1 {63 n+ 2 J-’-|(1r1.+2)2} =

(letting g=nfTF TEC)

b 1 { 30n-1 __ On-t }
(1+ Tg)li's (n+4)(n+2)n (n+2)’n
2(n+ 1)on-1
(n+4)(n +2)%n(1 + T

which is independent of j and will be denoted as I5. In the above, we have
used,

2o2ag — Il
(4.2) /;Ml CH At
and
3o
19249 = =, f ] < n.
(4.3) o) 0762d6 it 0 or j
We will also need, for i # j <n,
20202 90 — In—1
(4.4) /sn—l 0;0560,d6 = CETCET

(4.2) is just a version of (2.8). The derivation of (4.3) and (4.4) is similar to
that of (2.8), and will be sketched in Appendix C. Using (4.4), fori # j <m,

2 2
Dl — za_ 416 : -
I ‘faz{c‘c’“ (n+2)(1+T3)+(n+2)2(1+T332}<"

LY . a?e?-0‘2+9’2+ . 62
T e | ) 22

0
letti = —
(e Tk 1+T3)
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=r 1 { On-1 e 2051 Tl
(1+72)"%F \n(n+2)(n+4) n(n+2? " nn+ 2)2}
2051
n(n+2)%(n+4)(1+ T2)*F’

which is also independent of %, j, and is actually equal to —;-‘13—. Now

FOR=S O [ e0RL S 00 [ @0
i ZII/IIfofB\I«q:

i7#j

S I
= (JZ; |f§3}|2) Boris (_2 ff”f}"")
= i#j
(n. +2)I5 “Z-I |f{3 I n—1 " 2
Tn+l T n+1 le I ;

The f*)s are determined by

n—1
£@ / oDyl _ / 4.
; A e azf 3

The coefficient matrix of this linear system of algebraic equations is

= il ; I
Jr‘?r A R oy
—_ — ity =y
n+ Is n+1 n+l
o e el I '
A+l o L

whose inverse is given as (it will be verified that I3 #0)

4 1 =0
3n+2)L |: '
] ki 4

Therefore

3) _ (n+1) (4) = ()
-fs 3(ﬂ+2)]3 {3 azf‘p3 +J=Zl,/32f'1'3 3
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Observe that 37—} U5 = (Grmtersy — (V6. Using $77) Aj = 0 and
coordinate symmetry, we find that

n-1

S R

Thus
3)_ (n+1)

@ _ o®
i (n+2)I3 3zf cix-

and

“ff.-“‘" =0

i=1

‘We now obtain a simplified expression for

I
[ iop = £rak (Z I ”’P)
_n+l " W)’
- (ﬂ+2)fsjz=;(fazf¢3 ) ¢

We now proceed to evaluate the terms in the right hand sides of (4.1) and
(4.5). We first compute, for i # j < n,

/ zfl]?g)
ax

- [ LI (g 1)
(14 TeTEG) VAT

(4.5)

ikt 0 (92 1)
T+ 1) S W0 U
(letting (= L)
yi+13
s 1 fl do, /‘ 9? (92 _1_)
= (1+T2)F J-1 /1= 02 Joz4p62_,=1-62 (1+0n)? e

Jr 1 t oy 25 2y On—2 On—2 dé,
_(1+T3)"+‘f.1(1“"")’[ T T T am D) T ey
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n—1
On_2 L(1-062)"" (1+n6])dbn
nn2-1)(1+ Tf)agl -1 (14 6r)?

Similarly,

/ zj?'lhgj)
ax

/ (L+T2)*¢ (c?— 1 )
33(1+\/I+—T§,,) 7 on(1+T3)

:# “__Ef_'_m(.g?__l.) lettin C—-e_
1+T2)" Jsr-1 (1+0)2\7 n S = i1

o 1 /'1 i / t’i‘? (92 1)
1+72)* 5 Ja/1-62 Jezpqez_ =162 1+62)> 7 n

. (1+Tg)%‘~‘f-x (1-¢x) [(1_3) < 1 ﬂ(n—l)] (1+6,)?
B On—2 /1 (1-62)"7 T (2n—1- 3n92)d9

n(n2—1) (1 +T2)"T (1+6n)?

