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Preface

These notes grew out of teaching graduate level introductory PDE courses regularly

over the last 20 years. There are several good graduate level PDE texts on the market;

my reasons for producing these notes include at least the following: (i) many students

in my courses have not had an undergraduate PDE course—while it is possible to

teach an introductory graduate level PDE course to such students using some existing

texts, it is important to provide some discussion of elementary methods as covered in

a typical undergraduate level PDE course dealing with prototypical PDE examples,

and relate these methods to the more abstract and systematic methods typically

presented in a graduate course; (ii) many existing texts seem to aim to train specialists

in PDE at the PhD level, and tend to choose the material and presentation for

this audience, often leaving out discussions on background and motivation, and not

necessarily providing enough discussions relating the more abstract and advanced

methods with the more elementary ones; (iii) while many students in my courses have

an interest in applying the PDE tools in their research, but not all are necessarily

interested in becoming a specialist in PDE per se, and it’s more important for them to

understand the heuristic ideas behind the (often abstract) methods than to focus on

the formal (and unmotivated to an uninitiated) arguments. I have also found, based

on my experience sitting on numerous oral qualifying exams, that many students

have had too little experience working hands-on with prototypical PDE examples, as

a result many students can memorize proofs of general theorems, but seem to have

difficulty with recognizing the scope and limitations of the general theorems they have

learned, and with making necessary modifications for the particular problems that

they may face. These notes have been prepared with addressing these issues in mind.

It is important to emphasize to students in a PDE course that they shouldn’t

expect that a few general theorems would suffice to “solve” the PDEs that they may

encounter — no such theorems exist; and this is a feature of the vast and important

subject of PDEs. Many modern mathematics texts are influenced by the Bourbaki

style, emphasizing a formal logical structure, making its coverage as general as possi-

v



PREFACE

ble, and presenting only polished proofs. Such a style is certainly more efficient and

adequate for a reader with sufficient background and experience, but seems difficult

for a reader with little experience in this vast field: it does not give much clue on how

the methods and theories of PDEs developed from tackling some instructive examples.

It is more beneficial for students to learn by working with prototypical examples, do-

ing hands-on computations, and experiencing first hand how a solution method may

succeed in a certain context but may encounter difficulties in other contexts, and

through this learning process gradually develop the experience and intuition to deal

with more general cases and abstract theories. Students who understand thoroughly

how methods, techniques and theories work or fail to work in well chosen prototypi-

cal examples will be rewarded immensely in tackling more general cases and abstract

theories.

Here are several features that I emphasize in these notes:

• Instead of following typical mathematical presentation from the general theory

to the concrete cases (or only general theory), I always use examples to illus-

trate how an idea is (often naturally) born, and then look for features in the

examples that can be extended to more general contexts. Fourier series and

Fourier transforms arise in such a fashion in applying the elementary method of

separation of variables. Our employment of the elementary solution methods is

not for teaching rote procedures, but is aimed at helping students build intuition

on what free parameters may enter in the elementary construction of solutions

to different kinds of equations, and how they may affect the behavior of solu-

tions and in satisfying initial and/or boundary conditions; and we emphasize

on looking for a priori estimates of solutions, instead of only representation

formulae, and emphasize on using the estimates, their suggested approximation

procedure, and the constructed explicit solutions (in prototypical examples) to

produce more general solutions.

• I don’t aim to present the most polished or concise treatment; rather, I often

treat the same problem multiple times, using different approaches, perhaps not

giving a thorough treatment in the first round, but adding additional ideas in

later rounds.

• I make an effort to minimize the technical prerequisites expected of the students.

The development in the notes does not rely in any essential way on the technical

aspects of Lebesgue’s integration theory, other than teaching the students how

to work with Lp norms (mostly L2 norms) and to accept that the space of Lp

vi



integrable functions is complete. The notes motivate the need for Fourier series

and Fourier transforms early on and begin to make limited use of some of their

properties before a summary of their main properties is provided at appropriate

places.

• I try to make connections with methods used to solve ODEs, pointing out

relations as well as differences. The elementary construction of solutions—

most notably separation of variables—often reduces the problem to solving some

sets of ODEs; more importantly, understanding the role played by the free

parameters in the construction of ODE solutions makes it easier for students

to understand the issue of well-posedness, the role of initial or/and boundary

conditions in a well-posed PDE problem. Many basic concepts, such as Duhamel

principle, eigenfunction expansion, and the spectrum of a differential operator,

are easiest to understand in the context of ODE problems.

• I emphasize the need to make any reasonable limit of classical solutions as a

generalized solution and often motivate notions of generalized/weak solutions

through such a limiting process and show the need, fruitfulness, and some flex-

ibility for such notions.

• I include a good number of exercises and problems for students to practice their

trade—this is an essential aspect of learning. Just as a student of painting can’t

become a painter by just learning the theory of perspectives but not spending

thousands of hours practicing painting, a student of PDE can’t learn the skills of

the trade by only reading the general proofs and theories. In particular, I have

included a number of exercises involving solutions to some classical differen-

tial equations: Bessel equations, Legendre equations, and their generalizations;

they arise in constructing eigenfunctions for the Laplace operator in the flat

Euclidean space, in the round sphere, as well as in the hyperbolic space.

• I gradually introduce more advanced tools and approaches. Chapters 1 through

3 are mostly on elementary solution methods, with an emphasis on constructing

solutions converging in appropriate norms depending on the contexts. Chapter

4 introduces the maximum principle, energy method, and variational method

in the simplest context. Chapter 5 covers the basics of the Laplace and Poisson

Equations. Chapters 6 through 9 introduce some more general tools and ap-

proaches, and provide an introduction to several topics that one may encounter

in studying initial or boundary value problems. Some of the topics (e.g. those
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PREFACE

in Chapters 7 and 9) may not get covered in a one semester course, and this

would not cause difficulty for a student to directly to the material after Chapter

9, after having studied the first five chapters and relevant sections in Chapter

6. The material of Chapters 10 and 11 differs not too much from that of the

existing textbooks, with the exception of perhaps some part of sections 2 and

3 of Chapter 11.

Since these notes are produced to meet the needs of the typical students in my

graduate courses, they are more limited in their scope and depth of coverage in their

current form compared with many of the existing textbooks. I hope that students

who have used these notes will find it easier to study their interested topics more

systematically and in more depth from some of the existing textbooks.

I have only included in the bibliography published textbooks and surveys that I

have consulted over the years. I also benefited from the lectures and course notes on

PDEs by my teachers Louis Nirenberg and Sergiu Klainerman when I was a graduate

student at the Courant Institute.

In my fall 2017 graduate PDE course at Rutgers, David Herrera and Parker Hund

provided detailed lists of corrections and suggestions, and Parker Hund continued to

do additional proofreading after the course. This has been very valuable in cutting

down the number of typos and clarifying the writing of many topics. I would like to

thank them and other students in my courses for their helpful input.

In addition to using earlier versions or portions of these notes in graduate PDE

courses at Rutgers, I also used a portion of an earlier draft of these notes in giving

select PDE lectures to graduate students at the North University of China in summer

2015 and spring 2018 when I was a visiting professor there; I also used my time

there to expand, revise, and edit these notes. I warmly acknowledge the support and

friendly atmosphere provided by colleagues and students of the North University of

China.

These notes are my attempts to help students learn this fascinating but somewhat

difficult subject. They began as supplementary course notes, and have not been

constructed as a formal text, although they contain more than enough material for

a one year introductory course. Since I have made an effort to explain the ideas

behind various solution methods, I have not avoided repeating certain explanations

when I see a need; as a result these notes have not been as concise as I had initially

hoped for. At this point they may serve as a supplement, not as a replacement, for

mature existing texts. I do have additional notes that I intend to include after some

revision. A lot of feedback and input from students on the selection of material,

viii



level, arrangement, and style of presentation will be needed to improve these notes

and make them helpful to students. Please feel free to send me your comments,

suggestions or criticism, and I would appreciate them greatly.

Zheng-Chao Han

zchan@math.rutgers.edu
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Introduction and Elementary

Solution Methods
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Chapter 1

Formulation of Some Prototype

PDE Problems and Initial

Comparisons with ODE Problems

The goals of the first Chapter are:

• to discuss the setting up process of some prototype PDEs, in particular, to make

students be aware of the connections and differences between the physical and

geometric assumptions that have been made in the setting up process on the

one hand, and the technical mathematical assumptions that have been made

on the other hand;

• to discuss the need for notions of solutions with varying smoothness assump-

tions;

• to discuss typical boundary/initial conditions;

• to make an initial discussion on the well-posedness issue in general terms;

• to make some general comparisons on approaches and results with those from

the theory of ODEs; and

• to introduce the methods of separation of variables, which lead to Fourier’s

series and integrals.

© 2023, by Zheng-Chao Han. Please do not distribute these notes at this point, as they have

not been thoroughly revised.
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CHAPTER 1. SOME PROTOTYPE PDES AND ELEMENTARY SOLUTIONS

1.1 Formulation of Some Prototype PDE Prob-

lems

In this section we will use various examples to illustrate

• how to set up a PDE in a physical or geometrical context by translating the

relevant physical or geometrical principle into an equation or equations;

• how the equations initially set up (often in integral form) are reduced to differ-

ential equations under appropriate regularity assumptions on the solutions;

• the distinction between physical/geometrical assumptions and mathematical

assumptions (mostly on the smoothness of the solutions) in setting up the PDEs;

• the method of calculus of variations in formulating PDE problems;

• the needs for initial/boundary conditions to determine a solution; and

• the needs for varying degrees of smoothness of solutions depending on the con-

text and property of the PDEs.

Many PDEs that we encounter are set up by translating the relevant physical or

geometrical principle into equations. However, most physical and geometrical princi-

ples are initially formulated in terms of integral equations, not as differential equations

directly; we often need to make some smoothness assumptions on the relevant physical

or geometrical quantities to reduce the integral equation(s) to PDE(s).

Other times direct, faithful translation of the physical principle may produce a

PDE which is too difficult to manage, so we may need to make some simplifying phys-

ical or mathematical assumptions to obtain a simpler PDE as a first approximation to

the physical process. Of course, whether the simplified PDE gives a good description

to the physical process is subject to verification with data. But that is not our main

task here; our main task is to learn how to analyze a PDE. As we will learn, however,

having some physical and geometrical intuition will be of great help in the analysis

of PDEs.

The set up of a PDE to model a physical or geometrical problem needs to be on

as firm a ground as possible; but the standards of physical justifications are often

different from those of mathematical justifications: we need to be mindful of the

assumptions that are used to set up the problem, but the modeling part may not

call for mathematical justifications at each step. So you will see varying degree of

mathematical rigor in the setting up process.

4



1.1. SOME PROTOTYPE PDE PROBLEMS

1.1.1 Formulation of Some Prototype PDEs From Their In-

tegral Forms

We will first illustrate the set up process using an example in one spatial dimension,

then discuss examples in more than one spatial dimensions, where the concept of flux

and the divergence theorem will play a prominent role. Whenever a problem in multi-

dimension is difficult to comprehend, always return to the one-spatial-dimension case

and try to understand it first.

Example 1.1 (Equation for the motion of a fluid along a one-dimensional tube).

Here, the relevant physical quantities are: the (linear) density ρ(x, t) of the fluid at

location x and time t defined as mass per unit length, where x is the coordinate along

the tube (as a one-dimensional object), and the velocity v(x, t) (in the direction of

x-axis here) of the fluid at location x and time t. The first relevant physical principle

is the law of conservation of mass, which can be expressed as

the rate of change of mass in any section of the tube

= the rate of fluid flowing in across the ends of the tube

− the rate of fluid flowing out across the ends of the tube.

More quantitatively, for any x1 < x2, and any moment t,

d

dt

∫ x2

x1

ρ(x, t) dx = ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t). (1.1)

Here, the right hand side terms come from the mass of the section to the left of x1

with length v(x1, t) and density ρ(x1, t) entering the section between x1 and x2 per

unit time, and the mass of the section to the left of x2 with length v(x2, t) and density

ρ(x2, t) leaving the section between x1 and x2 per unit time; and we have already made

some tentative mathematical assumptions (integrability and differentiability) on the

quantities ρ(x, t) and v(x, t) to make sense of the relation above.

(1.1) is not a PDE yet, and is not easy to work with. We next make the more

definite mathematical assumption that ρ and v are C1 functions of x and t everywhere,

so that
d

dt

∫ x2

x1

ρ(x, t) dx =

∫ x2

x1

∂ ρ(x, t)

∂t
dx,

ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t) = −
∫ x2

x1

∂ [ρ(x, t)v(x, t)]

∂x
dx.

Then (1.1) becomes∫ x2

x1

∂ ρ(x, t)

∂t
dx = −

∫ x2

x1

∂ [ρ(x, t)v(x, t)]

∂x
dx. (1.2)

5



CHAPTER 1. SOME PROTOTYPE PDES AND ELEMENTARY SOLUTIONS

Since, at any moment t, (1.2) holds for any x1 < x2, and we have assumed the

integrands to be continuous, we arrive at

∂ ρ(x, t)

∂t
= −∂ [ρ(x, t)v(x, t)]

∂x
at any (x, t),

which is often referred to as the equation of continuity, and is written as

∂ ρ(x, t)

∂t
+
∂ [ρ(x, t)v(x, t)]

∂x
= 0. (1.3)

By a similar process using the law of conservation of momentum, we arrive at

∂[ρ(x, t)v(x, t)]

∂t
+
∂ [ρ(x, t)v2(x, t)]

∂x
= −∂p(x, t)

∂x
, (1.4)

here, p(x, t) is the pressure at (x, t) (pressure normally is defined as force per unit

area, but in this set up of a thin tube p(x, t) is taken as the force of one section of the

fluid exerted on the other section at location x and time t, so has the unit of force),

and we have made the physical assumption that there is no external force acting on

the fluid, and the mathematical assumption that the quantities involved have enough

differentiability to allow differentiation under the integral sign to carry through.

(1.3) and (1.4) are two equations involving three unknowns: ρ(x, t), v(x, t), and

p(x, t). For an ideal isentropic fluid, p(x, t) is determined through the density ρ(x, t):

p(x, t) = p(ρ(x, t)). Then (1.3) and (1.4) form a system of two equations in ρ and

v. For many gases, p = Aργ for some A > 0 and γ ≥ 1. As we will see later, an

important assumption based on physical principle is that p′(ρ) > 0 for ρ > 0.

In some physical situation, a solution may exhibit a sharp change of value across

an interface. Mathematically such solutions are modeled by piecewise continuous

solutions with a jump discontinuity. The following remark discusses how to modify

the above derivation to take into account of a jump discontinuity in a solution, and

to derive a corresponding condition along the interface of discontinuity.

Remark 1.1. ∗ Suppose that ρ(x, t) and v(x, t) have a jump discontinuity along

the curve {(x, t) : x = ξ(t)}, namely, ρ(x, t) and v(x, t) are C1 in {(x, t) : x ≤ ξ(t)}
and {(x, t) : x ≥ ξ(t)}, respectively, with limiting values of ρ−(ξ(t), t), v−(ξ(t), t), and

ρ+(ξ(t), t), v+(ξ(t), t), along the left and right sides of the curve x = ξ(t), respectively.

Then in reducing (1.1) to a PDE, nothing needs to be changed if x1 < x2 < ξ(t), or

ξ(t) < x1 < x2, so (1.2) holds as long as x 6= ξ(t). When x1 < ξ(t) < x2, in carrying

∗May be skipped on a first reading.
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1.1. SOME PROTOTYPE PDE PROBLEMS

Figure 1.1: Include a figure, depicting the line of discontinuity and the left and right

limiting values of the functions on either side

through differentiation through the integral on the left side of (1.1), we have to be

mindful of the discontinuity of ρ(x, t) at x = ξ(t), and modify the procedure as

d

dt

{∫ ξ(t)

x1

+

∫ x2

ξ(t)

}
ρ(x, t) dx =

∫ x2

x1

∂ρ(x, t)

∂t
dx+

[
ρ−(ξ(t), t)− ρ+(ξ(t), t)

]
ξ′(t),

assuming ξ(t) to be differentiable in t. This follows from a variant of the following

lemma.

Lemma 1.1. Suppose that ρ(x, t) is a C1 function defined on [x1, x2]× [t1, t2], ξ(t) ∈
C1[t1, t2] such that x1 < ξ(t) < x2 for all t ∈ [t1, t2]. Then G(t) :=

∫ ξ(t)
x1

ρ(x, t) dx is

C1 in [t1, t2], and

d

dt

(∫ ξ(t)

x1

ρ(x, t) dx

)
=

∫ ξ(t)

x1

ρt(x, t) dx+ ρ(ξ(t), t)ξ′(t). (1.5)

This is a simple consequence of the chain rule after recognizing that G(t) =

F (ξ(t), t), where F (y, t) :=
∫ y
x1
ρ(x, t) dx is C1 in [x1, x2]× [t1, t2].

But some preliminary set up is needed to apply this Lemma, as, in our context,

the integrand ρ(x, t) is expected to have a discontinuity at x = ξ(t) for t1 ≤ t ≤ t2,

but otherwise is a C1 function defined on {(x, t) : t1 ≤ t ≤ t2, x1 ≤ x ≤ ξ(t)}; this

is not quite the set up to apply the above Lemma directly. This will be left as an

exercise, with some guidance provided.

The right hand side of (1.1) is also expected to experience a discontinuity at x =

ξ(t), and is treated by applying the Fundamental Theorem of Calculus to ρ(x, t)v(x, t)

in the x variable between [x1, ξ(t)], and [ξ(t), x2], separately:[
ρ(x1, t)v(x1, t)− ρ−(ξ(t), t)v−(ξ(t), t)

]
+
[
ρ+(ξ(t), t)v+(ξ(t), t)− ρ(x2, t)v(x2, t)

]
+ ρ−(ξ(t), t)v−(ξ(t), t)− ρ+(ξ(t), t)v+(ξ(t), t)

=−
∫ ξ(t)

x1

∂ [ρ(x, t)v(x, t))]

∂x
dx−

∫ x2

ξ(t)

∂ [ρ(x, t)v(x, t))]

∂x
dx

+ ρ−(ξ(t), t)v−(ξ(t), t)− ρ+(ξ(t), t)v+(ξ(t), t)

=−
∫ x2

x1

∂ [ρ(x, t)v(x, t))]

∂x
dx+ ρ−(ξ(t), t)v−(ξ(t), t)− ρ+(ξ(t), t)v+(ξ(t), t).

7
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Since ∂ρ(x,t)
∂t

= −∂[ρ(x,t)v(x,t))]
∂x

is already established at x 6= ξ(t), so the integrals on the

two sides cancel, and we can conclude that[
ρ−(ξ(t), t)− ρ+(ξ(t), t)

]
ξ′(t) = ρ−(ξ(t), t)v−(ξ(t), t)− ρ+(ξ(t), t)v+(ξ(t), t). (1.6)

Note that [ρ−(ξ(t), t)− ρ+(ξ(t), t)] is the jump of ρ(x, t) across x = ξ(t), while

ρ−(ξ(t), t)v−(ξ(t), t)−ρ+(ξ(t), t)v+(ξ(t), t) is the jump of ρ(x, t)v(x, t) across x = ξ(t).

(1.6) relates the speed of the point of discontinuity, ξ′(t), with the jumps of ρ and

ρv across the discontinuity; and is a case of the so called Rankine-Hugoniot condi-

tions. This leads to a solution (ρ(x, t), v(x, t)), which satisfies (1.3) except along the

interface x = ξ(t), with a jump discontinuity along x = ξ(t), and the jumps of ρ and

ρv satisfy (1.6) along x = ξ(t).

Solutions with such kind of jump discontinuity are called shock wave solutions.

Note that ξ(t), ρ±(ξ(t), t), and v±(ξ(t), t) may be part of the unknowns here.

A physicist may derive (1.6) as follows. We account for how much mass has

crossed x = ξ(t) per unit time: the mass of the section to the left of ξ(t) with

length v−(ξ(t), t)− ξ′(t) and density ρ−(ξ(t), t) has crossed ξ(t), so the mass crossed

is ρ−(ξ(t), t)[v−(ξ(t), t)− ξ′(t)]; and once crossing ξ(t), the mass moves at the speed

of v+(ξ(t), t), occupying the section to the right of ξ(t) with length v+(ξ(t), t)− ξ′(t)
and with density ρ+(ξ(t), t). Thus we must have

ρ−(ξ(t), t)[v−(ξ(t), t)− ξ′(t)] = ρ+(ξ(t), t)[v+(ξ(t), t)− ξ′(t)],

which is equivalent to (1.6).

A situation as described here may arise when a piston is pushed with speed of v−

along a uniform tube filled with still air. Here, we may assume that the air right in

front of the piston moves with (constant) speed v−, and take v+ = 0, then (1.6) would

take the form [ρ− − ρ+] ξ′(t) = ρ−v−. This equation alone can’t determine the shock

wave speed ξ′(t), as ρ− is to be determined; one also needs to establish a Rankine-

Hugoniot type condition based on the momentum equation (1.4) to determine ξ′(t).

