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The Weyl-Schouten tensor Ag of a metric g is defined to be

Ag =
1

n− 2
{Ricg −

Scalg
2(n− 1)

g}.

The σk curvature of g is defined to be the k-th elementary symmetric function of the
eigenvalues of the 1-1 tensor g−1◦Ag. σ1 of g is simply a dimensional constant multiple of
the scalar curvature of g. Since the thesis of Viaclovsky [V1] and the fundamental work
of A. Chang, M. Gursky, and P. Yang [CGY1], there has been very intensive research
and progress on an extensive list of geometrical and PDE problems involving the σk

curvature of a metric for k > 1, mostly involving a conformal change of metric, see the
bibliography for an incomplete list of recent work in this area. Since the Weyl-Schouten
tensor transforms in the following way under a conformal change of metric g = e2w(x)g0,

Ag = Ag0 −
[
∇2w − dw ⊗ dw +

1

2
|∇w|2g0

]
,

thet σk curvature of g, when k ≥ 2, is then expressed as a fully nonlinear expression
involving w and its derivatives up to order 2. Almost all analytical work involving the
σk curvature restricts attention to the so called admissible metrics, for which the σk

curvature, regarded as a differential operator on w is, elliptic. And for this reason,
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it is natural to consider σ
1/k
k , not σk, to be the analytical object of study, as σ

1/k
k ,

regarded as a differential operator on w, is concave on the second derivatives of w, and
the concavity property is crucial for applying the Evans-Krylov regularity theory. For this
reason in the PDE analysis of solvability results involving the σk curvature one is often
led to imposing conditions on σ

1/k
k . However, as this note indicates, global geometric

obstruction conditions are naturally in terms of σk, not σ
1/k
k .

For k = 1, Kazdan and Warner first noticed a global geometric obstruction for a
function K(x) on the round sphere Sn to be the scalar curvature of a conformal metric,
expressed as ∫

Sn

〈∇xj,∇K〉d volg = 0, for j = 1, · · ·n + 1,

where xj are the coordinate functions on Sn from the standard embedding. Later this
obstruction was extended to a general manifold involving general conformal killing vector
field by Bourguignon and Ezin—note that ∇xj generates conformal killing vector fields
on Sn. Schoen also derived local versions and used them in obtaining a priori estimates
for metrics of constant scalar curvature. Here we obtain a natural generalization of these
obstructions for the σk curvatures on a compact Riemannian manifold.

Theorem 1. Let (Mn, g) be a compact Riemannian manifold of dimension n, σk(g
−1◦Ag)

be the σk curvatures of g, for k = 1, . . . , n, and X be a conformal Killing vectorfield on
(Mn, g). When k > 2, also assume that (Mn, g) is locally conformally flat. Then

∫
M

〈X,∇σk(g
−1 ◦ Ag)〉 d volg = 0. (1)

When (Mn, g) = (Sn, gcan), the obstruction can be obtained by a more elementary
variational means, as was used in our work [CHY1]. In [B] Bourguinon uses the construc-
tion of a closed 1-form on the infinite dimensional manifold consisting of metrics confor-
mal to (Mn, g), which is also invariant under the action of conformal diffeomorphisms of
(Mn, g), to prove a generalized Kazdan-Warner type identity involving the differential
of the scalar curvature of g by a conformal killing vector field. He also sketches a way
to obtain generalized integral identities involving the higher degree Pfaffian polynomials
of the curvature of g. That method in fact can be adapted to prove (1). However, the
most direct and elementary proof for (1) is to adapt the argument of Bourguinon-Ezin
[BE], Schoen [S1], [S2], using the following elementary algebraic and analytic properties
of the σk curvature.
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Proposition 1 ([Rei]). Defining the k-th Newton transform of a 1-1 tensor Λ by

Tk(Λ) =
n∑

j=0

(−1)jσk−j(Λ)Λj,

we have

(i) (k + 1)σk+1(Λ) = Tk(Λ)a
bΛ

b
a.