With these computations, we have

n—1
[, (Srt)ep
o\,

—Z,\f +J\/ 209
ax

i#J

n—1
(Z ,\) On_2 (1-62) T (1+n62)do,

%1 ~1)(+T)"T J- (1 +0n)?

n—1
On—2 /1 (1—62)"7 (2n—1—3nb2)do,

A.
7 A +6,)?

"n(n2 - 1)(1+T2)"T

Wn_2)j 1(1-g2)"F
= “_1/ 3 d&m
n2-1)1+T2)"F J1 (1+6)
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where we used 377! \; = 0 in the third line above. Thus

2
(2)2 \ (n—2)? 20n-27;
/|f | Z an+2 {n2—1)1+T2) f (1+9 "}

n(n +2)(1 + T2)**
2Un—1

n—1 2 2
= P) n(n—2)*(n+2)o;_o o\ — 252
3 (32 /\j) 27t (n —1)¥(n + 1)%0n 4 (1+T.)
e ¥ |
o T
To simplify this expression, we first observe

b (= 93)% 1 _— -
[y = o+ orTa- o) Fa

1
=2n/ t"F(1-t)"Tdt  (letting 1 — 6, = 2¢)
= n+3 n—1
o (r3,252)

where B(p, q) = [y t*~1(1 — t)9"1dt is the Beta function. Observe also that

1 —
L f (1-62)"F b

1

1
= 02" 2 f %5 (1 — )T dt
0

=9"2 LB (n_—l = 1) _

- N
Using these relations, we obtain

n—1 9 2 _n;
@2 — 2| _ n(n—2) (n+2)rr,,2(1+T)
I (Z,\)

e 2n+1(n - 1)2(71. & 1)22n 20n_2B( n—l

(55
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Using B (~-'%l,-‘-~ ) -f—B (Tl, “Tl) we find

(32} fB(";l’“;l)=("1§ni’23(";1,“;1)-

Putting these together, we have

(2)2 — 5| 22"n(n—2)%(n + 1)2 (n+2)gﬂ2(1+T2)
/azlfl (ZA)

92n+3p2 (n — 1)2(n + 1)2
n—-—1n-1
dlem i
B "Zl\z (n— 22(n+2)(1+T2)‘T g(r=1r-1
T j Bn(n—1)? T R

o n—22%n+2)(1+T2
= (Z ’\?) )2n+ln(11(_ 1) ) On-1-

1

To evaluate the right hand side of (4.5), we first compute, for i # j < n,

20 _ A+T’E (2 ]
Lzz‘% _/.32 (1+\/1+T‘Ecn)2 (CJ (n+2)(1 +Tc2))cn

92 2 -
f O — zi3)ln 4 (letting g=T+ Tgc)
S

i (L T?)nﬂ(l +6,)?
1 ¥ 9, db,

T (AT )y \JT= (1 +6,)?

1
g |88 ———) @Oy~ ~dly
./9¥+~-+03_1=1—0,2, I (J n+2) i :

% 1 f‘ (1-62)"7 6, df,
TR | (1+9n)2

2 2
{(1 gn)f :,t n+ 2 G2 E:}
(lettmg 0i=v1- ﬂfislﬁign—l)

st 1(1—62)#9,1&9 (-e et _ Lo
T (A+T2)m2 (1+ 6,)2 -1 n+2n-1

orideag (1—92)—ra de,, 1 62
_(1+f1"3)"/2,/ (1+ 6,)2 {(nQ—l)(n+2)_n2—1}’
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while

29 _ A+ TH%] ( 2 _ 1 )
_[322: '113 _./.BZ (1+ /_T§1+ p “)2 C: (ﬂ+2)(1 +T::2) C‘n
f 62(62 — 15)0, _
= LA df (lettmg 0=+1+ T.?C)
S

-1 (14 T2)™2(1 + 6,,)2
B 1 + 0, dbn
T (14T )y 1= 02(1 +6,)?

f 62 (9? - L) dy - dby—y
02 +--+02_ =1-02 n+2

n—=1""
(1-62)56, db,
G '{"2)“!2 / (14 6,)?