Example 1.2 (Equation for heat conduction). Here, the relevant physical quanti-

ties are the temperature u(x, t) at location x and time t, the specific heat c of the

medium, i.e., the amount of heat needed for each unit increase of temperature per unit

mass, and the density ρ(x, t) of the medium. Unless we deal with an inhomogeneous

medium, we assume c and ρ are constants across the medium and are independent

of t. There is no macroscopic movement of material in this set up; the changes in

u(x, t) can be attributed to the transfer of energy due to microscopic movement of

molecules. The basic law describing the conduction of heat is expressed as

8
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the rate of change of heat in a region

= heat flux across the boundary of the region

+ the rate of heat production within the region.

If we let ~q(x, t) denote the heat flux vector, i.e., ~q(x, t)·~n gives the heat transferred

per unit time across a unit area with unit normal vector ~n, and let f(x, t) denote the

heat produced per unit time per unit mass within the region, then, for any region

Ω with piecewise C1 boundary∗ (so that the divergence theorem can be applied to

Ω; we can take Ω to be balls or boxes whose closure are contained in our domain of

consideration), the above law translates into∫
Ω

cρ
∂u

∂t
dx = −

∫
∂Ω

~q(x, t) · ~n(x) dσ +

∫
Ω

ρf(x, t) dx, (1.7)

where ~n(x) denotes the exterior unit normal to ∂Ω at x, and dσ denotes the area

element of ∂Ω.

One often used postulate on the heat flux vector is Fourier’s law: ~q(x, t) =

−k∇u(x, t), where k > 0 is the thermal conductivity of the medium, assumed to

∗A domain Ω with C1 boundary is an open set of Rn such that any point P ∈ ∂Ω has a

neighborhood V in Rn with the property that ∂Ω∩V is a C1 hypersurface; and that Ω∩V stays on

one side of this hypersurface. A domain (also called a region) with piecewise C1 boundary is modeled

on polyhedrons such as a cube or a prism. Here is an analytical definition. A domain Ω has piecewise

C1 boundary if any point P ∈ ∂Ω has a neighborhood V in Rn and C1 functions Fi(x) defined in V

for 1 ≤ i ≤ k and some k ≥ 1 such that (i). Ω∩V = {x ∈ V : Fi(x) > 0, i = 1, · · · , k}; (ii). Fi(P ) = 0

for i = 1, · · · , k and ∂Ω∩V = ∪I{x ∈ V : Fi(x) = 0 for i ∈ I and Fj(x) > 0 for j /∈ I}, where I runs

over the set of non-empty subsets of {1, · · · , k}; and (iii) The Jacobian matrix [DF1(P ), · · · , DFk(P )]

has full rank. Conditions (ii) and (iii) allow a stratification of ∂Ω∩ V as union of Σm = ∪|I|=m{x ∈
V : Fi(x) = 0 for i ∈ I and Fj(x) > 0 for j /∈ I}, m = 1, · · · ,min{k, n}, where Σm is a codimension

m manifold in Rn as a consequence of the implicit function theorem, which allows us to treat

ui = Fi(x), i = 1, · · · , k (taking k ≤ n for simplicity) as part of the coordinates to reparametrize

V and regard Ω ∩ V as the image of a neighborhood of u = 0 in {u : ui > 0, i = 1, · · · , k}. More

concretely, any point Q on Σm has a neighborhood U in Rn such that Σm ∩U is represented as the

graph of a Rm-valued C1 function defined in a neighborhood of a point in Rn−m. Condition (i) gives

the notion of Ω staying on one side of Σ1 and a continuous choice of unit exterior/interior normal

vector on Σ1. These conditions also imply that, if S1 = {x ∈ U : F1(x) = 0, Fi > 0 for i 6= 1} and

S2 = {x ∈ U : F2(x) = 0, Fi > 0 for i 6= 2} are two components in Σ1 such that S1 ∩ S2 contains

a non-empty codimension 2 piece, namely, {x ∈ U : F1(x) = F2(x) = 0, Fi(x) > 0 for other i′s} is

not empty, then this codimension 2 piece is in the shared boundary of only S1 and S2; in fact, any

codimension 2 piece of ∂Ω must be contained in the shared boundary of two codimension 1 pieces.

This rules out the possibility of ∂Ω having a cross or triple-junction piece if Ω ⊂ R2, as well as Ω

equals the three dimensional open ball removing a line segment or a closed loop, or isolated points.

9
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Figure 1.2: Include a figure, depicting a region with piecewise C1 boundary surface

and the heat flux vector field

be a constant for a uniform medium. To reduce (1.7) into a PDE, we make the

mathematical assumption that k is uniform across the medium, and u(x, t) is twice

continuously differentiable in x ∈ Ω̄, so that by the Divergence Theorem

−
∫
∂Ω

~q(x, t) · ~n(x) dσ

=k

∫
∂Ω

∇u(x, t) · ~n(x) dσ

=k

∫
Ω

div (∇u(x, t)) dx

=k

∫
Ω

∆u(x, t) dx,

where ∆u(x, t) = div (∇u(x, t)) =
∑3

i=1
∂2u(x,t)

∂x2
i

is called the Laplacian of u. Thus

(1.7) reduces to ∫
Ω

cρ
∂u

∂t
dx =

∫
Ω

[k∆u+ ρf(x, t)] dx.

Since this relation holds on any (reasonably regular) region Ω∗ and we have assumed

the integrands to be continuous, we arrive at

∂u

∂t
= γ∆u+

1

c
f(x, t). (1.8)

with γ = k
cρ
> 0 denoting the thermal diffusivity of the medium.

Remark 1.2. If Fourier’s law needs to be modified in a certain situation, such as when

k depends on (x, t) or u(x, t), or both: k = k(u, x, t), or ~q(x, t) = −A(x, t)∇u(x, t),

where A(x, t) is an 3×3 matrix with certain properties, for example, positive definite,

then (1.8) is modified in the first case as

∂u

∂t
=

1

cρ
∇ (k(u, x, t)∇u(x, t)) +

1

c
f(x, t),

and in the second case as

∂u

∂t
=

1

cρ
∇ (A(x, t)∇u(x, t)) +

1

c
f(x, t).

∗For our purposes it suffices to restrict Ω to balls or rectangular boxes.
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An example of the first case is when the medium is a mix of two or more material

with different specific heat, or density, or thermal conductivity. A rod made up

of two kinds of material welded at x = 0 is a specific example. Due to potential

discontinuities of some of the terms, we have to re-examine the derivation process. In

this 1-D case, the heat flux term across [x1, x2] is −q(x2, t) + q(x1, t). If q(x, t) had

a discontinuity in x, then we would need to make modifications when expressing this

difference in terms of an integral of its x-derivative. However, physical consideration

makes it reasonable to assume that u(x, t), the temperature, as well as q(x, t) should

not experience a discontinuity. Thus at the welding point x = 0, the continuity of

q(x, t) leads to k−ux(0−, t) = k+ux(0+, t), where k∓ are the thermal conductivity

coefficient of the medium to the left and right of x = 0, respectively, and ux(0∓, t)
are the left and right x-derivative of u(x, t) at (0, t), respectively. When k− 6= k+,

this leads to solutions with a discontinuity in ux(x, t) at (0, t). Away from x = 0,

appropriate forms of the heat equation hold.

The same equation arises in many other processes of diffusion, i.e. the process

of equalization of the concentration in a medium with an initially non-homogeneous

distribution of some substance (such as the dilution of a dye in a medium), where

~q(x, t) would have a natural interpretation as a flux, and the law corresponding to

Fourier’s law is often referred to as Fick’s Law. The equation also arises in describing

Brownian motion, which underlies many diffusion processes. For this reason, (1.8) is

also often called a diffusion equation.

Boundary Conditions (BC); Initial Conditions (IC); Initial-Boundary Value

Problems (IBVP); Initial Value Problems (IVP); and Boundary Value

Problems (BVP)

To determine u(x, t) in a fixed region x ∈ D and t > 0, in addition to (1.8), we

also need to know the initial data u(x, 0) for x ∈ D, and information on the boundary

data u(x, t) for x ∈ ∂D and t > 0. The simplest type of boundary condition is the

homogeneous Dirichlet boundary condition u(x, t) = 0 for (x, t) ∈ ∂D×R+. In such

a case we look for a solution u(x, t) to
∂u

∂t
= γ∆u+

1

c
f(x, t) for (x, t) ∈ D × R+,

u(x, t) = 0 for (x, t) ∈ ∂D × R+,

u(x, 0) = g(x) for x ∈ D, for a given function g.

(1.9)

This is an example of an initial-boundary value problems (IBVP).

11
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One may also encounter a Neumann type boundary condition, prescribing ∂u
∂~n

(x, t)

along (x, t) ∈ ∂D × R+. Since ~q(x, t) · ~n(x, t) = −k ∂u
∂~n

(x, t) under the assumption of

Fourier’s law, prescribing ∂u
∂~n

(x, t) along (x, t) ∈ ∂D × R+ has the interpretation of

prescribing the heat flux across the boundary of D. The corresponding IBVP would

be
∂u

∂t
= γ∆u+

1

c
f(x, t) for (x, t) ∈ D × R+,

u(x, 0) = g(x) for x ∈ D, for a given function g,

∂u

∂~n
(x, t) = h(x, t) for (x, t) ∈ ∂D × R+, and a given function h on ∂D × R+.

h ≡ 0 would be appropriate when ∂D is totally insulated. When the heat flux across

the boundary of D depends on u(x, t) there in a linear fashion, we encounter a Robin

type boundary condition: ∂u
∂~n

(x, t) + au(x, t) = h(x, t) for (x, t) ∈ ∂D × R+ for some

a.

In some situations, we take D to be the entire Rn, so there is only the initial

condition but no explicit boundary condition (but for the heat equation, there will

be implicit condition that the solution not grow too fast as x→∞). Such an initial

value problem (IVP) is called a Cauchy problem (compare with the Cauchy problem

in ODEs).

A natural formal definition for a solution of an IBVP such as (1.9) would require

a function u(x, t), such that u(x, t), together with ut(x, t), ∂
2
xixj

u(x, t) be continuous

on the closure of the domain D × R+, and the PDE itself holds on this closure as

well. But such requirements can be too restrictive. For instance, if we demand that

the PDE in (1.9) to hold on the closure of the domain D×R+, this would require to

evaluate ∆u(x, 0) by ∆g(x), so g would have to be C2 in D—we will learn that we

can construct a solution of (1.9) even for an initial data g which is only continuous.

Furthermore, the continuity of u, ut, and ∆u along ∂D × {0}, together with the

initial and boundary conditions in (1.9) would require g(x) = 0, ut(x, 0) = 0, and

0 = γ∆g(x) + 1
c
f(x, 0) for x ∈ ∂D. These are called boundary compatibility

conditions when we consider solutions to the above IBVP such that u, ut, and ∆u are

continuous on the closure of the domain D × R+. We may demand these conditions

in certain approaches, but may not demand them in others—this often happens when

we find it advantageous to require the boundary or initial conditions be taken on in

an integral (i.e. average) sense, in stead of in a point wise sense.

When D is a two or higher dimensional region, in particular when it does not have

a sufficiently smooth boundary, such as when it is a domain with corners or edges,

12
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it’s not always straightforward to define the meaning of functions such as ∂2
xixj

u(x, t)

on the boundary, and require them to be continuous on the closure of the domain,

and it’s possible that for certain such domains, the size of ∂2
xixj

u(x, t) of a solution of

(1.9) may grow unbounded as x approaches a corner or edge point of the boundary,

so it may not make sense to demand that the solution and all the terms in the PDE

be continuous on the closure of the boundary, and the PDE be valid on the closure

of the boundary in such cases.

Based such consideration, we often require the PDE in an IBVP, such as in (1.9),

to hold only in the interior of the (space or space-time) region, not necessarily on its

boundary; but would require u(x, t) itself (and ux(x, t), if need be, as in the case of

the Neumann or Robin type boundary conditions) to be continuous on D × R+∗, or

on D × [0,∞), to make sense of the boundary and initial conditions there.

For a similar reason we could require the initial condition u(x, 0) = g(x) to hold on

the closure D of D, but may not insist it—in other words, we may ignore the boundary

compatibility conditions in some approaches, although we will make a study of this

issue in some cases later on. As we will see, we often expect a solution u to (1.9) to be

continuous on D × R+ in some sense (often in an integral sense), but not necessarily

in a point-wise sense; so we may allow g to be not continuous.

If we consider evolution equations such as (1.9) on a finite time interval 0 < t < T ,

we often include D×{T} to be part of the domain on which the PDE holds; in other

words, the PDE is supposed to hold on D × (0, T ].

(1.8) is an example of a parabolic PDE. For an IBVP for a parabolic PDE such as

(1.9) on a finite time interval (0, T ], the initial and boundary conditions are imposed

on only a portion of the boundary of D× (0, T ]: ∂D× [0, T ]∪D×{0}. This portion

is called the parabolic boundary of D × (0, T ], and is often denoted either as

∂′(D × (0, T ]) or as ∂p(D × (0, T ]).

Since (1.9) involves different orders of differentiation of the unknown u in x and

t, it’s natural to look for a solution which reflects different requirements on the order

of differentiation of the unknown u in x and t. We often use C2,1
x,t to denote the class

of functions which are twice continuously differentiable in x and once continuously

differentiable in t in appropriate domains.

∗The continuity of ux(x, t) on D × R+ is in the sense that ux(x, t) has a continuous extension

to D × R+. In general Ck(Ω) denotes the space of functions in Ck(Ω) such that for any l ≤ k, ∂lxu

has a continuous extension to Ω. A piecewise Ck function in Ω refers to a function u such that Ω

can be partitioned into the non-overlapping union of a finite number of domains Ωi with piecewise

Ck boundary: Ω = ∪iΩi and Ωi ∩ Ωj = ∅ for i 6= j, and the restriction of u to each Ωi is Ck and

has an extension as a function of Ck(Ωi).
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Example 1.3 (Equation of one dimensional waves). The equation

∂2u

∂t2
− c2∂

2u

∂x2
= 0, (1.10)

describes the small transverse vibration of a perfectly elastic string, where u(x, t)

denotes the transverse displacement from x at time t. c2 is determined by the property

of the medium, and is equal to T
ρ
, with T being the (lateral) tension of the string and

ρ being the density of the string. As we will learn soon that c represents the speed

of propagation of wave.

When a perfectly elastic string is stretched it has a tension force tangential to the

string. Denote the magnitude of the tension at (x, u(x, t)) as T (x, t). Then the ver-

tical and lateral components have magnitude T (x, t) sin θ(x, t) and T (x, t) cos θ(x, t)

respectively, where θ(x, t) is the angle of inclination of the string at (x, u(x, t)), so

tan θ(x, t) = ∂xu(x, t).

For small transverse vibration of a perfectly elastic string, we consider any lat-

eral movement to be negligible, so the lateral component T (x, t) cos θ(x, t) = T is a

constant. Thus the vertical component has magnitude T∂xu(x, t).

If we neglect gravity, then for any x1 < x2, we have

d

dt

(∫ x2

x1

ρ∂tu(x, t) dx

)
= T∂xu(x2, t)− T∂xu(x1, t) = T

∫ x2

x1

∂2
xxu(x, t) dx,

if we assume that ∂xu(x, t) has continuous derivative in x. The wave equation (1.10)

then follows from this.

(1.10) also represents longitudinal waves and comes from its integral form, based

on Newton’s second law of motion

d

dt

(∫ x2

x1

ρut dx

)
= T [ux(x2, t)− ux(x1, t)] , for any x1 < x2, (1.11)

where ux(x2, t) and ux(x1, t) account for local deformation of the elastic medium at

x2 and x1, respectively, and Tux(x2, t) and Tux(x1, t) account for the elastic forces

exerted to the ends of the section between x1 and x2 due to tension according to

Hooke’s law, with T > 0 proportional to the Young’s modulus of the medium. Here,

we assume the medium has a constant T > 0; when the Young’s modulus of the

medium depends on the position coordinate x (for instance, when the medium consists

of two materials with uniform but different Young’s modulus welded at a contact

point, T would be a piecewise constant function of x), the right hand side of (1.11)

should be replaced by T (x2)ux(x2, t)− T (x1)ux(x1, t).
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When T has a jump discontinuity at a finite number of points, then a solution’s

derivatives may experience jump discontinuities at these points and points along

the characteristic lines—to be introduced later—issued from these points, and we

expect (1.10) to hold away from these points, and add the supplementary condition

that u(x, t) be continuous and ux(x, t) be piecewise continuous such that T (x)ux(x, t)

becomes continuous.

The higher dimensional version of (1.10) is

∂2u

∂t2
− c2∆u = 0, (1.12)

where ∆ =
∑n

i=1 ∂
2
xi

is the Laplace operator in dimension n. (1.12) in the case of

n = 3 describes the propagation of sound waves and electro-magnetic waves in space.

A natural IBVP for the wave equation (1.10) is

∂2u

∂t2
− c2∂

2u

∂x2
= 0 for (x, t) ∈ (0, l)× R+,

u(x, 0) = g(x) for x ∈ (0, l), for a given function g,

ut(x, 0) = h(x) for x ∈ (0, l), for a given function h,

u(0, t) = k1(t), u(l, t) = k2(t) for t ∈ R+, and given functions k1 and k2 on R+.

One or both of the boundary conditions above could also be of Neumann type.

A typical IVP problem for (1.12) is
∂2u

∂t2
− c2∆u = 0 for (x, t) ∈ Rn × R+,

u(x, 0) = g(x) for x ∈ Rn, for a given function g,

ut(x, 0) = h(x) for x ∈ Rn, for a given function h.

Example 1.4 (Laplace equation). All three examples above are evolution equa-

tions, as the unknowns depend on the time variable. In such settings solutions that

are not dependent on the time variable are called equilibrium (stationary) states

(or solutions)—such solutions may exist only if no term in the equation depends on

the time variable explicitly; for example, one can’t talk about an equilibrium solution

of (1.8) unless the f term has no explicit dependence on t.

In (1.8) when f ≡ 0 and in (1.12), the equilibrium (stationary) states satisfy

∆u = 0. This equation is called the Laplace equation. A solution satisfying this

equation is called a harmonic function. This equation also arises from a great

number of other situations. For instance, the real and imaginary parts of a complex

analytic function satisfy the Laplace equation.
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Although the most commonly encountered boundary values problems for equa-

tions like the Laplace equation involve the Dirichlet, or Neumann, or Robin boundary

conditions, there may be other types of boundary conditions. For instance, if u(x)

represents the electrostatic potential in vacuum outside a finite number of conduc-

tors Ck, 1 ≤ k ≤ K, where the total charge Qk on each conductor Ck is prescribed,

then the physical problem of determination of u(x) is the following boundary value

problem for u:

∆u(x) = 0 for x ∈ Ω := R3 \ ∪Kk=1Ck,∫
∂Ck

∂u(x)

∂~n(x)
dσ(x) = Qk

u(x) = uk on ∂Ck, 1 ≤ k ≤ K, for constants uk to be determined,

u(x)→ 0 x→∞.

Exercises

Exercise 1.1.1. Let u(x) be a continuous function on [0, 1].

(a). If
∫ 1

0
u(x)v(x) dx = 0 for all continuous functions v over [0, 1] with v(0) = v(1) =

0, prove that u ≡ 0 over [0, 1].

(b). If
∫ 1

0
u(x)v(x) dx = 0 for all continuous functions v over [0, 1] with

∫ 1

0
v(x) dx =

0, prove that u is a constant over [0, 1].

(c). If
∫ 1

0
u(x)v′(x) dx = 0 for all C1 functions v over [0, 1] with v(0) = v(1) = 0,

prove that u is a constant over [0, 1].

Exercise 1.1.2. Model on the derivation of (1.3) in Example 1.1 to derive (1.4).

Also derive that if ρ(x, t), v(x, t), and p(x, t) are piecewise C1 in both {(x, t) : x ≤
ξ(t)} and {(x, t) : x ≥ ξ(t)}, with ρ−(ξ(t), t), v−(ξ(t), t), p−(ξ(t), t), and

ρ+(ξ(t), t), v+(ξ(t), t), p+(ξ(t), t) denoting the limiting values of these variables to the

left and right of x = ξ(t), respectively, then we also have(
ρ−(ξ(t), t)v−(ξ(t), t)− ρ+(ξ(t), t)v+(ξ(t), t)

)
ξ′(t)

=p−(ξ(t), t) + ρ−(ξ(t), t)
(
v−(ξ(t), t)

)2 − p+(ξ(t), t)− ρ+(ξ(t), t)
(
v+(ξ(t), t)

)2
.

Exercise 1.1.3. In the derivation for (1.8), if a portion Γ of the boundary of the

domain is completely insulated, derive that the boundary condition on Γ should be
∂u(x,t)
∂n(x)

= 0, where n(x) denotes the exterior unit normal to Γ at x. If, on the other
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1.1. SOME PROTOTYPE PDE PROBLEMS

hand, Γ is immersed in a (large amount of) medium which maintains a temperature

of u0, then the boundary condition on Γ should be k ∂u(x,t)
∂n(x)

+h(u(x, t)−u0) = 0, where

h > 0 is some constant.