(ii) (n− k)σk(Λ) = Tk(Λ)a
a.

(iii) Tk(Λ)a
b = σk(Λ)δa

b − Tk−1(Λ)a
cΛ

c
b.

(iv) Tk(Λ)a
b = 1

k !

∑
δ

(
a1 · · · aka
b1 · · · bkb

)
Λb1

a1
· · ·Λbk

ak
, where δ

(
a1 · · · aka
b1 · · · bkb

)
is the Kronecker

symbol, which has a value +1 (respectively, −1) if a1 · · · aka are distinct and b1 · · · bkb
is an even (respectively, odd) permutation of a1 · · · aka; and a value 0 otherwise.

In the following, we will interchangably use the ∇ operator with indices or indices
after a comma sign, whichever is more convenient, to denote covariant differentiation in
g. Tk(g

−1 ◦ Ag) as a 1-1 tensor field on M enjoys the following analytic property.

Proposition 2 ([Rei], [V1]). If g is locally conformally flat, or if k = 1, then ∇aTk(g
−1◦

Ag)
a
b = 0.

Remark. Viaclovsky’s proof of Proposition 2 in [V1] is imbedded in the middle of his
computations for his Proposition 6, using Cartan’s formalism. For ease of reference,
we point out a straightforward tensor calculus argument adapting that of Reilly in [Rei].
The case of k = 1 is a direct consequence of Bianchi’s identity, as T1(g

−1 ◦ Ag)
a
b =

1
n−2

(
R
2
δa
b −Ra

b

)
. For the case k ≥ 2, note that in a locally conformally flat metric g, we

have the following classic, yet not widely used property:

Aab,c = Aac,b. (2)

(2) means that Aab,c as a (0, 3) tensor is totally symmetric.

Using (2) we can follow Reilly to conclude

∇aT
a
b =

1

k !

k∑
j=1

n∑
a=1

∑
δ

(
a1 · · · aka
b1 · · · bkb

)
Ab1

a1
· · ·∇aA

bj
aj
· · ·Abk

ak
.
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The summation turns out to be 0, because ∇aA
bj
aj is symmetric in aj and a by (2), while

the Kronecker symbol is antisymmetric in aj and a.

(2) can be deduced from the definition and property of the Cotton tensor. More
directly, we start from the once contracted Bianchi identity,

Rab,c −Rac,b = −Rd
abc , d.

Substituting the terms in the left hand side in terms of Aab, and the right hand side in
terms of the representation

Rabcd = Wabcd + Aacgbd − Aadgbc + gacAbd − gadAbc,

we arrive at
(n− 3) [Aab,c − Aac,b] = −W d

abc , d,

which proves (2) in the case n > 3. The case n = 3 requires a separate argument using
the conformal flatness in dimension 3.

Proof of Theorom 1. Let φt denote the local one-parameter family of conformal diffeo-
morphisms of (M, g) generated by X. Thus for some function wt we have

φ∗t (g) = e2wtg =: gt.

We have the following properties:

σk(g
−1 ◦ Ag) ◦ φt = σk(g

−1
t ◦ Agt), (3)

ẇ :=
d

dt

∣∣∣
t=0

wt = div X/n = ∇aX
a/n, (4)

d

dt

∣∣∣
t=0

(
g−1

t ◦ Agt

)a

b
= −∇a

b ẇ − 2ẇAa
b , (5)

We next point out the following useful

Fact. (
1 − 2k

n

)
〈X,∇σk〉 = −∇a

[
T a

b ∇b(
div X

n
) +

2k

n
σkX

a

]
, (6)

where we use T a
b to denote the components of Tk−1 and have dropped the dependence of σk

on g. We will do the same in the following, whenever there is no possibility of confusion.
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Proof of (6). Using (i), (3), (4), (5) and Proposition 2, we have

〈X,∇σk〉 = T b
a [−∇a

b ẇ − 2ẇAa
b ]

= −T b
a∇a

b ẇ − 2kσkẇ

= −T b
a∇a

b ẇ − 2k

n
σk∇bX

b

= −T b
a∇a

b ẇ +
2k

n
〈X,∇σk〉 −

2k

n
∇b

(
σkX

b
)

= −∇b

[
T b

a∇aẇ +
2k

n
σkX

b

]
+

2k

n
〈X,∇σk〉

(7)

(6) now follows directly.