2 4 1 2
{1—9) S““z&i n+2f“_2£s}

(letting 0; = m pl<i<n— 1)

(1 _ 92)%0,, do, (1— 62) 30n2 1 0On }
(1+T2n/2 (1+fi,,)2 "n2—-1 n+2n-1
Tn—2 / (1-62)"7°6, df, { 2n+5 862 }
T+ T2 (1+0,)2 (n2—-1)(n+2) n2-1)°
Putting these together, we have

f (E iz} ) ¥y

=]

On—2 (1—03)" T 76, db,
R (; A’) (1+T2)/? /; (14 6,)2

{(n2 ~ 1;[n+ T nﬁ 1}

Op-a (1-62)"T 9,1 db, Mm+5 362 }
1+T2)"/2/ (1+6,)2 {( ?—1)(n+2)-n2—1
—n 2A;j0n—2 1- 32) 9,, dfy,
M -1D)(1+THE f (1+6n)2
2 e - 1&#(1 — )% (1— 2¢)dt
(n2-1)(1+T2) = Jo
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(letting 1 — 6, = 2t)
1] 2n+1Ajaﬂ_2 “{B(n-l-:i,n—l)_?B n—|—5,n—1
(n?2—-1)(1+T2)2 2 2 2 2
2n+1)\jaﬂ_2
n2—1)(1+T3)%
n+1 n—1n-1 n+3 n—1n-1
B 3
{4n(2’2) 4nB(2’2)}
— 2" \jon_o B(n—l’n—l)

(n—1)n(n+1)(1+T2)3 2 2
4Aj0ﬂ_1

(= Dn(n+ DA+ T2)F

So

(n+1)(n 221

ViV .
2 F2(n 1 2) ; ((n —n(n +1)(1 +T3J%)

(n+4)(n+2)°n(1 +T2)"F"
2(n + 1)on—1

= (nz_l)\f) (n+4)(n +2)(n - 2)2%—1“_5

= 2n1(n —1)2n(n+1)2(1 + T2)* %

FOP ~
ax

We also write @3 in a similar form. First,

00 " m/2 .
—— e . .n TL—
fo T+ 2y dr /0 sin™ @ cos™ % §df

L o ne
=§/ tTl(l—t)_fédt (lettingt=sin29)
0
1 n+l n—-3
‘53( B R )

n—1 n—1n-—1
2(n—3)B( 21T )

Thus

P i On—-2(n —2)2 s L.
Qs=-T.(1+ T2 T (Z ,\‘2) 16(; i(l)mgz 3)3 (n - 1} n . 1)

i=]
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2 2 Fn—1(n — 2)?
T +18 T (Z)‘)znﬂ(n-l)(n_s)'
A sufficient condition for (3.8) to hold is

faz |.f(‘2)|2 fa}: |f(3}|2
+
K2 H3

(4.6)

> 20Q)3.

Observe now

Jop|FOR _ (Zl ,\z) (n— 9% + ony

p 7| ortin(n— 12 (14 T2)T g

Jj=1

and

Jon |f(_3)|2 = (Z_:l ,\2,) (n+4)(n+2)(n —2)*0n—1

o D7) - 1)+ 1214 T2 T s

Thus (4.6) is equivalent to

n+2 4(n+2)(n+4) -T:

(1) nn—1ps  (n—nn+1)2%u3 " (n—3)(1+T2)

We can now verify (4.7) to conclude the proof of Theorem 1.1 with the
following two estimates on 9 and pus:

1472
4.8 9 < = 3

1+ T2
4.9 <2 =
(4.9) 13 T

which are just (3.14) for k = 2, 3.