Exercise 1.1.4. Provide a proof for Lemma 1.1. Then provide the necessary adap-

tation to apply it to derive (1.5). Note that a natural approach would be to examine

the limit of

h−1

(∫ ξ(t+h)

x1

ρ(x, t+ h) dx−
∫ ξ(t)

x1

ρ(x, t) dx

)
as h→ 0 via

h−1

(∫ ξ(t+h)

x1

ρ(x, t+ h) dx−
∫ ξ(t)

x1

ρ(x, t) dx

)

=h−1

(∫ ξ(t)

x1

[ρ(x, t+ h)− ρ(x, t)] dx+

∫ ξ(t+h)

ξ(t)

ρ(x, t+ h) dx

)
.

But since ρ(x, t + h) is defined only for x1 ≤ x ≤ ξ(t + h), and the order between

ξ(t+h) and ξ(t) may vary with h — ρ(x, t+h) may be undefined if ξ(t+h) < x < ξ(t).

Below is a suggested work around to avoid this issue.

Since differentiation is an infinitesimal problem, it suffices to modify t1 and t2, if

necessary, and find some x2 > x1 such that x2 > ξ(t) for all t ∈ [t1, t2], and a C1

extension ρ̂(x, t) of ρ(x, t) onto [x1, x2]× [t1, t2], so that we can apply Lemma 1.1 to

ρ̂(x, t) to obtain the desired result.

Another possible approach is to make a proof for
∫ ξ(t)−ε
x1

ρ(x, t)dx, for each ε > 0,

and then consider the limit as ε↘ 0.

Exercise 1.1.5. Here we provide some guidance on constructing a C1 extension

ρ̂(x, t) to [x1, x2]× [t1, t2] of ρ(x, t) for some appropriate choice of t1, t2, and x2, where

ρ(x, t) is the function referred to in Remark 1.1, and is assumed to be C1 in the

region {(x, t) : t1 ≤ t ≤ t2, x1 ≤ x ≤ ξ(t)}, and ξ(t) ∈ C1[t1, t2] with ξ(t) > x1 for

t ∈ [t1, t2]. Note that δ := min{ξ(t) − x1 : t ∈ [t1, t2]} > 0. For any t∗ ∈ (t1, t2),

we can find t1 ≤ t∗1 < t∗ < t∗2 ≤ t2 such that |ξ(t) − ξ(t∗)| < δ/4 for all t ∈ [t∗1, t
∗
2].

Define h(y, t) = ρ(y + ξ(t), t). Then ρ(x, t) = h(x − ξ(t), t), and it suffices to find

a C1 extension of h(y, t) to [−δ, δ] × [t∗1, t
∗
2]. h(y, t) is defined for x1 − ξ(t) ≤ y ≤ 0

and is C1 there. For 0 < y < δ, we define h(y, t) = ah(−y, t) + bh(−y/2, t) for some

constants a and b. Prove that one can choose a and b such that the extended function

is C1 in −δ < y < δ, t∗1 < t < t∗2. Then prove that ρ(x, t) has a C1 extension to

[x1, x2]× [t∗1, t
∗
2] of ρ(x, t) for some appropriate choice of x2.
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CHAPTER 1. SOME PROTOTYPE PDES AND ELEMENTARY SOLUTIONS

1.1.2 Formulation of Some Prototype PDEs Using Calculus

of Variations

Next we illustrate the method of the calculus of variations through the derivation

for the equation of Minimal Surfaces.

Example 1.5 (Equation of minimal surfaces). Fix a region Ω in Rn and fix a bound-

ary value function φ(x) defined for x ∈ ∂Ω. Among all graphs over Ω with the

boundary value φ(x), we look for one with minimal area. More specifically, let

Mφ =
{
u ∈ C1(Ω) : u|∂Ω = φ

}
.

we want to find

min
u∈Mφ

∫∫
Ω

√
1 + |∇u|2 dx,

and find a u ∈Mφ that attains the above minimum value.

The existence of a graph attaining the minimum creates some issues, as we are

looking for an element in an infinite dimensional space Mφ which attains the minimum

of a functional. Suppose for now that such a graph u exists. Then for any v ∈ M0,

and any ε ∈ R near 0, u+ εv ∈Mφ, and

A(ε) :=

∫∫
Ω

√
1 + |∇u+ ε∇v|2 dx

has a minimum at ε = 0 and is differentiable in ε, so

A′(0) =

∫∫
Ω

∇u · ∇v√
1 + |∇u|2

dx = 0 for any v ∈M0. (1.13)

This is an integral version of the minimal surface equation. If we further assume that

this u is C2(Ω), then we can use the divergence theorem to integrate by parts in the

above to arrive at

0 =

∫∫
Ω

{
div

(
v(x)∇u(x)√
1 + |∇u(x)|2

)
− div

(
∇u√

1 + |∇u|2

)
v(x)

}
dx

= −
∫∫

Ω

div

(
∇u√

1 + |∇u|2

)
v(x) dx+

∫
∂Ω

∇u(x) · ~n(x)√
1 + |∇u(x)|2

v(x)dσ(x)

= −
∫∫

Ω

div

(
∇u√

1 + |∇u|2

)
v(x) dx.

(1.14)
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1.1. SOME PROTOTYPE PDE PROBLEMS

In the above we applied the divergence theorem
∫
∂Ω

~P (x) · ~n(x) dσ(x) =
∫

Ω
div~P (x) dx

to the C1(Ω̄) vector field ~P (x) = v(x)∇u(x)√
1+|∇u(x)|2

, as

div

(
v(x)∇u(x)√
1 + |∇u(x)|2

)
=
∇u · ∇v√
1 + |∇u|2

+ div

(
∇u√

1 + |∇u|2

)
v(x).

Since (1.14) holds for arbitrary v ∈M0, we conclude that
div

(
∇u√

1 + |∇u|2

)
= 0 in Ω,

u = φ on ∂Ω.

(1.15)

In fact, if we assume only u ∈ C2(Ω) instead of u ∈ C2(Ω), we can still carry out

this integration by parts properly by limiting the choice of v to those with compact

support∗ in Ω, namely, v ∈ C1
c (Ω), as then all the integrands become 0 near the

boundary and the integration by parts are justified; but this limitation on v is harmless

for our argument to (1.15), as C1
c (Ω) is dense in M0 in the C0(Ω) norm as well as in

Lp(Ω) norm for any 1 ≤ p ≤ ∞.

It is not easy to find directly a C2(Ω)∩C1(Ω) function achieving the minimum area,

but we will discuss later that that it is relatively easy to find a less regular function

satisfying (1.13), and that there is a theory which proves that any appropriately

defined solution of (1.13) is automatically C2(Ω) and satisfies (1.15).

Remark 1.3. In contrast to the equations in Examples 1.2, 1.3, 1.4, (1.15) is

nonlinear in the unknown u (as is (1.3)): if we move the terms involving the un-

known(s) in (1.8) and (1.12) to the left hand side, and regard the left hand side as

an operator L acting on the unknown(s) u(x, t), L[u], then L satisfies

L[a1u1 + a2u2] = a1L[u1] + a2L[u2]

for any coefficients a1 and a2, and any functions u1 and u2; while the operators in

(1.15) and (1.3) do not satisfy this property.

A linear PDE satisfies the superposition principle: if u1 and u2 both satisfy

L[u] = 0, then so does a1u1 +a2u2 for any coefficients a1 and a2; and if L[u1] = f1 and

L[u2] = f2, then L[a1u1 + a2u2] = a1f1 + a2f2. This superposition principle simplifies

the construction of general solutions to linear PDEs enormously.
∗The support of a function v is the closure of the set {x : v(x) 6= 0}, and is sometimes denoted

as supp(v). We say v has compact support in Ω, if supp(v) is a closed and bounded subset of Ω.

This implies that there is a neighborhood U of ∂Ω in which v(x) = 0, and as a consequence, the

derivatives of v also vanish in this neighborhood.
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Example 1.6 (Variational characterization of harmonic functions). Harmonic func-

tions have a variational characterization similar to that for the minimal surface equa-

tion. Using the same notation as in the previous example, if u ∈Mφ attains

min
u∈Mφ

∫∫
Ω

|∇u|2 dx,

then for any v ∈M0, the function of t,

E[u+ tv]
def
=

∫∫
Ω

|∇(u+ tv)|2 dx

would attain its minimum at t = 0, therefore d
dt

∣∣∣∣
t=0

E[u+ tv] = 0. But

d

dt

∣∣∣∣
t=0

E[u+ tv] = 2

∫∫
Ω

∇u(x) · ∇v(x) dx,

so we arrive at ∫∫
Ω

∇u(x) · ∇v(x) dx = 0 for any v ∈M0. (1.16)

(1.16) is called the weak (integral) form for harmonic functions, as it is formulated

using only the first derivatives of u. If we further assume that this u is C2(Ω)∩C1(Ω),

then we can use the divergence theorem to integrate by parts in the above∫∫
Ω

[∆u(x)v(x) +∇u(x) · ∇v(x)] dx

=

∫∫
Ω

div (v(x)∇u(x)) dx

=

∫
∂Ω

v(x)~n(x) · ∇u(x) dσ(x)

=0, using v(x) = 0 for x ∈ ∂Ω,

and arrive at

−
∫∫

Ω

∆u(x)v(x) dx =

∫∫
Ω

∇u(x) · ∇v(x) dx = 0,

for all v ∈M0 (in fact, we require v to have compact support in Ω), therefore ∆u(x) =

0 in Ω and u(x) is harmonic in the classical sense. The above computation clearly

also shows that a harmonic function in the classical sense also satisfies (1.16), the

weak form.

Later we will see that it is relatively easy to find a function u that attains the

minimum of E[u] and therefore satisfies (1.16), as long as one enlarges the class Mφ

appropriately. Again, what remains is to prove that a function satisfying (1.16) is

also a harmonic function in the classical sense.
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Remark 1.4. A solution u(x, t) to the heat equation (1.8) is also related to the

variational characterization in the sense that, if u(x, t) solves ut(x, t) = ∆xu(x, t) in

Ω× (0, T ] and u(x, t) = 0 for all (x, t) ∈ ∂Ω× (0, T ], and u(x, t) is sufficiently smooth

in Ω × [0, T ] to justify the differentiation of the integral and integration by parts

below, then, with Ẽ[u(·, t)] def
=
∫∫

Ω
|u(x, t)|2 dx, and E[u(·, t)] =

∫∫
Ω
|∇u(x, t)|2 dx, we

have, for t ∈ (0, T ],

d

dt
Ẽ[u(·, t)] = 2

∫∫
Ω

u(x, t)ut(x, t) dx

=2

∫∫
Ω

u(x, t)∆u(x, t) dx

=2

∫∫
Ω

[
div (u(x)∇u(x))− |∇u(x, t)|2

]
dx

=− 2

∫∫
Ω

|∇u(x, t)|2 dx ≤ 0 using u(x, t) = 0 when x ∈ ∂Ω,

and

d

dt
E[u(·, t)] = 2

∫∫
Ω

∇u(x, t) · ∇ut(x, t)dt

=− 2

∫∫
Ω

∆u(x, t)ut(x, t) dx+ 2

∫
∂Ω

∂u(x, t)

∂n(x)
ut(x, t) dσ(x) = −2

∫
Ω

|∆u(x, t)|2 dx ≤ 0,

where in the last step, we have used ut(x, t) = 0 for (x, t) ∈ ∂Ω × (0, T ] due to

the boundary condition u(x, t) = 0 there. So E[u(·, t)] and Ẽ[u(·, t)] both decrease

along a solution of the homogeneous heat equation. This can be used to prove the

uniqueness of solution of (1.9).

Corollary 1.2. For a bounded domain D with piecewise C1 boundary, (1.9) can have

at most one solution in the class C(D × [0,∞)) ∩ C2,1
x,t (D × (0,∞)).

Proof. Suppose that v and w are two solutions to (1.9) satisfying the regularity as-

sumptions here. Then u = v − w is a solution of the homogeneous version of (1.9),

namely, with f ≡ 0 and g ≡ 0. Under our regularity assumptions, we can justify

the computations above to conclude that d
dt
Ẽ[u(·, t)] ≤ 0 at all t > 0. So Ẽ[u(·, t)]

is a non-increasing function of t ∈ (0,∞). But Ẽ[u(·, t)] is continuous for t ∈ [0,∞)

under our assumption that u ∈ C(D × [0,∞)), and Ẽ[u(·, 0)] = 0. Thus we con-

clude that Ẽ[u(·, t)] ≡ 0 for all t ∈ (0,∞). This implies that u(x, t) = 0 for all

(x, t) ∈ D × (0,∞). This proves that v ≡ w for all (x, t) ∈ D × (0,∞). In more

advanced theory, one can prove, when ∂D ∈ C2, that a solution u to the homoge-

neous version of (1.9) in the class C(D× [0,∞))∩C2,1
x,t (D× (0,∞)) is automatically
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in C(D × [0,∞)) ∩ C2,1
x,t (D × (0,∞)), as is the case here, therefore, uniqueness holds

in the class C(D × [0,∞)) ∩ C2,1
x,t (D × (0,∞)). Later on we will also give a proof of

uniqueness in this class using the maximum principle.

Remark 1.5. Note that E[v(·, t)] may not be continuous at t = 0 under only the

assumption that v ∈ C(D× [0,∞))∩C2,1
x,t (D× (0,∞)); in fact, it may even approach

∞ as t↘ 0, if the boundary value of v(x, 0) does not have the right regularity; part

(iii) of Exercise 2.3.3 will exhibit an example with this behavior. If one would like to

use the monotone decreasing property of E[u(·, t)] to prove the uniqueness of (1.9),

one has to make additional assumptions or to prove that E[u(·, t)] has the needed

continuity—care has to be taken in using formal computations.

Remark 1.6. Many students have found it a challenge to work with curvilinear

coordinates; variational formulation often provides a natural and simplified way to

derive formulae in curvilinear coordinates. The formula for the Laplace operator in

polar coordinates in two dimensions ∆u = 1
r
(rur)r + 1

r2uθθ can be derived by the

change of variables formula; yet it is easier to derive it based on the calculations

in the variational approach as follows—the method can be easily adapted to other

situations. Based on computations that lead to (1.16) and subsequent computation,

for any u is C2(Ω) ∩ C1(Ω)—not just for harmonic functions, we have

d

dt

∣∣∣∣
t=0

E[u+ tv] = 2

∫∫
Ω

∇u(x) · ∇v(x) dx = −2

∫∫
Ω

∆u(x)v(x) dx (1.17)

for v ∈ M0. Using |∇u|2 = u2
r + 1

r2u
2
θ and dx = r drdθ, it is straightforward to prove

that, for any u ∈ C2(Ω) ∩ C1(Ω) and v ∈ C2
c (Ω) ⊂M0

d

dt

∣∣∣∣
t=0

E[u+ tv] =
d

dt

∣∣∣∣
t=0

∫∫ {
(ur + tvr)

2 +
1

r2
(uθ + tvθ)

2

}
r drdθ

=2

∫∫ {
urvr +

1

r2
uθvθ

}
r drdθ

=− 2

∫∫
v

{
1

r
(rur)r +

1

r2
uθθ

}
r drdθ

=− 2

∫∫
Ω

v

{
1

r
(rur)r +

1

r2
uθθ

}
dx.

In the third line above we have evaluated the double integral by iterated integrals and

applied integration by parts in one variable calculus, see comments below for why we
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don’t need to be too concerned about the geometry of the domain in carrying out

such iterated integrals. Comparing with (1.17), we conclude that∫∫
Ω

∆u(x)v(x) dx =

∫∫
Ω

v

{
1

r
(rur)r +

1

r2
uθθ

}
dx for any v ∈ C2

c (Ω),

which then leads to ∆u = 1
r
(rur)r + 1

r2uθθ—this is a point-wise relation, and we only

need to carry out the above computation in appropriate subdomains surrounding the

point of concern which would justify the above computations in a routine way, or take

only v supported near the point of concern; the same computation also shows that

the center for the polar coordinates can be chosen arbitrarily.

Exercises

Exercise 1.1.6. Let f ∈ C[0, l]. Prove that u ∈ C2[0, l] is a solution of{
u′′(x) + f(x) = 0 for x ∈ (0, l),

u′(0) = a, u′(l) = b

iff d
dt

∣∣
t=0
E(u+tv) = 0 for all v ∈ C1[0, l], where E(u) =

∫ l
0

(
1
2
|u′(x)|2 − f(x)u(x)

)
dx+

au(0)− bu(l). In addition, prove that a necessary condition for this problem to have

a solution is that
∫ l

0
f(x) dx = a− b.

Exercise 1.1.7. Prove that for any u ∈ C2(Ω) and v ∈ C1(Ω), there holds∫∫
Ω

[∆u(x)v(x) +∇u(x) · ∇v(x)] dx =

∫
∂Ω

v(x)
∂u(x)

∂~n(x)
dσ(x).

Exercise 1.1.8. Let P be an n× n orthogonal matrix, u ∈ C2(Rn). Prove that

(a). ∇[u(Px)] = ∇u(Px)P , if both ∇[u(Px)] and ∇u(Px) are treated as row vec-

tors;

(b). ‖∇[u(Px)]‖ = ‖∇u(Px)‖;

(c). ∆x[u(Px)] = ∆xu(Px).

This shows that if one makes a rotation of axes, ∆xu(x) is unaffected.

Exercise 1.1.9. This exercise illustrates how to use variational characterization to

derive the Laplace operator in 3-dimensional spherical coordinates.
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(a). Prove that
∑n

i=1 |∇eiu(x)|2 is independent of the choice of an orthonormal basis

{ei}ni=1 at x.

(b). Using the relation between rectangular and spherical polar coordinates
x =r sin θ cosφ

y =r sin θ sinφ

z =r cos θ

to verify that 
er =(sin θ cosφ, sin θ sinφ, cos θ),

eθ =(cos θ cosφ, cos θ sinφ,− sin θ),

eφ =(− sinφ, cosφ, 0)

forms an orthonormal basis at x, and ∇eru = ∂u
∂r

, ∇eθu = r−1 ∂u
∂θ

, and ∇eφu =

(r sin θ)−1 ∂u
∂φ

.

(c). Based on (a) and (b),

|∇u(x)|2 = |∂u
∂r
|2 + r−2|∂u

∂θ
|2 + (r sin θ)−2|∂u

∂φ
|2.

Use this, the change of variables formula for triple integral

dxdydz = r2 sin θdrdθdφ,

and (1.17) to prove that

∆u =
1

r2

∂

∂r

(
r2∂u

∂r

)
+

1

r2

[
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂φ2

]
.

1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ
∂2

∂φ2 is called the spherical Laplace operator, a natural gen-

eralization of the Laplace operator on functions defined on the unit round sphere.

This is based on the following computation and in analogy to (1.17)∫∫
S2

{[
1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂φ2

]
v(θ, φ)

}
sin θdθdφ

=−
∫∫

S2

(
∂u

∂θ

∂v

∂θ
+

1

sin2 θ

∂u

∂φ

∂v

∂φ

)
sin θdθdφ

=−
∫∫

S2

∇S2u · ∇S2v dσ,

with ∇S2u = (∇eθu) eθ +
(
∇eφu

)
eφ denoting the spherical gradient of u as a function

of θ and φ on the unit sphere S2, and dσ = sin θ dθdφ denoting the area element on

the unit sphere.
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1.2. SOME INITIAL COMPARISONS AND RELATIONS WITH ODES

1.2 Some Initial Comparisons and Relations with

ODEs

Here we make some initial, general comments on the comparison in the construction

and behavior of solutions between of ODEs and PDEs.

1.2.1 Superposition Principle and Separation of Variables

The “general” solution of an ODE (or a system of ODEs) depends on a finite number

of parameters and forms a “finite dimensional manifold”, where the parameters can

often be adjusted to satisfy some additional side conditions such as initial or boundary

conditions (one way to obtain the general solution is to produce the solution in terms

of the initial values). In the case of a system of linear homogeneous ODEs, this

is particularly simple: the solution space is linearly spanned by a finite number of

basis solutions. In fact, a basic common property of linear homogeneous ODEs

or PDEs is the linear superposition principle: if u1, · · · , uN are solutions to the

(same) linear homogeneous ODE or PDE, then so is a1u1 +a2u2 + · · ·+aNuN for any

coefficients a1, a1, · · · , aN .

One difference, however, is that even for simple linear PDEs such as the ones we

derived above, the solution space (without imposing boundary or initial conditions)

is often infinite dimensional. One of our initial focuses will be to learn how to

construct an infinite dimensional “basis” of solutions for many linear PDEs (often

with constant coefficients) and use them to construct general solutions. One main

task will be to make the right sense of the convergence of “linear superposition” of

infinitely many basis solutions.

Remark 1.7. Our approach will often be to start by understanding a concept or

method in the simplest setting, then examine to what extent the simplest examples

represent prototypical situations, and try to extend our method to be applicable in

a more general setting. So we will not be afraid of looking for special solutions in

special situations first to gain intuition.

One of the simplest and most useful methods for constructing particular solutions

of (mostly) linear PDEs with constant coefficients is separation of variables: one

looks for solutions of the form u(x, t) = T (t)X(x) (sometimes in the form of T (x) +

X(x)) to reduce the construction of such solutions of a PDE to some set of ODEs.