We now continue our proof of Theorem 1. When 2k 6= n, it follows directly from
integrating (6). When 2k = n, we first prove that

∫
M

〈X,∇σk(g
−1 ◦ Ag)〉 d volg = −

∫
M

σk(g
−1 ◦ Ag)divgX dvolg

is independent of g within its conformal class. Let gt = e2tηg denote any conformal
variation of g. Then, noting that

d

dt

∣∣∣
t=0

divgtX = n〈X,∇η〉,
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we have, using again (4), (5), (6), and Proposition 2,

d

dt

∣∣∣
t=0

∫
M

σk(g
−1
t ◦ Agt)divgtX dvolgt

=

∫
M

{
−T a

b ·
(
∇b

aη
)
divgX + nσk〈X,∇η〉

}
dvolg

=

∫
M

{
−T a

b ∇b
a(divgX) − n∇a(σkX

a)
}

η dvolg

=0,

(8)

where, in the last line, we have used (6) for the case 2k = n.

Now we can complete the proof of Theorem 1 in the case 2k = n by following the
argument of Bourguignon and Ezin: Either the connected component of the identity
of the conformal group C0(M, g) is compact, then there is a metric ĝ conformal to g
admitting C0(M, g) as a group of isometries, from which it follows that divĝX ≡ 0 and
(1) therefore holds; or, C0(M, g) is non-compact, then by a theorem of Obata-Ferrand,
(M, g) is conformal to the standard sphere, in which case we can pick the canonical
metric to compute the integral on the left of (1) and conclude that it is 0.

Another property in the case of k = 1 or k < n and (M, g) locally conformally flat is

〈X,∇σk〉 = − n

n− k
∇b

[
(Tk)

b
aX

a
]
+ ∇b

[
σkX

b
]
,

where (Tk)
b
a stand for the components of Tk. This can also be used to prove Theorem 1

in such cases.

This is proved in the case that (M, g) is locally conformally flat by starting with

∇aσk = T b
c∇aA

c
b = T b

c∇bA
c
a = ∇b

[
T b

c Ac
a

]
, using (2) and Proposition 2.

Set Hb
a = T b

c Ac
a. Then Ha

a = kσk, and Hb
a = σkδ

b
a− (Tk)

b
a by (iii) of Proposition 1. Define

◦
Hb

a = Hb
a −

Hc
c

n
δb
a = Hb

a − kσk

n
δb
a. Then

◦
Ha

a = 0, and

∇b

◦
Hb

a = ∇bH
b
a −

k

n
∇aσk =

n− k

n
∇aσk.
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This last property can also be checked using Bianchi identity in the case k = 1 without
the locally conformally flat condition. Thus

〈X,∇σk〉 =
n

n− k
Xa∇b

◦
Hb

a

=
n

n− k

{
∇b

[
Xa

◦
Hb

a

]
−∇bX

a
◦

Hb
a

}

=
n

n− k

{
∇b

[
Xa

◦
Hb

a

]
− 1

2

(
∇bX

a + ∇aX
b
) ◦
Hb

a

}

=
n

n− k
∇b

[
Xa

◦
Hb

a

]

=
n

n− k
∇b

[
Xa

(
n− k

n
σkδ

b
a − (Tk)

b
a

)]

= − n

n− k
∇b

[
Xa(Tk)

b
a

]
+ ∇b

[
σkX

b
]
.
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