Conclusion of Theorem 1.1. Using (4.8), (4.9), and the observation that

3(n+1)?
>
e =Tl lmed, Thanzy,
we have
n+2 4(n+2)(n+4)

n(n—1ps  (n—1)n(n+1)2us



856 Zheng-Chao Han and YanYan Li

n+2 |Ty 4(n+2)(n+4) 3(n +1)2 | Te|
nn—1)1+T2 (n—Dnn+1)22(n-3)(n+2)(n+4)1+ T2

v

{n+2 ] 6 } IT,|
nn—1)  (n-=1n(n-3)J 1+T2
1 |7
n—31+T2

v

Thus the condition in Proposition 2.1 has been verified to hold and Theo-
rem 1.1 is proved.

Remark 4.1. We remark that in the verification of (3.8), uz alone will not
be enough.

Appendix A.

Sugpose A(M) > 0. Let us use < u,v >= Jae (VuVo + c(n)Ryuv) +
222 [5pr houv to denote the inner product of Hl(M), and |ul| = /<u,u >
to denote the norm. We consider the following functional defined on H!(M):

1= [ (v +etmmgt) + 272 [ g~ 02D [y
M

n—2) oM 2
n— C 2(n—1
T 2(n-1) auwﬂ_ﬁ:ﬁ'

It is easy to see that I € C%(H!(M),R) and that u satisfies (1.1) if and
only if I'(u) = 0,u € H'(M) \ {0}.
Let

n—2

ﬁ(z!,zn) = ( 1 - T
1+ 2P+ |z —12)

where £ = —c/(n — 2). It is well known that % satisfies

~AT = n(n - 2773, R,
ou "
B —eg=-1, OR™.

We define

Se = 2_/ |Va? — (n— 2)2/ s e o

2(n—1) Jory
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and ; ( 2)2
—12 n-— —2n
8= 2 |V 1 — 5 jnu :

It is not difficult to see that

(A.1) = fm |Va|2.

n

Lemma A.1. Forallce R,

1

al? + (n—27° [ _an 0
3 =1) Ranl un-2 > 0.

i 2m—1) Jan

Proof. Multiplying the equation of % by u and integrating by parts respec-
tively on R} and R, we have

n 2(n—1
(A.2) f Vo =n(n—2) [ o +e ] o =
R R? OR%

and

f |Val? + c/ o = n(n —2) s,
R™ aR™ R™
It follows from (A.2) that

4 2, (n—2)* 2)2 _2n
= 2(n ~ l)f % P 2(n — 1) Rlu i

It follows from (A.1) and (A.2) that

__9\2
s—sc=lf Va2 + —"—~2—/ v ot
1) Jrn

L (n— 2(n—1) Jra
3 rﬂl—.T) R7 lvng_FH Rﬂ_% - H Rl_%
= %1__1) ]R \ \Val? + ;?n_ff) - T,

Lemma A.l is established.
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Lemma A.2. Suppose \;(M) > 0. Let {u;} ¢ H' (M) be a sequence of
fuctions satisfying,
I(w) = b< S,

and !

Y

veH (M\(0} [l

Then after passing to a subsequence, either {u;} weakly converges in H' (M)
to some solution of (1.1) or converges strongly to 0 in HX(M).

— 0.

Proof. Take v = u; in (1.6), we have

2n 2{n—1
(A8l -nm-2) [ @HP - [ @HFF = o(jul).
M aM
Multiplying (1.5) by —2(n — 1)/(n — 2) and adding it to the above, we have

2n_

Il + (n =277 [ ()P = 20— D+ 0(0) + o sl
It follows immediately that
(A.4) lli]| < C.
Using the above and (1.6) with v = u;, we have
(A.5) lluz 12 = o(1).
It follows from (A.4) that after passing to some subsequence,
(A.6) u; = u weakly in H'(M),

for some u € H'(M). In view of (A.5), » > 0 a.e. on M. It follows from
standard arguments that I'(u) = 0, namely,

—Lgu =n(n— 2)uﬂ%, on M,
Bgu = cuﬂ_?-f, on dM.

If u is not identically zero, then it follows from the Hopf lemma in its strong
form (see e.g. lemma 3.4 of [GT]) that v > 0 and therefore a solution of
(1.1). So we assume in the following that u = 0 and will use (1.5) to show
by contradiction argument that

(A7) lim ||u;]| = 0.