Example 1.7. Let’s look for some sample solutions of (1.8) when x is one dimensional

and takes values in the entire R (so that we don’t have to deal with boundary value
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for now). We will first look for solutions of the form u(x, t) = T (t)X(x). The

direct application of separation of variables works when f = 0. For simplicity of

computation, we also take γ = 1. Then we need to find X(x) and T (t) such that

T ′(t)X(x) = T (t)X ′′(x) for all (x, t).

We deduce that whenever X(x) 6= 0 and T (t) 6= 0, we must have

X ′′(x)

X(x)
=
T ′(t)

T (t)
.

From this we conclude that X ′′(x)/X(x) and T ′(t)/T (t) must be a constant, in-

dependent of (x, t), for it does not allow X′′(x1)
X(x1)

6= X′′(x2)
X(x2)

for some x1 6= x2 with

X(x1) 6= 0, X(x2) 6= 0. Call this constant −λ. Then we have a set of ODEs

X ′′(x) = −λX(x), x ∈ R; (1.18)

T ′(t) = −λT (t), t ∈ R. (1.19)

In most situations we expect X(x) and T (t) to be continuous, so (1.18) and (1.19)

should continue to hold even when X(x) = 0 or T (t) = 0. Our remaining task is to

find λ for which the above two equations have non-trivial solutions (X ≡ 0 and T ≡ 0

are always solutions, called trivial solutions).

Note that for each value of the parameter ξ, X(x) = eixξ is a solution of (1.18)

with λ = ξ2, and T (t) = e−ξ
2t solves (1.19) for the same λ. So uξ = eixξ−ξ

2t is a

solution of (1.18) and (1.19) with λ = ξ2. By the superposition principle, any finite

linear combination of such solutions∑
ξ∈a finite set

c(ξ)eixξ−ξ
2t

is a solution of (1.8).

Question: Does this construction generate all solutions to the Cauchy problem for

the homogeneous version of the heat equation (1.8)?

Note that at this point, ξ can be any scalar in C, so we have a continuum of

parameters to be used to construct a solution of ut−uxx = 0. If we take ξ to be a real

parameter, then the solutions obtained above all correspond to λ = ξ2 ≥ 0. For other

choice of the parameter value λ there are also solutions. E.g. for non-real complex

valued ξ, eixξ−ξ
2t is a solution of the homogeneous heat equation, but such solutions

grow exponentially in x as x goes to one end of infinity. Since we construct solutions
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defined for x on the entire R, physical consideration often rules out solutions that

grow exponentially in a space variable, thus restricts ξ ∈ R (see an exercise of this

section, however, for an application using a model defined on the half real line where

ξ is allowed to take on non-real values).

If we now try to construct a solution of the IVP ut(x, t)− uxx(x, t) = 0, x ∈ R, t ∈ R+,

u(x, 0) = g(x), x ∈ R,
(1.20)

to satisfy a fairly arbitrary initial data, say, for any g bounded and continuous on

R (i.e., in Cb(R)), or continuous on R, with the additional property that g(x) → 0

as x → ±∞ (i.e., in C0(R)), or in Lp(R), the space of functions whose pth power

is integrable on R, then it is not enough to take only finite linear combinations of

solutions of the form eixξ−ξ
2t. ∗ It turns out that an “infinite linear combination” in

the form of an integral ∫
R
c(ξ)eixξ−ξ

2tdξ, (1.21)

where c(ξ)’s are the coefficients of the “infinite linear combination”, provides such

a general solution. The main issue is the convergence of such integrals for (x, t) ∈
R1 × R+; another issue is how to choose c(ξ) to satisfy a given initial data u(x, 0).

Note that we now restrict the domain of t to R+, as for t < 0, the exponentially fast

growth of e−ξ
2t in ξ would put severe decay requirement on c(ξ) in the construction

of a solution of the form
∫
R c(ξ)e

ixξ−ξ2tdξ, which would put severe restriction on the

kind of initial data g for which this construction would produce a solution of (1.20).

At least formally, for real ξ, the factor e−ξ
2t helps with the convergence of the

integral for t > 0, but not for t < 0; also we expect

u(x, 0) =

∫
ξ∈R

c(ξ)eixξdξ. (1.22)

We recognize that the relation between u(x, 0) and c(ξ) is that between a function and

its Fourier transform—we do not need any systematic theory of Fourier transforms at

∗This is based on properties of Fourier transforms. For any finite measure µ on R, define its

Fourier transform µ̂ by µ̂(ξ) =
∫
R e
−ixξ dµ(x); in particular, for any g ∈ L1(R), denote ĝ(ξ) =∫

R e
−ixξg(x)dx. Then ĝ(ξ) ∈ C0(R) for every g ∈ L1(R). Most relevant properties here are (a) if

µ̂(ξ) = ν̂(ξ) for all ξ ∈ R, then µ = ν; (b) if g(x) =
∫
R e

ixξ dµ(ξ) for some finite measure µ on R,

and g ∈ L1(R), then µ = ĝ(ξ)dξ for some ĝ ∈ C0(R). A function in C∞(R) decaying faster than any

power of |x|, together with any of its finite order derivatives, as |x| → ∞, can not be represented in

the form of a finite, or infinite but discrete, sum of the form
∑
j cje

ixξj .
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this point; we will provide a formula relating c(ξ) to u(x, 0) when needed and prove

it rigorously later on. The purpose here is to illustrate that the homogeneous heat

equation has an infinite parameter family of solutions, and how this family may be

used to construct a general solution. More systematic study of Fourier transforms,

including their mapping properties between various function spaces, will be needed

for more in-depth study of the theory of PDEs.

If one is interested in solving the homogeneous heat equation on a finite interval

[0, l] with the simplest boundary conditions u(0, t) = u(l, t) = 0 for all t > 0, for

instance, then in our separable solutions, we want X(0) = X(l) = 0. So the choice of

X(x) is limited to satisfy a boundary value problem of ODEs: X ′′(x) = −λX(x),

X(0) = X(l) = 0.
(1.23)

X(x) ≡ 0 is always a solution; we are interested in non-trivial solutions, namely,

solutions that are not identically 0. For certain values of λ such as λ =
(
nπ
l

)2
, for

n = 1, 2, · · · , (1.23) has non-trivial solutions: all solutions are scaler multiples of

Xn(x) = sin
(
nπx
l

)
. Furthermore, these λ values are the only ones for which (1.23)

has non-trivial solutions. This is worked out by applying the boundary conditions in

(1.23) to the general solutions to the first equation of (1.23)—one may either write

λ = ξ2 for some ξ ∈ C, and write the general solution in the form of c1e
iξx + c2e

−iξx

in the case ξ 6= 0, or work out the general solution depending on whether λ is 0, a

positive real, a negative real, or is in the remaining cases.

Note that a boundary value problem of ODEs such as (1.23) exhibits different

behavior from an IVP of ODEs: while an IVP of (well behaved) ODEs always has a

unique solution for any given initial data; a BVP of ODEs may fail the uniqueness,

and in fact, may fail to have a solution for certain boundary data. For example, the

BVP {X ′′(x) +X(x) = 0, X(0) = 0, X(π) = 1} has no solution at all.

Back to our problem. At this point∑
n∈a finite set

cn sin
(nπx

l

)
e−(nπl )

2
t

is a genuine solution of the homogeneous heat equation with the boundary condition

u(0, t) = u(l, t) = 0 for all t > 0, with initial data u(x, 0) =
∑

n∈a finite set cn sin
(
nπx
l

)
.

To satisfy an arbitrarily given initial data u(x, 0), we again need to make an infinite

sum. Formally, we need to choose cn such that

∞∑
n=1

cn sin
(nπx

l

)
= u(x, 0) on (0, l) in an appropriate sense. (1.24)
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We need to figure out how to determine cn’s in terms of the given u(x, 0), and in what

sense the constructed series converges at (x, 0) to u(x, 0) (in fact we need to show

that the constructed series solution u(y, t) converges to u(x, 0) as (y, t)→ (x, 0)), and

converges at (x, t), t > 0, to a solution of the heat equation (1.20). The study of such

problems was initiated by J. Fourier in the early 1800’s.

Again, the factor e−(nπl )
2
t will help with the convergence of

∑∞
n=1 cn sin

(
nπx
l

)
e−(nπl )

2
t

for t > 0, but not for t < 0.

This brings up the issue of well-posedness.

1.2.2 Well-posedness

For the IVP of an ODE system of the form du
dt

= f(u(t), t), u(t0) = u0, the Cauchy-

Picard theorem gives us the existence of a unique solution on a (maybe short) time

interval [t0− δ, t0 + δ], for a right hand side f that is Lipschitz∗ in u; and the solution

depends continuously on the initial data. For a boundary/initial value problem for

a PDE, we also need to address the same issues. We say a boundary/initial value

problem for a PDE is well-posed if

• there exists a solution for all data in a reasonable (often closed) set of a function

space;

• the solution is unique (or depends at most on a finite number of free parameters);

• the solution depends on the data in a continuous way.

In the above the existence of a solution for data in a closed set means that if for a

sequence of data gj, there exists a solution uj, and gj → g∞ in appropriate sense,

then we expect uj to converge in appropriate sense to a solution with g∞ as data.

The meaning of “continuous way” has some flexibility in the sense that we may

need to measure the variation of solution in norms that are appropriate for the prob-

lem, not necessarily the familiar norms that are used to measure uniform convergence.

Our calculations for the sample solutions of the heat equation above suggest that

the Cauchy problem (or the boundary/initial value problem) is probably well-posed

in the above sense for forward time t > 0, but not for backward time t < 0. The latter

can be seen easily, if we use uniform convergence to measure variation of solutions:

∗f(u, t) is said to be Lipschitz in u for (u, t) ∈ U , if there exists some L > 0 such that |f(u, t)−
f(v, t)| ≤ L|u − v| whenever (u, t), (v, t) ∈ U . A basic property of such a Lipschitz function is that

f(u, t) is differentiable in u except on a negligible set, called a set of measure 0.
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one way to formulate continuous dependence of solution for t ∈ [T1, T2] in this setting

of linear equation is that there exists a constant C > 0 depending on the equation,

and possibly on T1, T2, such that for all solutions u(x, t) to the homogeneous heat

equation which are continuous and bounded in R × [T1, T2], namely, in the space

Cb(R× [T1, T2]),

||u(·, t)||Cb(R) ≤ C||u(·, 0)||Cb(R) for all t ∈ [T1, T2]

where ||u(·, t)||Cb(R) is defined by sup{|u(x, t)| : x ∈ R}, and Cb(R) (respectively

Cb(R×[T1, T2])) denotes the space of bounded continuous functions on R (respectively

R× [T1, T2]). This critirion would then imply that, for any two such solutions u and

v,

||u(·, t)− v(·, t)||Cb(R) ≤ C||u(·, 0)− v(·, 0)||Cb(R) for all t ∈ [T1, T2].

This is the sense in which we say that the solution u(·, t) varies continuously in Cb(R)

with u(·, 0) in the same norm. If we are interested in learning how other norms

of the solutions depend on appropriate norms of initial data, we can formulate a

corresponding estimate (the norms of the solutions can be different from those of the

data).

If the heat equation were well-posed in this formulation on [−δ, 0] for some δ > 0,

we would expect the above estimate hold for [T1, T2] = [−δ, 0]. But all the solutions

eixξ−ξ
2t for real ξ have norm in Cb(R) equal to 1 at time t = 0, yet at any negative

time t = −δ, the Cb(R) norm of this solution is equal to eξ
2δ, which can be made

as large as one wants by taking large real ξ, thus there is no C for which the above

estimate can hold. This phenomenon of well-posedness possibly only in one direction

is very different from the behavior of ODEs.

Remark 1.8. We remarked earlier that physical consideration typically rules out a

solution that would grow too fast in a space variable, but a solution that grows in the

time variable is not to be discarded without further consideration. The formulation

of continuous dependence in the context of an evolution equation is done for any

given finite time interval, as illustrated above: the constant C above may depend

on T1 and T2, and may grow, if T1 or T2 grows. This is true even in the ODE

setting: the IVP {u′(t) = u(t), u(0) = u0}, is well-posed, even though its solution

u(t) = u0e
t grows exponentially in t for t > 0; in the mean time, for any given T > 0,

max{|u(t)− v(t)| : T1 ≤ t ≤ T} ≤ eT |u(0)− v(0)| for any two solutions to this IVP.

In some context there is a notion of large time stability of certain (special)

solutions. Some students may confuse the notion of continuous dependence of solution

on data (over a finite time interval) with the notion of large time stability.
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We will learn in this course that the IVP and IBVP for the wave equation (1.12)

discussed in the last section are well-posed; but a similarly formulated IVP or IBVP

for the Laplace equation is not well-posed. An example of a well-posed problem for

the Laplace equation is the boundary value problem (BVP){
∆u(x) = 0 for x ∈ D,

u(x) = φ(x) for x ∈ ∂D, and a given function φ(x) on ∂D.

Here the continuous dependence of u on φ would mean that the size of u in D,

measured in an appropriate norm, depends on the size of φ on ∂D in a continuous

way. In fact, we will see that ||u||C(D) ≤ ||φ||C(∂D).

There is no direct generalization of the Cauchy-Picard local existence theorem

for a general Cauchy problem for a PDE. For the Cauchy problem for PDEs which

are analytic in the unknowns (namely, all the terms have convergent power series

expansions in their arguments) and have analytic initial data on an analytic initial

surface which is non-characteristic (to be defined later), there is a partial general-

ization of the Cauchy-Picard theorem, called Cauchy-Kowalevskaya theorem. We

will discuss this theorem and the relevant notions of characteristics of PDEs later on.

Remark 1.9. Our examples earlier may suggest that PDEs (at least linear ones) may

have too big a solution space that we have to impose appropriate boundary/initial

conditions to have a well-posed problem. So it was a surprise when, in 1957, H. Lewy

constructed a first order linear PDE that has no solution anywhere.

1.2.3 Additional Comments on Separation of Variables

Separation of variables of constant coefficient second order PDEs often lead to an ODE

similar to (1.18), whose solutions are generated by solutions of the form eiξx, with ξ

being an appropriate parameter, often called Fourier frequency or Fourier mode. One

often directly looks for a solution of a constant coefficient PDE in the form of eiξxT (t),

where T (t) is to be solved in terms of ξ and t; conditions on ξ, if any, would be dictated

by the boundary conditions. There are also times where one looks for solutions for

the form u(x, t) = eiνtX(x), a solution with time frequency ν (such a solution is

often called a time-harmonic solution, or a standing wave solution); one can find an

example in the next section when discussing solutions of a Schrödinger equation. The

same remark also applies to higher order PDEs with constant coefficients.

In the majority of situations, the PDEs we encounter are formulated in terms of

real valued scalars or vectors and we are interested in solutions as real valued scalars
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or vectors. But our construction of particular solutions using separation of variables,

such as for (1.8), often uses complex valued solutions such as eiξx, as they are often

easier to work with and give a cleaner representation. For example, one could also

formulate a version of (1.22) in terms of the real and imaginary parts of eiξx, but the

resulting relation would not be as clean.

A solution of the form u(x, t) = X(x)T (t), when X(x), T (t) are real valued, often

can be interpreted as representing a standing wave, as its profile as a function of x

is determined by X(x), with T (t) only playing the role of modulating the range of

the u(x, t); the set of points where X(x) = 0 (often called the nodal set) does not

change with t. When X(x) and T (t) are complex valued, the above interpretation is

not directly applicable; for example, a solution of the form eiξxeic|ξ|t for real valued

c, ξ represents a traveling wave at a speed of c, and the same interpretation applies

to its real and imaginary parts, cos(ξx+ c|ξ|t), sin(ξx+ c|ξ|t).

Example 1.8. If one applies separation of variables to construct solutions to the one

dimensional case of (1.10): utt − c2uxx = 0 in the form of u(x, t) = X(x)T (t), one

would need to find X(x), T (t) and constants λ such that

X ′′(x) = −λX(x), T ′′(t) = c2λT (t).

It turns out that only when λ is a non-negative real number, will the non-zero solutions

X(x) not grow too fast as x → ∞ and −∞. For such λ’s one can work out the

solutions in either real or complex forms and then apply the superposition principle

to construct additional solutions. In this way one can find both standing wave and

traveling wave solutions. The details will be assigned as an exercise.

Example 1.9. If we apply separation of variables to construct solutions to ut −
uxxxx = 0, it would lead to the set of ODEs

X ′′′′(x) + λX(x) = 0 for x ∈ R,

T ′(t) = −λT (t) for t ∈ R,

for some constant λ. We could work with solutions to X ′′′′(x) + λX(x) = 0, which

form a 4-dimensional vector space for each λ, and involve the fourth order roots of λ;

but the remark above meant that we could directly look for a solution of the PDE of

the form u(x, t) = eiξxT (t). If we plug u(x, t) = eiξxT (t) directly into ut − uxxxx = 0,

we would get

T ′(t)eiξx − ξ4T (t)eiξx = 0,
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from which we conclude that T ′(t) = ξ4T (t), so T (t) = T (0)eξ
4t. Here we directly

used that X(x) = eiξx satisfies X ′′′′(x) = −λX(x) with −λ = ξ4, but did not write

out the equation X ′′′′(x) + λX(x) = 0 explicitly. To conclude, eiξx+ξ4t is a solution of

ut−uxxxx = 0 for any parameter ξ. For any t > 0, this solution grows exponentially in

ξ for real valued ξ, and, so we anticipate difficulty for convergence in forming solutions

of the form
∫
R c(ξ)e

iξx+ξ4tdξ for t > 0—the issue here is the exponential growth of

eiξx+ξ4t in ξ, its growth in t is not relevant for this issue.

The computations here suggest that the IVP for ut − uxxxx = 0 is not well-posed

for t > 0, but seems well-posed for t < 0. A similar computation suggests that the

IVP for ut + uxxxx = 0 is well-posed for t > 0.

If we consider solutions to ut+uxxxx = 0 for x on a finite interval (0, l), then a well-

posed problem would need to impose some boundary conditions at x = 0 and x = l.

Examples of such boundary conditions include {u(0, t) = 0, u(l, t) = 0, ux(0, t) =

0, ux(l, t) = 0 for all t > 0} or {u(0, t) = 0, u(l, t) = 0, uxx(0, t) = 0, uxx(l, t) =

0 for all t > 0}.
If we use the latter boundary conditions, then separation of variables would lead

to the boundary value problem {X ′′′′(x) = −λX(x), 0 < x < l;X(0) = X ′′(0) =

0, X(l) = X ′′(l) = 0}, and the questions we need to address include (a). For which

λ does this problem possess non-trivial solutions? and (b).Whether we can use (infi-

nite) linear combinations of such solutions to represent an arbitrary function on (0, l)

corresponding to the initial data?

Here, if λ = −ξ4 for some ξ, then the general solution of X ′′′′(x) = −λX(x) is

given by

X(x) = c1e
iξx + c2e

−iξx + c3e
ξx + c4e

−ξx,

assuming λ 6= 0, and the four boundary conditions would produce a homogeneous

system of four linear equations in c1, c2, c3, c4. Unless the determinant of that linear

system is equal to 0, the only solution is c1 = c2 = c3 = c4 = 0.

So only those ξ’s which make the determinant of that linear system equal to 0

can lead to non-trivial solutions X(x). For each such ξ, we would need to determine

the dimension of solutions to the linear homogeneous system in c1, c2, c3, c4—in the

second order case X ′′(x) + λX(x) = 0, the dimension turns out to be always equal

to 1. The determinant of that linear system is a holomorphic function of ξ, so it can

have at most countable number of solutions and they have no finite accumulation

point.

Suppose that for a countable number of ξk, the dimension of solutions is also 1,

say, c2, c3, c4 are solved in terms of c1: c2 = b2(ξk)c1, c3 = b3(ξk)c1, c4 = b4(ξk)c1, then,
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setting c1 = ak, and Xk = eiξkx + b2(ξk)e
−iξkx + b3(ξk)e

ξkx + b4(ξk)e
−ξkx, we would try

to use
∑

k akXk(x)e−ξ
4
kt as a general solution—for this to work in t > 0 it requires

that <(ξ4
k) → −∞ does not happen along a subsequence. The analysis here is more

complicated than that for the IVP or for a second order PDE. An answer to (b) would

often lead to the study of the spectrum of a Sturm-Liouville boundary value problem.

We will study some Sturm-Liouville boundary value problem later on.

Remark 1.10. The solutions to many problems arising from the separation of vari-

ables often carry one or more arbitrary constants, due to the equations being ho-

mogeneous. However, there are situations where the constants are subject to some

constraints, such as the case in constructing solutions to the Maxwell’s equations,

which are the equations governing electric and magnetic fields. In the vacuum, it

takes on the following form 

div E = 0

div B = 0

∂E

∂t
= c2curl B

∂B

∂t
= −curl E

where curl B and curl E are the curl of B and E respectively. In rectangular coordi-

nates, B is given by

curl B = (
∂B3

∂x2

− ∂B2

∂x3

,
∂B1

∂x3

− ∂B3

∂x1

,
∂B1

∂x2

− ∂B2

∂x1

).

For any vector parameter ξξξ, we look for a solution of the form

E(x, t) = E0e
iξξξ·xT (t), B(x, t) = B0e

iξξξ·xT (t)

for some constant vectors E0,B0. The first two equations give rise to

E0 · ξξξ = 0, B0 · ξξξ = 0.