1—00
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Suppose the contrary of (A.7), we have, along a subsequence, that
(A.8) lim flui]] >0,
and therefore, in view of (A.3), (A.4) and (A.5),

2n_ 2(n-1)
lim{[ u;“2+/ %" }>O.
i—00 M oM

As in [L], we define for u; the following concentration function:

an 2(n—1
Qu-(r)=ma_X{ f g 32+ / jusl 5 b,
i zeM \ JB(z)nM B, (z)ndM

Let € > 0 be some small number to be determined later, and we define r; by

(A.9) Qui(ri) =«
We first show that

i .= 0.
(A.10) 11—1.12—., i

Suppose the contrary of (A.10), we have r; > 7 > 0 along a subsequence.
Let T; € M be a point satisfying

| 2n | lE!n-ll
A1l u\Ti 2/ |ui| +=2 +/ u;j| 2 =g,
( ) gy Br,(Zi)nM By, (z:)nM

and T; — T.

Let n € C°°(M) be some cutoff function with diam(supp ) < 7/2 < ri/2
and take v = n?(u; — u;) in (1.6), we have, by using (A.5), (A.6) and the
Sobolev embedding theorems, that

o(1) = [I' () — I' (u)] [0 (wi — u5)]
i fM V(i — )V (7w — u5))
(A12) —n(n—2) /M [|ui|':{% - |uj|H%] n*(ui — u;)

_Cf [|u‘.|n—'l~f - |uj|n—'i7] ng(ui—uj)+0(l].
oM
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Here and in the following o(1) denotes some quantity which tends to zero as
i and j tend to infinity. It follows, by using the mean value theorem, (A.9),
(A.6) and diam(supp n) < 7/2 < r;/2, that

(A.13)
_/M IV (n(w; — u;))]? < C’/:M (l‘uilﬁ # |uj|ﬁ) [7(wi — u;)]?

+0 [ (1l + fugl22) o — ) 4 o(1)

n—2

<cet{ [ nw—ua} "
M
n—2
n—1 ﬁ
roe{ [ - w9} ot
oM
<0 [ 19 (1w = u) P+ o(1).
Consequently, if we fix € > 0 at the beginning to satisfy Cent < 1/2, then
lim / IV (n(u; — uj)) |2 = 0.
I,J_’OO M

It is easy to see from (A.6) with u = 0 and the above that u; — 0 in H(M)
which contradicts to (A.8). This establishes (A.10).

Let y',--- ,y" denote the geodesic normal coordinates given by some
exponential map ezpz,, and define %;(z) = ri("ﬂ]’; 21.'.,:(1'42), for z € M; =
{z € R" : expz (riz) € M, |z| < 6o/r;}, where 8 is half of the injectivity
radius. Let § denote the metric Jogdz*d2? with 9ap(2) = gap(riz). It is
easy to see, after passing to some subsequence, that there exists R; — oo,
R; < 80/(107;) such that

(A.14) lim f (|V§ﬂi|2+lﬂi|n2_f2)
#=00 | J{R:<|z|<2R:}INM;
+f % |ﬁi|2::§1 } =0,
{Ri<|z|<2R;}N& M;

where ¥M; = {z € R : |z| < do/ri, exps,(riz) € OM}. Define some
smooth cutoff function 7; by

P ey 2| < Ry,
' 0 2| > 2Ry,
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satisfying
(A.15) 0<ii(z) <1, |Viu(z)| < C/R.
Set

iV =fed, 3P = -a.

We also define on M

n=2

il

uezpa ) = vy * @ (u/rs) = (/i) ui(enpe(v)),

and
ul(_Z) =Ui— ufl).

It is not difficult to see from (A.14) and (A.15) that
(A16)  I(w)=1I (uﬁ”) +1 () +o(1),

I(w) =1 (u) + I (uf?) +o(1) in H-'(M),
and
(A.17) both u{”) and u{? weakly converge to 0 in H L(m).
Writing

O (), - ()

It follows from (A.16) that
b=b 4pP

We will first show that b(2) > 0 and then show that b(1 > S, to reach a
contradiction.
Using (A.14), (A.15) and (1.6) with v = uV 4@ respectively, we have

T e

o1) = I'(ws)u’ = ' (u) uf? + o(1)

= [ |9 = ntn=2) [ |
o(l) = I’(ue)uﬁz) = {¥ (ufz)) ufz’ +0(1)
(A.18) = fM |Vu§'*”|2_n(n_g) fMiu!(z)

2(n—1
o [T 4o,
oM

(1)

i

2n_ (1) 2(n—-1)
n—2 n—2
- c/ ‘u‘. I +o(1),
oM

2n
n—2
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Using (A.17) and (A.18), we have

p® — f

_(n=2)c
2(n—1) Jom |

- (3-%-n) I
’ (Z((?z_—zl); i (n_22)2) Jl

> o(1).

2n_
(2)| n=2
i

»

+o(1)

Therefore
@ > 0.
Let (1) be the weak limit of @") in H} . It folows from (A.5) that @®) > 0.

For any test function ¢ € C°(R"™), set o(y) = ,.{2 n)/2
that

@(y/ri). It is clear

o(1) = I'(ws)p = I'(w{)p + o(1) ¢
21 Wy s =), =2 h-aD
(Alg) Tl ./:ﬁ‘ (V.Gui Vggp+c(n)Rguz (P) 2 3"!&? Quz w

—n(n-2) [M U /@ s )7 6+ o(llel

Let T = lim;_,o dist(T;, OM)/r;. When T = oo, we have from (A.19) that

n+2
ViV — n(n — 2) / (ﬁﬂ)) 1 5=0,
R» R"
namely, S
—Ad® = p(n —2) (ﬁﬂ”)“jj§ - RS
When 0 < T' < oo, we have from (A.19) that

e Vi)VE — n(n —2) % (ﬁ(l)) = ¢ — c[eR’_‘., (ﬂ{l)) = @ =0,

namely,
n+2
AT =n(n-2) (@M)"E,  zeR", 2> T,

a;:) = —c(a®) = 2 = T,
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We see easily from (A.9) and (A.14) that

2n
Q (1)(1) - — | sup {f g |'ﬁ£1) n—2 +f . ‘ﬁ,
zeM; Y Bi(z)NM; Bi1(z)Nd’ M;

Arguing as in (A.12) and (A.13), we know that {u( )} strongly converges to
@) in H! norm on any conpact sets. We aslo know from (A. 11) and (A.14)

that
2n_ 2
Lo
B (0)nM; By (0)nd’ M;

It follows that @(!) is not identically zero. We can then apply the Liouville
type theorems of Caffarelli-Gidas-Spruck [CGS] in R™ and Li-Zhu [LZ] in
R to obtain the explicit forms of u(l) as follows.

When T = oo, we have, for some € > 0, Z € R",

2(n—1)
ol } < e+0(1).

n—1
n—2

=€+ o(1).

" n=2
iyt ) ? n
1+ (z) (€2+|z_5i2) on R".

When 0 < T < oo, we have, for some € > 0, Z = —cé/(n — 2),

n—2

a0 (z) = d 9 e
T \@+[7 =7+ 20— 2l e

It follows from (A.5) and (A.17) that (ugl})‘ — 0 in HY(M). It follows that

1) e = 2 _n —2 2)? fM ( £1)) A
n—2)¢ Azl
é(n fi) [ () ™ 4o,

and

o(1) = I'(us)ul = Pyl + o(1)
2(n—1

= [ 7 -ntn-2) [ (W) = [ (W) 4o

Combining the above two estimates, we have

1 n—2
s = (L _ f (
(2 2(n-1)) M|V“*
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(=t~ 7)) et

Sending ¢ to oo, we have

n
va® (n— 2) Z0) 2 e
b > 1)/“l | 2(71—1) Rﬂ( ) BT =08,

= 2 2n

Wy va |’ L m=2)° o s

2(n—-1) Re, | 2(n—1) R:T(u ) f0<T<oo
_Js if T = oo,

Sc lfOST(co

In any case, we have shown that b > b)) > S, which contradicts to the
hypothesis.

Appendix B.