Thus both E0 and B0 need to be orthogonal to ξξξ. We compute by definition to find

curl
(
E0e

iξξξ·x) = iE0 × ξξξ, and curl
(
B0e

iξξξ·x) = iB0 × ξξξ, so the last two equations lead

to {
E0T

′(t) = ic2T (t)B0 × ξξξ
B0T

′(t) = −iT (t)E0 × ξξξ
Thus T ′(t) = iλT (t) holds for all t and some constant real parameter λ, and E0 ⊥ B0.

Now using ‖B0 × ξξξ‖ = ‖B0‖‖ξξξ‖ and ‖E0 × ξξξ‖ = ‖E0‖‖ξξξ‖, we find that

λ = ±c‖ξξξ‖, ‖E0‖ = c‖B0‖.
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The above give the constraints on E0,B0, and the solution will then take the form

E(x, t) = E0e
i(ξξξ·x±c‖ξξξ‖t),

B(x, t) = B0e
i(ξξξ·x±c‖ξξξ‖t).

These represent plane waves, as for any real parameter d, E(x, t) and B(x, t) each

remains a constant vector along the family of solutions to ξξξ · x ± c‖ξξξ‖t = d, which

represents planes with ξξξ as a normal vector, progressing in the direction of ξξξ at a

speed of c when λ = −c‖ξξξ‖, and progressing in the opposite direction of ξξξ at a speed

of c when λ = c‖ξξξ‖. If we will take λ = −c‖ξξξ‖, then

E(x, t) = E0e
i(ξξξ·x−c‖ξξξ‖t),B(x, t) = B0e

i(ξξξ·x−c‖ξξξ‖t), E(x, t) = −cB(x, t)×
(

ξξξ

‖ξξξ‖

)
.

Note that the solutions here E(x, t) and B(x, t) exhibit the same phase in the sense

that, in real form, E0 cos(ξξξ · x− c‖ξξξ‖t) and B0 cos(ξξξ · x− c‖ξξξ‖t) oscillate in the same

phase.

Question: What kind of solutions does one get if one tries to construct a solution of

the form E(x, t) = E(x)T (t) and B(x, t) = B(x)T (t), either restricting to real-valued

solutions or allowing complex-valued solutions?

Below is an example where the separation of variable appears in the form of a

solution only depending on one variable; there is an exercise in which one looks for a

solution as the sum of a function of one variable and another function of a different

variable.

Example 1.10. The Navier-Stokes equations model the motion of fluids. When the

fluid is incompressible, namely, when the volume of the fluid does not experience

change as it flows, the equations take the form of div u(x, t) = 0,

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t) = −ρ−1∇p(x, t) + ν∆u(x, t),

(1.25)

where u(x, t) represents the velocity of the fluid at location x and time t in a rectan-

gular coordinate system, p(x, t) represents the pressure there, ρ represents the density

of the fluid, which is taken as a positive constant here, and ν represents the kinetic

viscosity of the fluid.

These are among the most challenging PDEs to study. We will look for particular

steady state solutions modeling a fluid flow in an infinite channel, namely, the domain
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is {(x, y, z) : −a ≤ y ≤ a, x, z ∈ R}, and we assume that u(x, t) takes the form of

(U(y), 0, 0) for some U(y) to be determined and p(x, t) will also be independent of t.

Then the equation div u(x, t) is satisfied automatically, and the second set of

equations takes the form of 

0 = −ρ−1 ∂p

∂x
+ ν

∂2U(y)

∂y2

0 = −ρ−1∂p

∂y

0 = −ρ−1∂p

∂z

Thus p is a function of x alone, and we get

0 = −ρ−1p′(x) + νU ′′(y) for all x ∈ R,−a < y < a.

This forces −p′(x) = G for some constant G, and νU ′′(y) = −ρ−1G. Thus we find

p(x) = p0 −Gx and U(y) = −Gy2

2ρν
+ by + c for some constants b, c.

A typical boundary condition is the so called no-slip condition, namely, the fluid

particles on the boundary stick to the boundary: u(x) = 0 for x = (x, y, z) on the

boundary. This implies that U(±a) = 0, which then implies that

U(y) =
G(a2 − y2)

2ρν
.

Exercises

Exercise 1.2.1. Prove that {(nπ
l

)2 : n ∈ N} provides the set of all eigenvalues to the

BVP (1.23), and that for each λ = (nπ
l

)2, the space of eigenfunctions associated with

λ is 1-dimensional, and is spanned by {sin(nπx
l

)}.

Exercise 1.2.2. Prove that {(nπ
l

)2 : n = 0, 1, · · · } provides the set of all eigenvalues

to the BVP  X ′′(x) = −λX(x),

X ′(0) = X ′(l) = 0.
(1.26)

and that for each λ = (nπ
l

)2, the space of eigenfunctions associated with λ is 1-

dimensional, and is spanned by {cos(nπx
l

)}.

Exercise 1.2.3. Construct separable solutions to the homogeneous heat equation

ut(x, t) − uxx(x, t) = 0 over (0, l) × (0,∞) with the Neumann boundary condition

ux(0, t) = ux(l, t) = 0 for all t > 0. Then use superposition principle to construct a

formal solution to the above problem with the initial data u(x, 0) = g(x) for 0 < x < l.
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Exercise 1.2.4. When ξ is not real, separable solutions u(x, t) = eiξx−ξ
2t to the ho-

mogeneous heat equation ut(x, t)−uxx(x, t) = 0 can be used to model the temperature

variation underground the surface of the earth, as discussed in 7.1 of Partial Differ-

ential Equations by Fritz John. More specifically, the solution when ξ = −a+ ai for

a > 0 has its real part as u(x, t) = cos(2a2t− ax)e−ax. If we model the shallow layer

of the earth as a portion of the flat space corresponding to x ≥ 0, and use −u(x, t)

to model the temperature variation underground the surface of the earth due to its

seasonal variation at the x = 0 level: −u(x, 0) = − cos(2πt) (here we choose a =
√
π

and use year as unit of t to model the annual seasonal variation), work out the range

of temperature variations at depth x > 0 and time-delay of its highest and lowest

temperature in relation to those at x = 0.

Exercise 1.2.5. Construct separable solutions to the Laplace equation ∆u(x, y) = 0

over R2 of the form eixξY (y), where ξ is a real parameter. Does this method give

a family of harmonic functions that are bounded over the entire R2? Does it give a

family of harmonic functions that are bounded over the upper half plane R2
+ or the

lower half plane R2
−?

Exercise 1.2.6. Prove that the BVP{
u′′(x) + u(x) = 0 for x ∈ (0, π),

u(0) = a, u(π) = b

has a solution iff a+ b = 0; and that the BVP{
u′′(x) + u(x) = f(x) for x ∈ (0, π),

u(0) = 0, u(π) = 0

has a solution iff
∫ π

0
f(x) sinx dx = 0.

Exercise 1.2.7. Construct separable solutions to the homogeneous wave equation

utt(x, t)− c2uxx(x, t) = 0 over R2 of the form X(x)T (t). Work out solutions in both

real or complex forms. Identify the solution as a standing wave or traveling wave

solution, then apply the superposition principle to construct standing wave solutions

if the initial construction only gives directly traveling wave solution, or vice versa.

Exercise 1.2.8. Apply separation of variables/Fourier series to construct solutions

to the initial/boundary value problem to the one dimensional wave equation
utt − c2uxx = 0, on (x, t) ∈ [0, l]× R+,

u(0, t) = u(l, t) = 0, for t > 0,

u(x, 0) = g(x), for x ∈ [0, l],

ut(x, 0) = h(x), for x ∈ [0, l].
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Exercise 1.2.9. Use superposition to construct some standing wave solutions to the

Maxwell’s equations. Are they in the same phase?

Exercise 1.2.10. Apply separation of variables/Fourier series to investigate the well-

posedness of the initial/boundary value problem
utt + uxx = 0, on (x, t) ∈ (0, π)× R+,

u(0, t) = u(π, t) = 0, for t > 0,

u(x, 0) = g(x), for x ∈ (0, π),

ut(x, 0) = h(x), for x ∈ (0, π).

Exercise 1.2.11. Apply separation of variables/Fourier series to investigate the well-

posedness of the boundary value problem
utt + uxx = 0, on (x, t) ∈ (0, π)× (0, H),

u(0, t) = u(π, t) = 0, for H > t > 0,

u(x, 0) = g(x), for x ∈ (0, π),

u(x,H) = h(x), for x ∈ (0, π).

Exercise 1.2.12. Apply separation of variables/Fourier series to investigate the well-

posedness of the boundary value problem
utt − uxx = 0, on (x, t) ∈ (0, π)× (0, 2π),

u(0, t) = u(π, t) = 0, for t ∈ (0, π),

u(x, 0) = g(x), for x ∈ (0, π),

u(x, 2π) = h(x), for x ∈ (0, π).

In particular, investigate the set of solutions to the problem for g ≡ h ≡ 0, and

conditions on g and h needed even to find formal solutions.

Exercise 1.2.13. Apply separation of variables, or its variant as described in Remark

1.7, to construct solutions to ut− uxxx = 0 on (x, t) ∈ R× [0,∞). Discuss the role of

solutions to X ′′′(x) + λX(x) = 0 in the construction of solutions to the PDE here.

Exercise 1.2.14. Construct steady state solutions of the incompressible Navier-

Stokes equations in an infinite circular pipe of radius R, where one assumes that

the velocity field takes the form of u(x, t) = (0, 0, U(r)) for some function U(r) to be

determined, and r =
√
x2 + y2, and that the no-slip boundary condition holds.

Exercise 1.2.15. Construct solutions of minimal surface equation (1.15) of the form

u(x, y) = f(x) + g(y) when Ω = R2 (there is no need to consider the boundary

condition then). The resulting solutions give rise to Scherk’s surfaces, and in fact

become infinite along a discrete set of lines.
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1.3 Additional Prototype PDE Problems, Lineariza-

tion, and Dimensional Analysis

The previous sections provide a few examples of prototype IVPs, or BVPs, or IBVPs,

which occur often in applications. Here we mention a few other kinds of PDE problems

that also arise often from physical or geometrical applications.

1.3.1 Eigenvalue and Eigenfunction Problems

These problems already arise in applying the method of separation of variables. For

example, we were led to study (1.23) when attempting to construct solutions to on a

finite interval for the homogeneous case of (1.9). The key question we need answer

for is whether the eigenvalue problem has sufficiently many linearly independent so-

lutions such that any (reasonable) arbitrary function can be “spanned” in terms of

these eigenfunctions.

If we make an analogy with linear algebra, thinking of − d2

dx2 as a linear operator

acting on a class of functions with appropriate boundary conditions such as in (1.23),

the question becomes whether such an operator can be completely diagonalized. Even

in the context of linear algebra, not all linear operators defined in terms of matrix mul-

tiplication can be diagonalized. However, some important classes of linear operators,

including those defined in terms of matrix multiplication by real symmetric matrices,

Hermitian matrices, and unitary matrices, can be diagonalized; furthermore, one can

diaganolize such operators via a set of eigenvectors which are orthonormal. It turns

out that many eigenvalue problems arising from PDE contexts have structures similar

to those for eigenvalue problems for the above mentioned linear operators in finite

dimensions. The key is to find a mechanism to extend the arguments to the infinite

dimensional settings. These are studied in the abstract under the umbrella of self-

adjoint operators, the simplest subclass of which is the compact self-adjoint operators.

These problems in the PDE contexts are called Sturm-Liouville problems, and were

initially studied by more classical DE methods. We will study the Sturm-Liouville

problems later on.

These eigenvalue problems also arise in the study of Schrödinger equations, which

are used to describe a physical system in which quantum effects are significant. One

simple form of the Schrödinger equation takes the following form

i}
∂Ψ(x, t)

∂t
=

[
− }2

2µ
∆ + V (x, t)

]
Ψ(x, t), (1.27)
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where } is the reduced Planck constant h/(2π), µ the particle’s reduced mass, and

V (x, t) the potential energy of the field in which the particle moves.

When V (x, t) = V (x) is independent of t, one is often interested in standing wave

solutions of the form Ψ(x, t) = e−iEt/}W (x). Then W (x) satisfies[
− }2

2µ
∆ + V (x)

]
W (x) = EW (x). (1.28)

Here one question of concern is the existence and distribution of E’s for which (1.28)

has solutions that are square integrable in x over the entire space and not identically

0. The difference between this eigenvalue boundary value problem and those of the

previous section is that the boundary conditions here at spatial infinity are implicit:

we require the eigenfunctions to be square integrable in x over the entire space, which

says that, in some sense, the eigenfunctions tend to 0 as x → ∞; but these two

conditions are not equivalent.

If V (x)→∞ as x→∞, V (x) is said to have a confinement effect, as it tends to

“favor” solutions which → 0 as x→∞—technically, one asks for a solution which is

square integrable in x over the entire space. In such cases (1.28) typically has only

discrete number of eigenvalues with square integrable eigenfunctions.

If V (x) → 0 as x → ∞, then the field is considered to have weak effect at

spatial infinity, and it’s possible to have solutions which do not decay fast enough to

make them square integrable in x over the entire space. Such situations arise when

describing scattering of particles.

In dimension 1, (1.28) becomes an ODE. If, further, V (x) ≡ 0, then the equation

describes a free particle. The solutions to (1.28) in this case with E > 0 are

W (x) = c1e
i
√

2µEx/} + c2e
−i
√

2µEx/},

so

Ψ(x, t) = c1e
i(
√

2µEx−Et)/} + c2e
−i(
√

2µEx+Et)/},

represents the superposition of two free traveling waves. These W (x) are not square

integrable in x over the entire space. But there is still mathematical reason to define

E > 0 to be in the (continuous) spectrum of the operator − }2

2µ
∆ on L2(R). We hope

to say more about this topic later on.

One often used simple model of V (x) in describing scattering is a function with

compact support. Outside the support of V , the wave function W (x) satisfies the

same equation as the one for a free particle. One problem describing the scattering

of a particle in such a situation needs to find a wave function W (x) to (1.28) such

40



1.3. ADDITIONAL PROTOTYPE PDE PROBLEMS

that W (x) = c′1e
i
√

2µEx/} for x large; one hopes to determine the solution elsewhere,

especially to the left of the support of V . Such a wave function would describe a wave

ei(
√

2µEx−Et)/} to the right of the support of V , which is traveling to the right, and

can be interpreted as representing the transmitted wave after the scattering by the

potential V . Note that such a wave function has the form c1e
i
√

2µEx/}+c2e
−i
√

2µEx/} to

the left of the support of V . ei
√

2µEx/} will represent an incidence wave ei(
√

2µEx−Et)/},

while e−i
√

2µEx/} will represent the reflected wave e−i(
√

2µEx+Et)/}. Mathematically one

needs to find the relation between c1, c2, and c′1. The exercises below aim to build

some hands-on experience in constructing eigenfunctions of these problems.

Exercises

Exercise 1.3.1. This exercise shows how an eigenvalue problem arises in constructing

a solution of (1.9) on a two-dimensional (unit) disk D.

(i) Look for a separable solution of the first equation in (1.9) (assuming f ≡ 0)

in the form of u(x, y, t) = T (t)X(x, y), where (x, y) ∈ D. Deduce that X(x, y)

must satisfy {
∆X(x, y) = −λX(x, y) (x, y) ∈ D,
X(x, y) = 0 (x, y) ∈ ∂D

for some constant λ.

(ii) Look for solutions to the eigenvalue problem above in the form ofX = R(r)Θ(θ).

Deduce that R(r) and Θ(θ) must satisfy[
R′′(r) +

R′(r)

r

]
Θ(θ) +

R(r)

r2
Θ′′(θ) = −λR(r)Θ(θ),

which can be rewritten as

r2R−1(r)

[
R′′(r) +

R′(r)

r

]
+ λr2 +

Θ′′(θ)

Θ(θ)
= 0,

whenever R(r) 6= 0 and Θ(θ) 6= 0. It now follows that Θ′′(θ) + µΘ(θ) = 0 for

some constant µ and all θ ∈ [0, 2π], and that R′′(r) +
R′(r)

r
+
[
λ− µ

r2

]
R(r) = 0 for 0 < r < 1,

R(r) ∈ C1[0, 1] with R′(0) = 0 and R(1) = 0 at r = 1.

(REV)
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Figure 1.3: Insert a figure illustrating a potential well and a possible eigenfunction

It’s natural to impose the condition that u(r, 0) = u(r, 2π) and uθ(r, 0) =

uθ(r, 2π) for all 0 < r < 1, which leads to the condition that Θ(0) = Θ(2π)

and Θ′(0) = Θ′(2π). Thus we must look for those constants µ for which the

problem  Θ′′(θ) + λΘ(θ) = 0 for all θ ∈ [0, 2π],

Θ(0) = Θ(2π) and Θ′(0) = Θ′(2π)
(ΘEV)

has non-trivial solutions.

It remains to understand whether (ΘEV) has a set of eigenfunctions which can span

the set of all continuous functions, and answer a similar problem on D incorporating

the solutions to (REV).

Exercise 1.3.2. This problem considers the spectrum of the operator L = − d2

dx2 +

V (x) on L2(R), where V (x) is a piecewise constant function defined as

V (x) =

V0 for |x| < l,

0 for |x| ≥ l.

A solution here is understood to be a function ψ(x) absolutely continuous over R with

absolutely continuous derivative ψ′(x) over R such that −ψ′′(x)+V (x)ψ(x) = Eψ(x)

on R except at x = ±l. The problem is long, and may appear to be tedious. But it

can be worked out using elementary ODE techniques, and the solutions can provide

guidance for more complicated problems.

(a). Prove that for any E > 0 the problem has no non-trivial eigenfunctions in L2(R);

however the problem has non-trivial bounded solutions on R. Such E > 0 are

said to be in the continuous spectrum of the operator (partly because the

set of such E’s forms a continuum, in contrast to situations such as (1.23),

where the eigenvalues are isolated); L−E does not have a bounded inverse on

L2(R), namely, there exists no constant C > 0 such that for any f ∈ L2(R)

one can find a (unique) solution u to (L − E)u = f such that u ∈ L2(R), and

||u||L2(R) ≤ C||f ||L2(R). (In this context, for any f ∈ L2(R), one can construct

a solution u to (L − E)u = f by solving an IVP for the ODE, but u may not

lie in L2(R).)
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(b). The case V0 < 0 is considered to be a potential well. This part will show

that there are finite number of eigenvalues E in the range V0 < E < 0. Set

µ =
√
E − V0.

(i). Prove that if E ≤ V0, then the only bounded solutions on R are identically

0.

(ii). Prove that any L2(R) eigenfunction ψ with V0 < E < 0 must have the

form

ψ(x) =


Aeλx for x ≤ −l,

B cos(µx) + C sin(µx) for |x| ≤ l

De−λx for x > l,

where λ =
√
|E|.

(iii). ψ(x) must satisfy the conditions that ψ(x) and ψ′(x) be continuous at

x = −l and at x = l. Set A = 1. Verify that these conditions lead to

B = e−λl
[
λ

µ
sin(µl) + cos(µl)

]
,

C = e−λl
[
λ

µ
cos(µl)− sin(µl)

]
,

e−λlD = B cos(µl) + C sin(µl),

e−λlD =
µ

λ
[B sin(µl)− C cos(µl)] .

(iv). Prove that the above system has a solution iff

2 cot(2µl) =
2E − V0

µ
√
|E|

.

(v). Note that the right hand side above, considered as a function of µ (noting

|E| = |V0| − µ2), is defined for 0 < µ <
√
|V0|, is monotone increasing in

µ for 0 < µ <
√
|V0|, and → −∞ as µ→ 0+, →∞ as µ→

√
|V0|. Using

this to prove that the above equation has a finite number of solutions in

0 < µ <
√
|V0|.

(vi). Setting µ√
|V0|

= sin θ for some 0 < θ < π
2
, verify that the above equation is

equivalent to cot(2µl) = − cot(2θ), from which it follows that µ = − θ
l
+ kπ

2l

for some k ∈ Z, which can be written as
√
|V0| sin θ = − θ

l
+ kπ

2l
. Prove

that this equation has m solutions in the range 0 < θ < π
2
, where m =

[
2l
√
|V0|
π

] + 1, with the first µ1 < min{ π
2l
,
√
|V0|}.
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(vii). Verify that
√
|V0|µ−1

1 e−l
√
|V0|−µ2

1 cos(µ1x) provides an eigenfunction over

|x| < l for µ1.

(c). The case V0 > 0 is called a potential barrier. Part (a) already establishes that

no E > 0 can have an L2(R) eigenfunction. The interest here is to understand

the behavior of solutions that describe scattering by the potential, in particular,

when 0 < E < V0. Namely, we examine solutions ψ(x) such that ψ(x) = c′1e
i
√
Ex

for x > l. Note that such a solution has the form c1e
i
√
Ex + c2e

−i
√
Ex for x < −l

for some constants c1 and c2. Our aim is to find the relation between c1, c2, and

c′1. Due to linearity, we may normalize c′1 = 1.