In this Appendix, we provide the algebra which leads to the expansion (2.1).
In the following, Aa = a — ag, Ab=b— by, -

Oré}a‘{xwf(tu)
1

= 5(‘1’].1—-—_1) {(00 + Aa) (14 2At + (At)?)

2n n(n
+(n — 2)%(bo + Ab) (1 +——At+( (TE :;)22) - o(l))(At)2) }

1
=BT {a0 + (n — 2)%0 + Aa + (2a0 + 2n(n — 2)bo) At
+ (n— 2)?Ab+ 2Aa At + 2n(n — 2)Ab At
+[ao + n(n + 2)bo](At)? + o((At)?)}
1
( 1) {5 [Ao + (2&0 + 21‘1(?1 2)b0)Tg + (n = 2)2.8(}]

+ €6 [A1 +(n—2)?Bi + (2a0 + 2n(n — 2)bo)T1] +

+ 62 [A2 + (n — 2)2Ba + (2a0 + 2n(n — 2)bo)Ts + 240 To+
+2n(n — 2)BoTo + (ag + n(n + 2)bo) T +

+€? [A3 + (2a0 + 2n(n — 2)bo) T3 + (n — 2)Bs] } + o(e? + 62).
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Observe that, using (1.4), we obtain 2ag+2n(n—2)bp = (n—2)[4nbo+ 725 do].
Using this and the expression for T, we simplify the coefficient of é by

Ao + (2a0 + 2n(n — 2)bo)To + (n — 2)*Bo
=T (Ao ~(n—2PBy— = 2,00)

Similarly we simplify the coefficients of €§ and € by
A1 + (200 + 2n(n — 2)bo) T + (n — 2)°B1
= (=) (41~ (- 2°B1 - ::fm) ,

Az + (2a0 + 2n(n — 2)bo)Ts + (n — 2)*B3

=(n-1) (Aa—(n—2)233—2:i93)-

Finally the coefficient of 62 is simplified as
Ag + (2a0 + 2n(n — 2)bo) Tz + (n — 2)By
+ 2Ty [Ao + n(n — 2)Bo] + (a0 + n(n + 2)bo) g

— (n -_ 1) (Ag = (n - 2)282 — : : ?Dg) + To (2A0 =— 2?’!»(1‘1 = 2)30 = 2D0)

+ T3 (4nbo+ ni2do) (n—3)

L Aol e [Ag — n(n — 2)Bo — Do?
= (n 1){A2 (n—2P By = T D+ S

=5
=(n-1){A2—(n—2)232-2_192

3 n—2
2ag + 2n(n — 2)bg

[A(‘] = ‘n.(n =t 2)30 = Do]z} .

Appendix C.

In this Appendix, we sketch the elementary derivations for (2.6)-(2.8), (4.3)-
(4.4). First, (2.6) and (2.7) follow from direct integration by parts, and the
last of (2.8) follows trivially from

1 On—
L_.#= (634 +62y) = 222,

n—1 gn-2 -1
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Next, a change of variables shows that

[ 9292=/ (91+92)2(91—92)2
g 0 ey TR V2

1 2
2 Z gn-2 (0% - eg)

1 1
== 64— = 6262
2 Ln—z k 2 gn-2 172>

from which we obtain
(C.1) / 0} =3 6763
Sn—2 Sn—2

On the other hand,
ona= [ @+t
Sn—2

=(-1 [ 6t+@-1@-2

gn—

which, combining with (C.1), gives (2.8). Similarly, using

/ 08 — f (91 + 92)6
gt | Jga \ V3 ;

we obtain the relation
6
/ =5 f 0162
gn—1 Sn—1

1
R 08 (03 + -+ 63

= 1 gn-1

I A fy a8
_n—l sn—lel (1 01)

1 1
ml g f 68
n—1 gn-—1 3 n—1 gn-1 1

we obtain (4.3). Finally,

Together with

1
L o= = [ @+ +a)

= Sn—1

202
291021
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1

S B i 6163 (1— 67 — 63)
1

=773 /.., (6163 —26163)

= On—1

T n(n+2)(n+4)

using (2.8) and (4.3).
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