(i). Let ψ(x) be any solution of (L − E)ψ(x) = 0 on R. Prove that the

Wronskian W (ψ, ψ) = ψ(x)ψ′(x)−ψ(x)ψ′(x) is a constant independent of

x ∈ R.

(ii). Let ψ(x) be the solution of (L−E)ψ(x) = 0 on R such that ψ(x) = ei
√
Ex

for x > l. Verify that W (ψ, ψ) = −2
√
Ei.

(iii). In the setting of (ii), let ψ(x) = c1e
i
√
Ex + c2e

−i
√
Ex for x < −l for some

constants c1 and c2. Prove that W (ψ, ψ) = −2
√
Ei [|c1|2 − |c2|2], and

conclude that |c1|2−|c2|2 = 1. In the general case, we will have |c1|2−|c2|2 =

|c′1|2. It is customary to normalize c1 = 1, then this relation turns into

1 = |c2|2 + |c′1|2. c2 is called the coefficient of reflection, and c′1 is called

the coefficient of transmission.

(iv). The argument in (i)–(iii) works for any potential with compact support.

Try to determine c2 and c′1 for the specific potential barrier here.

1.3.2 Linearization

Nonlinear differential equations are in general much more difficult to study. One often

used tool is to try to construct a solution near a known solution, through the use of

Inverse or Implicit Function Theorem in appropriate function spaces. The first step

is to linearize a nonlinear DE at a given function. We will see that the linearization

leads to a linear PDE (often with variable coefficients which arise from the given

function).

Here we introduce the concept of linearization through an example, and then

provide guidance on working out the linearization of the equations of motion of ideal

isentropic gas in one dimension.
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We define the operator M(u) = div

(
∇u√

1+|∇u|2

)
, which arises in the PDE for

minimal surface equations. Then the linearization of M at u is defined to be

M′
u[v] :=

d

dε

∣∣∣∣
ε=0

M(u+ εv).

In our case, it turns out

M′
u[v] =

n∑
i,j=1

∇i

[
(1 + |∇u|2)δij −∇ui∇uj

(1 + |∇u|2)3/2
∇vj

]
,

and thus

M′
0[v] = ∆v,

and in general

M′
u[v] =

n∑
i,j=1

∇i [aij(x)∇vj] , with aij(x) =
(1 + |∇u|2)δij −∇ui∇uj

(1 + |∇u|2)3/2
.

Note that for any vector ξ ∈ Rn,

n∑
i,j=1

aij(x)ξiξj =
(1 + |∇u|2)|ξ|2 − |∇u · ξ|2

(1 + |∇u|2)3/2
,

so
|ξ|2

(1 + |∇u|2)3/2
≤

n∑
i,j=1

aij(x)ξiξj ≤
|ξ|2

(1 + |∇u|2)1/2
.

Suppose that u is a solution of (1.15) for a certain g, and one is interested in

whether (1.15) has a solution for some g + εh near g, then, as a first approximation,

one needs to construct a v such that M ′
u[v] = 0 in Ω, and v = h on ∂Ω. The PDE

M ′
u[v] = 0 is a linear second order variable coefficient PDE, and due to the positive

definiteness of (aij(x)), it is called an elliptic PDE.

For the equations of motion for ideal isentropic gas in one dimension, as described

in Example 1.1, the left hand sides of the equations can be incorporated into the

nonlinear operator

N(ρ, v) =

(
ρt + (ρv)x

(ρv)t + (ρv2)x + p′(ρ)ρx

)
.

Notice that for ρ = ρ0, a constant, we have N(ρ0, 0) = ~0. The linearized operator of

N at (ρ0, 0) is

N ′(ρ0,0)

(
ρ∗

v∗

)
=

(
ρ∗t + ρ0v

∗
x

ρ0v
∗
t + p′(ρ0)ρ∗x

)
.
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So as a first approximation, if we want to solve N ′(ρ0,0)

(
ρ∗

v∗

)
= ~0, we have

{
ρ∗t + ρ0v

∗
x = 0,

ρ0v
∗
t + p′(ρ0)ρ∗x = 0.

This is a system of linear equations for ρ∗ and v∗, and one can easily eliminate one

variable to arrive at

ρ∗tt − c2ρ∗xx = 0, with c2 = p′(ρ0).

This confirms that small disturbances in a one dimensional ideal isentropic gas obeys

the wave equation in Example 1.3.

Exercises

Exercise 1.3.3. Verify that the linearization of the nonlinear operator

N(ρ, v) =

(
ρt + (ρv)x

(ρv)t + (ρv2)x + p′(ρ)ρx

)

at (ρ0, 0), with ρ0 > 0 being a constant, is

N ′(ρ0,0)

(
ρ∗

v∗

)
=

(
ρ∗t + ρ0v

∗
x

ρ0v
∗
t + p′(ρ0)ρ∗x

)
.

Exercise 1.3.4. Suppose that ρ∗(x, t) and v∗(x, t) are C2 solutions to{
ρ∗t + ρ0v

∗
x = 0,

ρ0v
∗
t + p′(ρ0)ρ∗x = 0.

Prove that

ρ∗tt − c2ρ∗xx = 0, with c2 = p′(ρ0).

Exercise 1.3.5. Verify that the linearization of the incompressible Navier-Stokes

equations at a solution (u0(x, t), p0(x, t)) is div v(x, t) = 0,

∂v(x, t)

∂t
+ u0(x, t) · ∇v(x, t) + v(x, t) · ∇u0(x, t) = −ρ∇p(x, t) + ν∆v(x, t).

In particular, when u0(x, t) = (U(y), 0, 0) is the steady state solution in the infinite

plate −a ≤ y ≤ a, the linearized system takes on the more specific form

46



1.3. ADDITIONAL PROTOTYPE PDE PROBLEMS


div v(x, t) = 0,

∂v(x, t)

∂t
+ U(y)

∂v(x, t)

∂x
+ v2(x, t)

U ′(y)

0

0

 = −ρ∇p(x, t) + ν∆v(x, t).

1.3.3 Dimensional Analysis and Scaling∗

Dimensional analysis and scaling are often used in dealing with the analysis of PDEs.

Here are a few brief comments on these two topics.

Dimensional analysis refers to the requirement that all summands in a physical law

must have the same dimensions, therefore its validity is unaffected by a change of unit

in one or more of the physical quantities. Dimensional analysis is used extensively by

physicists, chemists, and engineers in the analysis of their problems, and in checking

the validity of the formula that they face.

An underlying principle is that every physical quantity is assigned a dimension;

and once a unit for this dimension is chosen, the physical quantity can now be assigned

a numerical value. For instance, the length of a one-dimensional object is assigned the

dimension of length, the area of a two-dimensional region is assigned the dimension of

(length)2, and the dimension of speed is length/time. We have a sense for the length

of the edge of a page (in relation to a familiar reference length), but it does not

have an intrinsic numerical value; it is given a numerical value only after a unit for

measuring the length has been chosen. Two different units for the same dimension

are related by a scaler; the ratio of the numerical values of two quantities of the

same dimension (with respect to a common unit) is invariant when the unit for the

dimension is changed, and is an example of a dimensionless quantity.

The choice of a unit for physical quantities often depends on the context: there

is often a characteristic unit for quantities of the same dimension in a given con-

text (one often used guiding principle is that the numerical values measured in this

characteristic unit would not be too huge or too tiny). For instance, in describing

the ripple of water waves, meter seems a reasonable choice as characteristic unit for

length, and second a reasonable choice as characteristic unit for time. If we choose to

use hour as characteristic unit for time, then the numerical value of the wave speed

is amplified by a factor of 3600, but the typical time related to the evaluation of the

wave motion is measured in the thousandth of an hour; this need to deal with both

∗Skipping dimensional analysis will not disrupt the reading of the rest of the material.
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a huge numerical value of wave speed and a tiny numerical value of time is not as

convenient as using meter and second in this context.

Scientists often carry out a non-dimensionalization of the equation to facilitate

its analysis. One chooses a characteristic unit for each dimension, and expresses all

involved quantities as numerical values measured against the chosen units, and works

with the resulting reduced equation. For instance, in using the heat equation in

a given setting, one first chooses a characteristic unit T for time variable t, and a

characteristic unit L for length variable x. Note that ν, the thermal diffusivity, has

the dimension of (length)2/time. If one rescales the variables x = ξL, t = τT , where

ξ is the measurement of length against L, and τ is the measurement of time against

T , and choose as a characteristic scale U for u, and set u = ΥU . The substitution

u(ξL, τT ) = Υ(ξ, τ)U turns the equation ut − νuxx = 0 into Υτ − νT
L2 Υξξ = 0. This

is the non-dimensionalized form of the equation, where ξ, τ,Υ are all dimensionless.

The dimensionless quantity κ = νT
L2 is now the only parameter describing the heat

diffusion in this context.

One can look up that the thermal diffusivity of Silicone Dioxide is 0.83mm2/s. So

if one looks at a problem with T = 10s, L = 10mm, it would lead to κ = 0.083. But

if one is interested in studying heat diffusion in the setting of microchips, it would

be reasonable to choose T = 1s, L = 10−2mm, then κ = 8, 300 in the dimensionless

form.

In principle, the arguments for the transcendental functions are dimensionless,

as transcendental functions are defined by power series, and it does not make sense

to sum terms of different dimensions, if the argument carries a physical dimension.

But we have encountered many solutions formulae involving transcendental functions

with arguments which seem to carry dimension, or even different dimensions, for in-

stance, in (1.21). This is due either to our having assigned a numerical value to a

dimensional constant so its dimension is not explicitly visible, or to our working with

non-dimensionalized form of the equation. In the case of (1.21), we have normal-

ized the coefficient of thermal diffusivity γ to be 1, which carries the dimension of

(length)2/(time); it we put γ back and trace its role, we will find it appears in the

form γt in place of t. If x takes the dimension of length, then ξ would need to take

the dimension of (length)−1, and xξ and ξ2γt would both be dimensionless. The same

comment applies to other representations of solutions to (1.8): if we need a solution

formula for a general γ, we should use the dimensionless quantities, such as (nπ
l

)2γt

or |x|2/(γt), to replace (nπ
l

)2t, or |x|2/t (in (2.18)), which are derived assuming γ = 1.

To avoid having to keep track of the dimensions, the easiest approach is to work with
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non-dimensionalized form of the equation. We will see more examples later on where

such dimensional analysis would help to make sure that the parameters are placed in

the correct place in the solution representation.

Two different physically scaled problems may reduce to the same non-dimensionalized

equation. Scientists have often used such relations to reduce the study of a physi-

cal problem that is large and expensive to do experiment with to a smaller scale

problem that shares identical non-dimensionalized equation. For instance, suppose a

different context has a different choice of a characteristic unit L̂ for length, a char-

acteristic unit T̂ for time, and a different ν̂, but it turns out that κ = νT
L2 = ν̂T̂

L̂2
.

Then both Υ1(ξ, τ) := u(ξL, τT )/U and Υ2(ξ, τ) := û(ξL̂, τ T̂ )/Û satisfy the same

diffusion equation. If they also satisfy the same initial and boundary conditions in

(ξ, τ) coordinates, then we expect Υ1(ξ, τ) = Υ2(ξ, τ) and can use the relation

u(ξL, τT )/U = û(ξL̂, τ T̂ )/Û = Υ1(ξ, τ) = Υ2(ξ, τ)

to relate u(x, t) to Υ1(ξ, τ), or to û(x, t). In such a situation, û(x, t) = u(Lx
L̂
, Tt
T̂

)Û/U

can be used to draw conclusions on û(x, t) through information on u.

One can use such analysis to get information on a solution of (1.20) when the

initial data g is a point source, concentrated at 0, say. A point source function is

best defined as a limit, in appropriate sense, of a sequence of non-negative functions,

having unit total integral, and concentrating its mass (total integral) at 0 in the

limit. More specifically, if h(x) ≥ 0 on R, with its support in {x : |x| ≤ 1}, and∫
Rn h(x)dx = 1, then, for λj → 0, as j → ∞, and hj(x) := λ−nj h(x/λj), we see that∫
Rn hj(x)dx = 1, and for any η ∈ C(Rn),∫

Rn
hj(x)η(x)dx = η(0), as j →∞.

It is in this sense that {hj(x)} converges to a limit function δ(x), which is called the

unit point source function at 0, or Dirac’s function.

One can see that, for any λ > 0, {λ−nhj(x/λ)} would have the same limit, so

one expects λ−nδ(x/λ) = δ(x). Now, if u(x, t) is a solution of (1.20) with u(x, 0) =

δ(x), then, using the same computation as in the dimension analysis uλ(x, t) :=

λ−nu(x/λ, t/λ2) satisfies the same diffusion equation, with the same initial data. It

is reasonable to expect uλ(x, t) = u(x, t) for any (x, t) and λ > 0. The relation

λ−nu(x/λ, t/λ2) = u(x, t) for any (x, t) and λ > 0 would give us lead to find an

explicit form for u(x, t). We will do that in a later section.

In addition to the relatively routine applications mentioned above, dimensional

analysis has been used by insightful scientists to derive interesting solution formulas
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in some situations, avoiding lengthy computations which a routine derivation would

need. See some easily accessible notes on this by John Hunter at https://www.math.

ucdavis.edu/~hunter/m280_09/applied_math.html.

In the analysis of PDEs, we often need to use certain inequalities that are ap-

plicable to all functions in a linear function space and involve integrable norms of

the functions and their derivatives. Mathematicians often use dimensional analysis,

or in a form called scaling, to find the correct dependence of the constants in the

inequalities.

Here are two examples to illustrate how scaling is done. We are interested in the

validity of the inequality

∃C > 0 depending on p, q ≥ 1, and l such that for all u ∈ C1[0, l] with u(0) = 0,(∫ l

0

|u(x)|qdx
)1/q

≤ C

(∫ l

0

|u′(x)|pdx
)1/p

.

(1.29)

In applications, one needs to know, as much as possible, how C depends on p, q, and

l, especially when one or more of them varies.

The following elementary inequalities for u ∈ C1[0, l] with u(0) = 0:

max
0≤x≤l

|u(x)|2 ≤ l

∫ l

0

|u′(x)|2 dx,
∫ l

0

|u(x)|2 dx ≤ l2
∫ l

0

|u′(x)|2 dx, (1.30)

are special cases of (1.29), and can be proved easily by using u(x) =
∫ x

0
u′(y) dy; but

the coefficients in (1.30) depend on l in a different scale and can be found by rescaling

the spatial variable 0 < x < l to x = lz, so 0 < z < 1, and consider v(z) = u(lz).

After we establish max0≤z≤1|v(z)| ≤
∫ 1

0
|v′(z)|2 dz, and

∫ 1

0
|v(z)|2 dz ≤

∫ 1

0
|v′(z)|2 dz,

a change of variables x = lz would give back (1.30).

Dimensional analysis would predict the same scaling: if one treats u as dimen-

sionless and x as having the dimension of length, then |u′(x)|2 has the dimension of

(length)−2, and
∫ l

0
|u′(x)|2 dx has the dimension of (length)−1; so to balance with the

dimension of the left hand side, one would need the factor l in front of
∫ l

0
|u′(x)|2 dx

for the first inequality, and the factor l2 for the second inequality in (1.30). In par-

ticular, this analysis shows that it is impossible to get a constant C > 0 independent

of l, such that
∫ l

0
|u(x)|2 dx ≤ C

∫ l
0
|u′(x)|2 dx holds for all u ∈ C1[0, l] with u(0) = 0,

and for all l > 0.

Similar analysis can be done for (1.29): If (1.29) has been established for l = 1,

then for a general l > 0, and u ∈ C1[0, l] with u(0) = 0, then we have v(z) =

u(lz) ∈ C1[0, 1] with v(0) = 0, and expect (1.29) to hold for v with a constant
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C1 > 0 depending only on p and q. But ||v||Lq [0,1] = l−1/q||u||Lq [0,l], and ||v′||Lp[0,1] =

l1−1/p||u′||Lp[0,l]. Thus we have

||u||Lq [0,l] ≤ C1l
1−1/p+1/q||u′||Lp[0,l],

conditioned on having established (1.29) for l = 1. Thus C = C1l
1−1/p+1/q would be

how the constant in (1.29) depends on l.

Here is a more complicated (interpolation) inequality which can be analyzed in a

similar fashion.

For appropriate choices of 1 ≤ p, q, r <∞, and 0 ≤ α, β ≤ 1,

∃C > 0 depending on p, q, r, the dimension n and the radius R of the ball

BR(0) in Rn, and α, β such that for all u ∈ C2(BR(0)) with u(x) = 0 on ∂BR(0),(∫
BR(0)

|∇u(x)|qdx
)1/q

≤ C

(∫
BR(0)

|u(x)|pdx
)α/p(∫

BR(0)

|∇2u(x)|rdx
)β/r

(1.31)

We use this example to illustrate scaling on both the range and the domain. If (1.31)

is to hold for all admissible u, then it should hold with u(x) replaced by λu(x) for

any λ. This would create a factor of |λ| on the left hand side, and a factor of |λ|α+β

on the right hand side. In order for the resulting inequality to hold for all λ, it’s

necessary that α + β = 1. This corresponds to scaling on the range.

Next, we consider scaling on the domain: if (1.31) is to hold for R = 1, we can

scale the general R > 0 case to the R = 1 case by considering v(z) = u(Rz). Noting

||∇v||Lq(B1(0)) = R1−n/q||∇u||Lq(BR(0)),

||v||Lp(B1(0)) = R−n/p||u||Lp(BR(0)),

||∇2v||Lr(B1(0)) = R2−n/r||∇2u||Lr(BR(0)),

the inequality (1.31) for v on B1(0) gives

||∇u||Lq(BR(0)) ≤ C1R
n/q−1+α(−n/p)+β(2−n/r)||u||αLp(BR(0))||∇2u||βLr(BR(0)),

implying that the dependence of the constant C on R in (1.31) is

C = C1R
n/q−1+α(−n/p)+β(2−n/r).

Another way to account for the scaling is to make each term scaling invari-

ant, namely, R1−n/q||∇u||Lq(BR(0)), R
−n/p||u||Lp(BR(0)), and R2−n/r||∇2u||Lr(BR(0)) are
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each scaling invariant (with respect to scaling of the independent variable x): the

change of variables x = λy, u(x) = u(λy)
def
= w(y), R̂ = λ−1R, would produce

R1−n/q||∇xu||Lq(BR(0)) = R̂1−n/q||∇yw||Lq(B
R̂

(0)), etc. We would then write (1.31) in

the form of

R1−n/q||∇u||Lq(BR(0)) ≤ C1

{
R−n/p||u||Lp(BR(0))

}α {
R2−n/r||∇2u||Lr(BR(0))

}β
.

Note that

R1−n/q||∇u||Lq(BR(0)) =

(
R−n

∫
BR(0)

|R∇xu(x)|qdx
)1/q

,

R−n/p||u||Lp(BR(0)) =

(
R−n

∫
BR(0)

|u(x)|pdx
)1/p

,

R2−n/r||∇2u||Lr(BR(0)) =

(
R−n

∫
BR(0)

|R2∇2
xu(x)|rdx

)1/r

,

so each is the scaled (averaged) integral norm of the corresponding scaled integrand.

Again, this discussion is conditioned on establishing (1.31) on B1(0). Scaling

analysis also provides some condition on the relation between p, q, r, α, β. Let u have

compact support in B1(0), then for any r > 1, v(z) = u(rz) also has compact support

in B1(0). Thus (1.31) would hold for v on B1(0). But the same scaling computation

above shows that ||∇v||Lq(B1(0)) = r1−n/q||∇u||Lq(B1(0)) and respective scaling laws for

the other two norms. This leads to

r1−n/q||∇u||Lq(B1(0)) ≤ C1r
α(−n/p)+β(2−n/r)||u||αLp(B1(0))||∇2u||βLr(B1(0))

for all r > 1. This implies that a necessary condition for (1.31) to hold on B1(0) is

1− n/q ≤ α(−n/p) + β(2− n/r).
For those encountering such kind of analysis for the first time, the case α = 0 and

β = 1 would present a relatively simple case of (1.31): a necessary condition is that

1 + n/q− n/r ≥ 0, which is often written in the form of 1/q ≥ 1/r− 1/n, or q ≤ rn
n−r

when 1 ≤ r < n. Note that such scaling analysis only produces some necessary

conditions, and additional analysis is needed to determine whether the inequality (or

equality) actually holds. For example, α = 1, β = 0, and 1− n/q = −n/p satisfy the

scaling analysis, but the corresponding (1.31) does not hold; in fact, (1.31) with the

inequality reversed holds in this case.

Exercises
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Exercise 1.3.6. Let u(x) be a smooth function on BR(0). Define uR(z) := u(Rz) for

z ∈ B1(0). Verify that

||uR||Lp(B1(0)) = R−
n
p ||u||Lp(BR(0)), ||∂kzuR||Lp(B1(0)) = Rk−n

p ||∂kxu||Lp(BR(0)).

In particular, ||∆zuR||Lp(B1(0)) = R2−n
p ||∆xu||Lp(BR(0)). Later we will prove that

there exists C = C(n) > 0 such that if u is a harmonic function in B1(0), then

||∇u||C(B 1
2

(0)) ≤ C||u||C(B1(0)). Use the scaling computations here to show that if u(x)

is a bounded harmonic function on Rn, then it must be a constant on Rn.

Exercise 1.3.7. Let u(x, t) be a smooth function on (x, t) ∈ BR(0)× [0, R2], and let

f(x, t) := (∂t − ∆x)u(x, t). Define uR(ξ, τ) := u(Rξ,R2τ) for (ξ, τ) ∈ B1(0) × [0, 1].

Verify that

||uR||Lp(B1(0)×[0,1]) = R−
(n+2)
p ||u||Lp(BR(0)×[0,R2]),

||∂kξ ∂lτuR||Lp(B1(0)×[0,1]) = Rk+2l− (n+2)
p ||∂kx∂ltu||Lp(BR(0)×[0,R2]).

Also verify that (∂τ −∆ξ)uR(ξ, τ) = R2f(Rξ,R2τ).

1.4 Supplement: Local Solvability of Certain Ge-

ometric PDEs∗

While most PDE problems in applications involve initial or boundary conditions, or

both, certain geometric problems can be formulated as a local solvability problem

of certain associated geometric PDEs, with no initial or boundary conditions. We

discuss such an example involving geometry in this section. The method of reduction

to be discussed below may seem ad hoc, but serves as a good example to illustrate

how an initial formulation, which does not seem to fit any standard PDE theory, can

be reduced to a form where some of the standard theories become applicable.

Let ~r = ~r(x, y) be a local parametrization of a piece of a surface M . Then the

metric properties of M , namely, the lengths of tangents and angles between tangents

on M are determined by the first fundamental form

ds2 = |d~r|2 = d~r · d~r
= (~rx dx+ ~ry dy) · (~rx dx+ ~ry dy)

= ~rx · ~rx dx2 + 2~rx · ~ry dxdy + ~ry · ~ry dy2

= E(x, y) dx2 + 2F (x, y) dxdy +G(x, y) dy2,

∗Optional material.
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where E(x, y) = ~rx · ~rx, F (x, y) = ~rx · ~ry, and G(x, y) = ~ry · ~ry. For instance,

the length of a piece of a curve ~r ◦ C(s) on M given through the parametrization,

C(s) = (x(s), y(s)) ∈ Ω, a ≤ s ≤ b, where Ω is a domain in the parameter x-y plane,

is computed as∫ b

a

√
E(x(s), y(s))

(
dx

ds

)2

+ 2F (x(s), y(s))
dx

ds

dy

ds
+G(x(s), y(s))

(
dy

ds

)2

ds,

and the area of the piece of surface on M corresponding to the domain Ω under the

representation ~r is
∫

Ω

√
E(x, y)G(x, y)− F 2(x, y)dxdy.

Note that the matrix [
E(x, y) F (x, y)

F (x, y) G(x, y)

]
is positive definite. If we introduce a set of new parameters (u, v), namely, a change

of variables (x, y) 7→ (u(x, y), v(x, y)), the first fundamental form would have different

coefficients Ẽ(u, v), F̃ (u, v), and G̃(u, v). One basic question in geometry is whether

one can make a change of variables such that the coefficients in the new coordinates

become simpler. Two concrete such questions are

(a). Whether there is a change of variables, at least locally, such that Ẽ(u, v) ≡ 1,

F̃ (u, v) ≡ 0, and G̃(u, v) ≡ 1?

(b). Whether there is a change of variables, at least locally, such that Ẽ(u, v) ≡ G̃(u, v),

and F̃ (u, v) ≡ 0?

Question (a) amounts to three conditions (PDEs) for two unknowns u(x, y) and

v(x, y). These would be an overdetermined system of PDEs, and usually do not

have solutions, unless certain compatibility condition derived from the system is sat-

isfied. That condition turns out to be the vanishing of the Gaussian curvature of the

metric ds2.

Question (b) amounts to two conditions (PDEs) for two unknowns u(x, y) and

v(x, y). The counting of the variables makes this problem to be probably tractable.

When such a change of variables exists, then, letting Λ(u, v) = Ẽ(u, v) ≡ G̃(u, v),

the metric in the new coordinates (u, v) is represented as Λ(u, v)(du2 + dv2). Such a

coordinate would be called an isothermal coordinate. This question can be formulated

as the local existence of solution of a system of PDEs, or as the local existence of

solution of a single PDE.

More specifically, we ask whether there exist u(x, y), v(x, y), and Λ̃(x, y) such that

such that

E(x, y) dx2 + 2F (x, y) dxdy +G(x, y) dy2 = Λ̃(x, y)(du2 + dv2).
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1.4. SUPPLEMENT: LOCAL SOLVABILITY OF CERTAIN GEOMETRIC PDES

Substituting du = uxdx + uydy, and dv = vxdx + vydy into Λ̃(x, y)(du2 + dv2), and

equating the resulting expression to E(x, y) dx2+2F (x, y) dxdy+G(x, y) dy2, question

(b) is equivalent to the existence of functions Λ̃(x, y), u(x, y), and v(x, y) such that
E(x, y) = Λ̃(x, y)

[
u2
x(x, y) + v2

x(x, y)
]
,

F (x, y) = Λ̃(x, y) [ux(x, y)uy(x, y) + vx(x, y)vy(x, y)] ,

G(x, y) = Λ̃(x, y)
[
u2
y(x, y) + v2

y(x, y)
]
,

ux(x, y)vy(x, y)− uy(x, y)vx(x, y) 6= 0.

We also require that (x, y) 7→ (u(x, y), v(x, y)) is locally invertible. This is a system

of nonlinear equations for the three unknowns Λ̃(x, y), u(x, y), and v(x, y). It can be

reduced to a system of first order linear PDEs or a single second order linear PDE

as follows. First note that

Λ̃(x, y) [ux(x, y)vy(x, y)− uy(x, y)vx(x, y)] =
√
E(x, y)G(x, y)− F 2(x, y)

and we may look for solutions such that Λ̃(x, y) > 0. Then the equations can be

interpreted as√
Λ̃(x, y)

E(x, y)
(ux(x, y), vx(x, y)) and

√
Λ̃(x, y)

G(x, y)
(uy(x, y), vy(x, y)) are unit vectors in R2,

and the angle γ between them satisfies cos γ =
F (x, y)√

E(x, y)G(x, y)
.

Thus

√
Λ̃(x, y)

G(x, y)
(uy(x, y), vy(x, y)) can be obtained from

√
Λ̃(x, y)

E(x, y)
(ux(x, y), vx(x, y))

by a rotation of angle γ. Using the rotation matrix[
cos γ − sin γ

sin γ cos γ

]
=

 F (x,y)√
E(x,y)G(x,y)

−
√
E(x,y)G(x,y)−F 2(x,y)√

E(x,y)G(x,y)√
E(x,y)G(x,y)−F 2(x,y)√

E(x,y)G(x,y)

F (x,y)√
E(x,y)G(x,y)


we have√

Λ̃(x, y)

G(x, y)

[
uy(x, y)

vy(x, y)

]
=

√
Λ̃(x, y)

E(x, y)

 F (x,y)√
E(x,y)G(x,y)

−
√
E(x,y)G(x,y)−F 2(x,y)√

E(x,y)G(x,y)√
E(x,y)G(x,y)−F 2(x,y)√

E(x,y)G(x,y)

F (x,y)√
E(x,y)G(x,y)

[ux(x, y)

vx(x, y)

]
,

from which it follows that
uy(x, y) =

F (x, y)ux(x, y)−
√
E(x, y)G(x, y)− F 2(x, y)vx(x, y)

E(x, y)
,

vy(x, y) =

√
E(x, y)G(x, y)− F 2(x, y)ux(x, y) + F (x, y)vx(x, y)

E(x, y)
.
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This is a linear system of first order PDEs for the two unknowns u(x, y) and v(x, y).

It further follows from this that
vx(x, y) =

F (x, y)ux(x, y)− E(x, y)uy(x, y)√
E(x, y)G(x, y)− F 2(x, y)

,

vy(x, y) =
G(x, y)ux(x, y)− F (x, y)uy(x, y)√

E(x, y)G(x, y)− F 2(x, y)
.

(1.32)

Thus u(x, y) needs to satisfy(
F (x, y)ux(x, y)− E(x, y)uy(x, y)√

E(x, y)G(x, y)− F 2(x, y)

)
y

−

(
G(x, y)ux(x, y)− F (x, y)uy(x, y)√

E(x, y)G(x, y)− F 2(x, y)

)
x

= 0.

(1.33)

(1.33) is a second order linear PDE for u(x, y), and is called the Beltrami equation.

Conversely, if u(x, y) is a solution of (1.33), then we can find v(x, y) satisfying (1.32)

locally, and reverse the computations above to show that (x, y) 7→ (u(x, y), v(x, y)) is

a desired change of variables.

A related question is the question of isometric imbedding: whether, for a given

metric, namely, a positive definite bilinear form E(x, y) dx2 + 2F (x, y) dxdy +G(x, y) dy2,

there is a local map (x, y) 7→ ~r(x, y) ∈ Rn such that

|d~r(x, y)|2 = E(x, y) dx2 + 2F (x, y) dxdy +G(x, y) dy2?

This amounts to asking ~r(x, y) to satisfy E(x, y) = ~rx · ~rx, F (x, y) = ~rx · ~ry, and

G(x, y) = ~ry · ~ry. These are three nonlinear PDEs for the n-components of ~r(x, y).

When n > 3, this system is underdetermined. In the 1950’s John Nash provided the

first positive answer to a global version of this question and its higher dimensional

analogue. For n = 3, this is a determined system. In 1894 Darboux reduced this

system to a single nonlinear PDE. But the PDE is notoriously difficult to solve; the

behavior of the solution depends on the sign of the curvature of the given metric.

H. Weyl proposed a related global embedding problem: given a metric on a topologi-

cal sphere with positive Gaussian curvature, can one find an embedding of the sphere

into R3 whose induced metric equals the given metric? The problem was solved in the

early 1950’s by Nirenberg and Pogorelov, using different approaches. Hartman and

Wintner also solved the local existence of the Darboux equation in the 1950’s under

the condition that the Gaussian curvature of the given metric does not vanish. There

has been renewed interest in this and related problems in the last 30 years, and great

progress has been made.
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1.5. ADDITIONAL PROBLEMS

1.5 Additional Problems

Problem 1.5.1. The −∂p(x,t)
∂x

term in (1.4) comes from −p(x2, t) + p(x1, t), which

accounts for the pressure force acting on the section [x1, x2] at x2 and x1, respectively.

In higher dimensions, the fluid force acting on a region Ω through contact along ∂Ω

is accounted for by
∫
∂Ω

~F (x, t)dσ(x); and one commonly used assumption is that

~F (x, t) = [−p(x, t)I + 2µS(D~v(x, t))] · ~n(x),

where I is the identity matrix, µ ≥ 0 is the viscosity coefficient of the fluid, S(D~v(x, t))

is the strain-rate matrix, whose (i, j) entry is (∂xivj(x, t) + ∂xjvi(x, t))/2. To convert

the surface flux integrals∫
∂Ω

ρ(x, t)~v(x, t)~v(x, t) · ~n(x)dσ(x),∫
∂Ω

{−p(x, t)~n(x) + 2µS(D~v(x, t)) · ~n(x)} dσ(x)

into volume integrals in Ω, it’s more convenient to treat the integrals component wise.

(i) Prove that∫
∂Ω

ρ(x, t)vi(x, t)~v(x, t) · ~n(x)dσ(x)

=

∫
Ω

div (ρ(x, t)vi(x, t)~v(x, t)) dx

=

∫
Ω

{
n∑
j=1

vj(x, t)∂xj (ρ(x, t)vi(x, t)) + ρ(x, t)vi(x, t) div ~v(x, t)

}
dx

=

∫
Ω

{~v(x, t) · ∇ (ρ(x, t)vi(x, t)) + ρ(x, t)vi(x, t) div ~v(x, t)} dx.

(ii) Prove that ∫
∂Ω

p(x, t)ni(x)dσ(x) =

∫
Ω

∂p(x, t)

∂xi
dx.

(iii) Let Si(D~v(x, t)) denote the vector formed by the ith row of S(D~v(x, t)). Prove

that ∫
∂Ω

Si(D~v(x, t)) · ~n(x)dσ(x)

=

∫
Ω

1

2

n∑
j=1

(
∂2
xjxi

vj(x, t) + ∂2
xjxj

vi(x, t)
)
dx

=

∫
Ω

1

2
(∂xi(div ~v) + ∆vi(x, t)) dx
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CHAPTER 1. SOME PROTOTYPE PDES AND ELEMENTARY SOLUTIONS

(iv) Derive the momentum equations

∂[ρ(x, t)vi(x, t)]

∂t
+

n∑
j=1

∂ [ρ(x, t)vi(x, t)vj(x, t)]

∂xj

=− ∂p(x, t)

∂xi
+ µ∆vi(x, t) + µ

∂(div ~v(x, t))

∂xi
.

(1.34)

(v) Derive a similar, but simpler, equation based on the conservation of mass:

∂ρ(x, t)

∂t
+

n∑
j=1

∂ [ρ(x, t)vj(x, t)]

∂xj
= 0.

(vi) The equations in (iv) and (v) form part of the Navier-Stokes system. If one

assumes that the fluid is incompressible, namely, div ~v(x, t) ≡ 0, then, using

(v), (1.34) can be simplified into

ρ(x, t)
∂vi(x, t)

∂t
+ ρ(x, t)

n∑
j=1

vj(x, t)
∂ [vi(x, t)]

∂xj
= −∂p(x, t)

∂xi
+ µ∆vi(x, t).

When µ = 0, we obtain the Euler system.

Problem 1.5.2. Consider separable solutions of the form u(x, t) = e−λtX(x) to

ut(x, t)− [p(x)ux(x, t)]x = 0,

where p(x) is a piecewise constant function defined by

p(x) =

p1 > 0 if x < 0,

p2 > 0 if x > 0.

The equation is to hold for x 6= 0 and t > 0, and we require u(x, t) and p(x)ux(x, t)

to be continuous across x = 0, which implies p1X
′(0−) = p2X

′(0+).

(i). Derive the equation satisfied by X(x), and prove that for any λ > 0, there

exist solutions X(x) on R which are continuous, piecewise C1, and bounded—

X ′(x) would have a discontinuity at x = 0; and this example shows that when

the diffusion coefficient has a jump discontinuity, the diffusion equation has

solutions which are only piecewise C1, in contrast to the behavior of the standard

diffusion equation.
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1.5. ADDITIONAL PROBLEMS

(ii). Also verify that, if we impose additionally the boundary conditions X(−π) =

X(π) = 0, then the λ’s for which there are not-identically-zero solutions X are

given by

√
p1 sin

(√
λ

p2

π

)
cos

(√
λ

p1

π

)
+
√
p2 sin

(√
λ

p1

π

)
cos

(√
λ

p2

π

)
= 0.

Problem 1.5.3. Identify all the eigenvalues λ of the following BVP
X(4)(x) + λX(x) = 0, 0 < x < l,

X(0) = X ′′(0) = 0,

X(l) = X ′′(l) = 0.

Problem 1.5.4. Identify all the eigenvalues λ of the following BVP
X(4)(x) + λX(x) = 0, 0 < x < l,

X(0) = X ′(0) = 0,

X(l) = X ′(l) = 0.
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Chapter 2

Fourier’s Method Applied to the

Heat, Wave, and Laplace Equations

We now make some more definite statements about the solutions to the homogeneous

case of (1.8) obtained in the previous chapter through separation of variables and

superposition principle—both lead to Fourier’s method, one to Fourier series, the

other to Fourier transforms.

2.1 Convergence Issues in the Fourier Series Solu-

tion of the Heat Equation

We first make some comments on Fourier sine series which arise from solving the

initial-boundary value problem for the heat equation with homogeneous Dirichlet

boundary conditions:
ut − uxx = 0, for (x, t) ∈ (0, l)× (0,∞),

u(0, t) = u(l, t) = 0, for t > 0,

u(x, 0) = g(x) for x ∈ [0, l].

(2.1)

Recall that we were led to propose to use
∑∞

n=1 cn sin(nπx
l

)e−(nπ
l

)2t as a solution. The

cn’s in (1.24) are determined in terms of u(x, 0) = g(x) by

cn =
2

l

∫ l

0

u(x, 0) sin(
nπx

l
) dx.

This relies on the fundamental fact that∫ l

0

sin(
mπx

l
) sin(

nπx

l
) dx = 0, if m 6= n ∈ N, and =

l

2
if m = n ∈ N;
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CHAPTER 2. FOURIER’S METHOD

namely, the functions in the set {sin(nπx
l

) : n ∈ N} are mutually orthogonal to

each other over [0, l]. Formally one multiplies both sides of (1.24) by sin(mπx
l

) and

integrates over [0, l], then interchanges the order of integration and summation to

lead to the formula for cn, using the orthogonal relations above.

The cn’s are well defined for any u(x, 0) which is Riemann integrable on [0, l].

It seems natural to investigate whether the partial sums
∑k

n=1 cn sin(nπx
l

) converge

to u(x, 0) in the integral norm ||u||L[0,l] =
∫ l

0
|u(x)| dx. But the space of Riemann

integrable functions on [0, l] under this norm is not complete, namely, there are

sequences of Riemann integrable functions on [0, l], {uk(x)}, which is a Cauchy se-

quence in the sense that ||uk − uk′||L[0,l] → 0 as k, k′ → ∞, but does not converge

to a Riemann integrable function in this norm. This makes it inconvenient for many

issues in analysis; we prefer to work with a complete space in which any Cauchy

sequence converges. In this context we work with the completion of the space of

Riemann integrable functions on [0, l] under this norm, which turns out to be the

space of Lebesgue integrable functions on [0, l], denoted as L1[0, l]. It was only since

the early 20th century that mathematicians began to appreciate the advantages of

working with function spaces with completeness in integral norms.

It turns out that it’s more convenient to work with L2[0, l] in this context, and

we may also consider Lp[0, l], for ∞ > p ≥ 1, which is the completion of space of

Riemann integrable functions on [0, l] under the norm

||u||Lp[0,l] = (

∫ l

0

|u(x)|p dx)1/p.

A norm on a linear space X is a function ‖ · ‖ : X 7→ R≥0 such that

(i) ‖u‖ ≥ 0 for any u ∈ X, with = only when u = 0,

(ii) ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for any u, v ∈ X, and

(iii) ‖cu‖ = |c|‖u‖ for any scalar c and any u ∈ X.

The only non-trivial verification of these properties for ||u||Lp[0,l] is (ii):

||u+ v||Lp[0,l] ≤ ||u||Lp[0,l] + ||v||Lp[0,l] whenever ||u||Lp[0,l], ||v||Lp[0,l] <∞.

This is simple for p = 1. The p = 2 case is a consequence of the Cauchy-Schwarz

inequality, and the 1 < p <∞ case is called the Minkowski inequality. Guided proofs

will be provided in the exercises.
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2.1. FOURIER SERIES SOLUTION OF THE HEAT EQUATION

L∞[0, l] is an analogue for the space of bounded integrable functions, but its proper

definition needs more background on Lebesgue measure. We almost always deal with

solutions that are continuous (or at least piecewise continuous) and bounded, and

can use the sup norm, sup{|u(x)| : 0 ≤ x ≤ l}, instead of the more technical L∞[0, l]

norm in our contexts.

Three commonly used notions of convergence of sequences/series of functions oc-

curring in the PDE context are: point-wise convergence, uniform convergence,

and mean square convergence. In our context, we need to verify that

(a). The series u(x, t) =
∑∞

n=1 cne
−(nπ

l
)2t sin(nπx

l
) defines a C2 function at least for

(x, t) ∈ (0, l)× (0,∞) and is in C([0, l]× [0,∞));

(b). It satisfies the equation in (0, l)×(0,∞) and the boundary condition over {0, l}×
(0,∞); and

(c). It satisfies the initial condition in appropriate sense.

Uniform convergence is the most commonly used condition to verify these; but a

necessary condition of the uniform convergence of the series here over [0, l]× [0,∞),

at least over [0, l]× [0, T ] for any finite T > 0, is that g ∈ C[0, l] and g(0) = g(l) = 0.

This restriction is sometimes considered too restrictive.

A commonly used alternative is that we demand that u(x, t) → u(x, 0) = g(x)

in the mean square sense, namely, ||u(x, t) − g(x)||L2[0,l] → 0 as t ↘ 0, or that

u(x′, t)→ g(x) as x′ → x and t↘ 0 only for 0 < x < l. Note that the latter amounts

to
∑∞

n=1 cne
−(nπ

l
)2t sin(nπx

′

l
) → g(x) as x′ → x and t ↘ 0, which is different from

the usual point-wise convergence of the Fourier series:
∑N

n=1 cn sin(nπx
l

) → g(x) as

N →∞.

Nonetheless, we first review the notion of convergence of the series
∑∞

n=1 cn sin(nπx
l

)

to g(x). It can be either in the sense of point-wise convergence and answered via a

reduction to the convergence of a classical full Fourier series, or in the mean square

sense, treating {sin
(
nπx
l

)
}∞n=1, as a complete set of orthogonal eigenfunctions

for the boundary value problem (1.23). We will study the latter point of approach

later on.

Since students are often more familiar with the convergence of a full Fourier series,

we first reduce the convergence of the series
∑∞

n=1 cn sin(nπx
l

) to that of a full Fourier

series.

If
∑∞

n=1 cn sin(nπx
l

) converges for 0 < x < l, then it would also converge for

−l < x < 0, in fact, for all x ∈ R, and the limit function would define an odd,
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period 2l function on R. Taking this as a clue, for a given function g(x) defined on

0 < x < l, we first construct an odd extension godd of g to (−l, l), and then construct

the full Fourier series expansion of godd over (−l, l), which would have the 2l-periodic

extension of godd as its limit in the appropriate sense:

godd(x) ∼ a0 +
∞∑
n=1

[
an cos

(nπx
l

)
+ bn sin

(nπx
l

)]
, x ∈ (−l, l).

Here one uses that the functions in the family {1, cos
(
nπx
l

)
, sin

(
nπx
l

)
: n ∈ N} are

mutually orthogonal to each other on (−l, l), and∫ l

−l
cos2

(nπx
l

)
dx =

∫ l

−l
sin2

(nπx
l

)
dx = l for n ∈ N,

to obtain

a0 =
1

2l

∫ l

−l
godd(x) dx,

an =
1

l

∫ l

−l
godd(x) cos

(nπx
l

)
dx,

bn =
1

l

∫ l

−l
godd(x) sin

(nπx
l

)
dx.

One notes that an = 0 for n = 0, 1, · · · , due to the oddness of godd, and bn’s are

determined through as

bn =
2

l

∫ l

0

g(x) sin
(nπx

l

)
dx.

Thus bn = cn, and

godd(x) ∼
∞∑
n=1

cn sin
(nπx

l

)
, x ∈ (−l, l).

In particular,

g(x) = godd(x) ∼
∞∑
n=1

cn sin
(nπx

l

)
, x ∈ (0, l).

Thus we will treat the convergence of
∑∞

n=1 cn sin
(
nπx
l

)
to g(x) as a special case of

the convergence of a full Fourier series.

2.2 A Brief Review of Fourier Series

We summarize below a few key facts on the classical Fourier series that are used

often. Computations using complex exponentials are often easier than using the
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2.2. A BRIEF REVIEW OF FOURIER SERIES

classical trigonometric functions, so we will introduce Fourier series in terms of the

complex exponentials.

Suppose now that g(x) is (Riemann or Lebesgue) integrable over (−l, l). Using

the relations

sin
(nπx

l

)
=
e
inπx
l − e− inπxl

2i
, cos

(nπx
l

)
=
e
inπx
l + e−

inπx
l

2
,

the partial sum a0 +
∑N

n=1

[
an cos

(
nπx
l

)
+ bn sin

(
nπx
l

)]
can also be written as

a0 +
N∑
n=1

[
an
e
inπx
l + e

−inπx
l

2
+ bn

e
inπx
l − e− inπxl

2i

]

=a0 +
N∑
n=1

[
an − bni

2
e
inπx
l +

an + bni

2
e−

inπx
l

]

=
N∑

n=−N

gne
inπx
l ,

where

gn =


an−bni

2
if n ∈ N,

a0 = 1
2l

∫ l
−l g(x) dx if n = 0,

a|n|+b|n|i

2
if −n ∈ N.

Since

an − bni
2

=
1

2l

∫ l

−l
g(x)

[
cos
(nπx

l

)
− i sin

(nπx
l

)]
dx =

1

2l

∫ l

−l
g(x)e−

inπx
l dx,

a|n| + b|n|i

2
=

1

2l

∫ l

−l
g(x)

[
cos

(
|n|πx
l

)
+ i sin

(
|n|πx
l

)]
dx =

1

2l

∫ l

−l
g(x)e

i|n|πx
l dx,

we have

gn =
1

2l

∫ l

−l
g(x)e−

inπx
l dx for all n ∈ Z.

The functions in the family {e inπxl }n∈Z are orthogonal to each other over (−l, l) in the

sense that

(e
imπx
l , e

inπx
l ) :=

∫ l

−l
e
imπx
l e

inπx
l dx =

∫ l

−l
e
imπx
l e

−inπx
l dx = 0

for m 6= n in Z—the inner product between complex valued functions f and g should

be defined as
∫ l
−l f(x)g(x) dx. It’s often more convenient to work with Fourier series

in this “basis” than in the traditional basis {1, cos
(
nπx
l

)
, sin

(
nπx
l

)
}n∈N.

65



CHAPTER 2. FOURIER’S METHOD

Theorem 2.1. For any g integrable over (−l, l), define its Fourier series as above.

Then

(i). gn → 0 as n→∞ (Riemann-Lebesgue Lemma).

(ii). If g(x) ∈ L2[−l, l], then
∑∞

n=−∞ gne
inπx
l converges to g in the sense of L2[−l, l],

namely ∥∥∥∥∥
N∑

n=−N

gne
inπx
l − g(x)

∥∥∥∥∥
L2[−l,l]

→ 0 as N →∞.

In addition,
∫ l
−l |g(x)|2 dx = 2l

∑∞
n=−∞ |gn|2 (Parseval identity). Using the form

a0 +
∑∞

n=1

[
an cos

(
nπx
l

)
+ bn sin

(
nπx
l

)]
, this relation is expressed as∫ l

−l
|g(x)|2 dx = l

[
2|a0|2 +

∞∑
n=1

(
|an|2 + |bn|2

)]
.

(iii). The point-wise convergence of the Fourier series at some x0 ∈ (−l, l) depends on

the local behavior of g(x) near x0, namely, if g(x) = h(x) in a neighborhood of

x0, then the Fourier series of g(x) converges at x0 if and only if the Fourier se-

ries of h(x) converges at x0. If g(x) is piecewise locally Lipschitz continuous at

x0
∗, then it converges to [g(x0+) + g(x0−)] /2, where g(x0±) := limx→x0± g(x).

(iv). If
∑∞

n=−∞ |gn| <∞, then
∑∞

n=−∞ gne
inπx
l converges absolutely and uniformly to

g(x) over R, therefore defines a continuous 2l-periodic function over R.

(v). If g(x) is continuous over [−l, l] with g(−l) = g(l) and g(x) is piecewise C1

over [−l, l] (this can be replaced by g(x) be absolutely continuous over [−l, l]
with g′(x) ∈ L2[0, l]), then the corresponding {gn} satisfies

∑∞
n=−∞ |gn| < ∞,

therefore the Fourier series converges to g(x) uniformly for x ∈ [−l, l].

Remark 2.1. It is known that if g(x) is only continuous over [−l, l], then its Fourier

series may not converge to g(x) point-wise. However, if g(x) is continuous over [−l, l]
with g(−l) = g(l), then one can construct trigonometric polynomials pN(x) of the

form
∑N

n=−N cN,ne
inπx
l such that pN(x)→ g(x) uniformly over [−l, l] as N →∞. One

simple construction was due to Fejér, where one takes cN,n =
(

1− |n|
N

)
gn so that

N∑
n=−N

cN,ne
inπx
l = N−1

N−1∑
n=0

(
n∑
−n

gke
ikπx
l

)
∗this means that the limits limx→x0±0 g(x) = g(x0 ± 0) exist, and there exist a < x0 < b and

constant L > 0, such that |g(x)−g(x0−)| ≤ L|x−x0| for x ∈ [a, x0), and |g(x)−g(x0+)| ≤ L|x−x0|
for x ∈ (x0, b]. The conclusion here holds under the more general condition that g has bounded

variation.
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is the arithmetic mean of the partial sums of the Fourier series
∑n
−n gke

ikπx
l for n =

0, · · · , N − 1. The main reason for the difference between the behavior of the Fourier

series and the modification due to Fejér is that the partial sums

N∑
n=−N

gne
inπx
l =

∫ l

−l
g(y)

sin
(

(2N + 1)π(x−y)
2l

)
2l sin π(x−y)

2l

dy, (2.2)

and

N−1

N−1∑
n=0

(
n∑
−n

gke
ikπx
l

)
=

∫ l

−l
g(y)

sin2
(

(N + 1)π(x−y)
2l

)
2l(N + 1) sin2 π(x−y)

2l

dy (2.3)

have different behavior in their kernel functions:∫ l

−l

sin2
(

(N + 1)π(x−y)
2l

)
2l(N + 1) sin2 π(x−y)

2l

dy = 1, but

∫ l

−l

∣∣∣∣∣∣
sin
(

(2N + 1)π(x−y)
2l

)
2l sin π(x−y)

2l

∣∣∣∣∣∣ dy →∞ as N →∞.

(2.4)

Remark 2.2. In (v) the everywhere continuity of g(x) in [−l, l] and the condition

g(−l) = g(l) are necessary (these conditions would make the 2l-periodic extension of

the odd extension of g to (−l, l) continuous on R); the conclusion may not hold if

g(x) is only piecewise C1 on [−l, l], but fails to be continuous everywhere or fails the

condition g(−l) = g(l). These conditions are used to derive appropriate decay rate

of gn as n→∞.

A subtle issue when g(x) is only piecewise C1 on [−l, l] is the relation between

the Fourier series of g over (−l, l) and that of g′(x): if g(x) ∼
∑∞

n=−∞ gne
inπx
l , does it

follow that g′(x) ∼
∑∞

n=−∞ gn
(
inπ
l

)
e
inπx
l , namely, by term-wise differentiation? This

holds true if g continuous everywhere over [−l, l] and g(−l) = g(l), for, g′(x) has its

own Fourier series
∑∞

n=−∞ g
′
ne

inπx
l , where

g′n =
1

2l

∫ l

−l
g′(x)e−

inπx
l dx.

When g is continuous everywhere over [−l, l] and g(−l) = g(l), we can carry out

integration by parts as follows and derive

g′n =
1

2l

g(x)e−
inπx
l

∣∣∣∣∣
x=l

x=−l

+
inπ

l

∫ l

−l
g(x)e−

inπx
l dx

 =

(
inπ

l

)
gn.

Note that if either of these two condition fails, then g′n may not be equal to(
inπ
l

)
gn: the jump discontinuities of g would create a δ-function type singularity in
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g′, and the series
∑∞

n=−∞ gn
(
inπ
l

)
e
inπx
l would reflect such singular behavior—it often

does not converge point-wise due to the contribution from the boundary terms above

not decaying in n, so this series does not necessarily represent the Fourier series of

the function which is defined point-wise, except at the points of jump discontinuity,

by g′(x). The simplest such an example is a step function.

When g is continuous everywhere over [−l, l], but fails to satisfy g(−l) = g(l),

its 2l-periodic extension to R would have jump discontinuities at −l, l, and at the

translates of these points by integer multiples of 2l, which also cause the failure of

(v) as a jump discontinuity at an interior point of (−l, l) would do; in such cases the

Fourier series of the point-wise derivative g′ over (−l, l) would not agree with the one

obtained through term-wise differentiation of the Fourier series of g over (−l, l).
On the other hand, term-wise integration of Fourier series holds under very re-

laxed conditions, say, g ∈ L2[−l, l]: if g(x) ∼
∑∞

n=−∞ gne
inπx
l , then for any a < b,∫ b

a
g(x) dx =

∑∞
n=−∞ gn

∫ b
a
e
inπx
l dx.

In the context of Fourier series construction for a solution of IBVP, the conditions

in (v) translate into u(x, 0) being continuous over [0, l], u(0, 0) = u(l, 0) = 0 (so that

its odd extension satisfies the conditions specified in (v)), and u(x, 0) being piecewise

C1 over [0, l]. Note that in such a situation, the convergence of
∑∞

n=−∞ |cn| also

implies the uniform convergence of
∑∞

n=1 cne
−(nπ

l
)2t sin(nπy

l
) → g(x) as y → x and

t↘ 0.

This is seen by using a divide and conquer strategy. We first split
∑∞

n=1 cne
−(nπ

l
)2t sin(nπy

l
)

as
∑N

n=1 +
∑∞

n=N+1, and for any ε > 0, we know that for all sufficiently large N ,∣∣∣∣∣
∞∑

n=N+1

cne
−(nπ

l
)2t sin(

nπy

l
)

∣∣∣∣∣ ≤
∞∑

n=N+1

|cn| < ε/3;

we can further guarantee, under our assumption on g, that for all sufficiently large

N , ∣∣∣∣∣
N∑
n=1

cn sin(
nπx

l
)− g(x)

∣∣∣∣∣ < ε/3;

and finally using∣∣∣∣∣
∞∑
n=1

cne
−(nπ

l
)2t sin(

nπy

l
)− g(x)

∣∣∣∣∣
≤

∣∣∣∣∣
N∑
n=1

cn

[
e−(nπ

l
)2t sin(

nπy

l
)− sin(

nπx

l
)
]∣∣∣∣∣

+

∣∣∣∣∣
∞∑

n=N+1

cne
−(nπ

l
)2t sin(

nπy

l
)

∣∣∣∣∣+

∣∣∣∣∣
N∑
n=1

cn sin(
nπx

l
)− g(x)

∣∣∣∣∣ ,
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we see that we find some δ > 0 such that, whenever |y − x| < δ and 0 < t < δ, we

have ∣∣∣∣∣
N∑
n=1

cn

[
e−(nπ

l
)2t sin(

nπy

l
)− sin(

nπx

l
)
]∣∣∣∣∣ < ε/3.

The family
{

sin
(
nπx
l

)}∞
n=1

arises as a complete set of orthogonal eigenfunctions for

(1.23). In fact, statements analogous to (i)–(ii) hold for expansions in a complete set

of orthogonal eigenfunctions for many boundary value problems similar to (1.23)—

they are called Sturm-Liouville (eigenvalue) problems (first studied in the mid-

1830’s). Fourier cosine series in
{

cos
(
nπx
l

)}∞
n=0

is another such example— they arise

as a complete set of orthogonal eigenfunctions for a boundary value problem similar

to (1.23), replacing the boundary conditions X(0) = X(l) = 0 there by X ′(0) =

X ′(l) = 0. We will say more about the Sturm-Liouville problems later on, noting

in particular their similarities with the eigenvalue problems for real symmetric (or

complex Hermitian) matrices.

When u ∈ L2[0, l], we write u(x) =
∑∞

n=1 cn sin
(
nπx
l

)
, where the equality is in-

terpreted as equality in L2[0, l] by (ii) above, not necessarily in the point-wise sense.

When we do not necessarily know or care whether the equality holds in a specific

sense, we may simply write u(x) ∼
∑∞

n=1 cn sin
(
nπx
l

)
.

Remark 2.3. It’s often easier to derive properties of a series with direct knowledge

of its coefficients—usually a fast enough decay condition would help, such as the

one in (iv) of the theorem above; one then needs to study conditions on the original

function which would guarantee that the coefficients of its series expansion has the

desired decay rate ((v) is such an example). This approach is usually good for getting

first results; it usually imposes unnecessarily strong conditions than needed on the

original function for answering questions about solutions to our PDE problems.

One sufficient condition to establish the continuous differentiability of a function

u(x) via its Fourier coefficients cn is the condition that
∑∞

n=1 n|cn| < ∞: under this

condition, we would have that
∑∞

n=0 cn sin
(
nπx
l

)
converges to u(x) uniformly, and[

∞∑
n=1

cn sin
(nπx

l

)]′
=
∞∑
n=1

ncnπ

l
cos
(nπx

l

)
for x ∈ [0, l]. (2.5)

See Lemma A.1 in the Appendix.

It follows from this discussion that, for any g ∈ L2[0, l],
∑∞

n=1 cne
−(nπ

l
)2t sin(nπx

l
)

is continuously differentiable in x for t > 0, for
∑∞

n=1 n|cn|e−(nπ
l

)2t < ∞ for t > 0 by
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the Cauchy-Schwarz∗ inequality

∞∑
n=1

n|cn|e−(nπ
l

)2t

≤

(
∞∑
n=1

c2
n

)1/2( ∞∑
n=1

n2e−2(nπ
l

)2t

)1/2

<∞

and the Parseval relation
∑∞

n=1 c
2
n = 2

π

∫ π
0
g2(x) dx < ∞. A similar discussion shows

that
∑∞

n=1 cne
−(nπ

l
)2t sin(nπx

l
) is infinitely continuously differentiable in x and t for

t > 0. We will provide more details in the next section.

Exercises

Exercise 2.2.1. Using the property that if ||SN(x) − g(x)||L2[0,l] → 0 as N → ∞,

then for any h ∈ L2[0, l], there holds
∫ l

0
SN(x)h(x) dx→

∫ l
0
g(x)h(x) dx to prove that

if
∑N

n=1 cn sin(nπx
l

)→ g(x) in L2[0, l], then

cn =
2

l

∫ l

0

g(x) sin(
nπx

l
) dx.

Exercise 2.2.2. Compute the Fourier sine expansion
∑∞

n=1 cn sin(nx) of u(x) = x

over [0, π], and study the convergence of
∑∞

n=1 |cn|. Does the term-wise differentiation

of
∑∞

n=1 cn sin(nx) give the Fourier cosine expansion of u′(x) = 1 for 0 < x < π?

Exercise 2.2.3. Verify (2.2), (2.3) and (2.4).

Exercise 2.2.4. For 1 < p < ∞, let p′ be defined by the relation 1
p

+ 1
p′

= 1. One

way the convexity of the function u 7→ |u|p manifests itself is the following inequality

For any u, v, |uv| ≤ |u|
p

p
+
|v|p′

p′
. (2.6)

Prove this inequality.

Exercise 2.2.5. Assume that
∑∞

n=1 |An|p = 1 and
∑∞

n=1 |Bn|p
′

= 1. Use (2.6) to

show that
∑∞

n=1 |AnBn| ≤ 1. Then assume
∑∞

n=1 |an|p < ∞ and
∑∞

n=1 |bn|p
′
<

∞, and prove that
∑∞

n=1 |anbn| ≤ (
∑∞

n=1 |an|p)
1/p (∑∞

n=1 |bn|p
′)1/p′

. Note that the

p = 2 case is the discrete version of the Cauchy-Schwarz inequality
∑∞

n=1 |anbn| ≤
(
∑∞

n=1 |an|2)
1/2

(
∑∞

n=1 |bn|2)
1/2

. (Hint: Set An = an/ (
∑∞

n=1 |an|p)
1/p

and Bn =

bn/
(∑∞

n=1 |bn|p
′)1/p′

.)

∗We are using here the discrete version
∑∞
n=1 |anbn| ≤

(∑∞
n=1 |an|2

)1/2 (∑∞
n=1 |bn|2

)1/2
.
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Exercise 2.2.6. Assume that
∫ l

0
|F (x)|p dx = 1 and

∫ l
0
|G(x)|p′ dx = 1. Show that∫ l

0
|F (x)G(x)| dx ≤ 1. Then assume that ||f ||p :=

(∫ l
0
|f(x)|p dx

)1p

<∞ and ||g||p′ :=(∫ l
0
|g(x)|p′ dx

)1p′

< ∞ and show that
∫ l

0
|f(x)g(x)| dx ≤ ||f ||p||g||p′ . This is called

Hölder’s inequality.

Exercise 2.2.7. Assume that ||u||L2[0,l], ||v||L2[0,l] <∞, and show that ||u+v||L2[0,l] ≤
||u||L2[0,l] + ||v||L2[0,l]. (Hint: Expand out ||u+v||2L2[0,l] and apply the Cauchy-Schwarz

inequality.)

Exercise 2.2.8. Assume that ||u||Lp[0,l], ||v||Lp[0,l] <∞, and show that ||u+v||Lp[0,l] ≤
||u||Lp[0,l]+||v||Lp[0,l]. (Hint: Use ||u+v||pLp[0,l] ≤

∫ l
0
|u(x)+v(x)|p−1|u(x)| dx+

∫ l
0
|u(x)+

v(x)|p−1|v(x)| dx and apply the Hölder inequality to each integral on the right.)

Exercise 2.2.9. Assume
∫ l

0
||u(·, y)||Lp[0,l] dy :=

∫ l
0

(∫ l
0
|u(x, y)|p dx

)1/p

dy <∞. Prove

the integral version of the Minkowski inequality (the Lp norm of the average/integral

is less than or equal to the average/integral of the Lp norm):

||
∫ l

0

|u(x, y)| dy||Lp[0,l] ≤
∫ l

0

||u(·, y)||Lp[0,l] dy.

(Hint: Write

||
∫ l

0

|u(x, y)| dy||pLp[0,l] =

∫ l

0

∣∣∣∣∫ l

0

|u(x, y)| dy
∣∣∣∣p−1 ∫ l

0

|u(x, z)| dz dx

=

∫ l

0

(∫ l

0

[∣∣∣∣∫ l

0

|u(x, y)| dy
∣∣∣∣p−1 ∫ l

0

|u(x, z)|

]
dx

)
dz,

and apply Hölder’s inequality to
∫ l

0

[∣∣∣∫ l0 |u(x, y)| dy
∣∣∣p−1 ∫ l

0
|u(x, z)|

]
dx.)

2.3 Fourier Series Solution of the One Dimensional

Initial-Boundary Value Problem for the Heat

Equation

We now apply our knowledge of Fourier series to obtain a solution of our IBVP (2.1).

Theorem 2.2. For any g ∈ L2[0, l], there is a unique solution u ∈ C∞([0, l]×(0,∞))∩
C([0,∞), L2[0, l]) to (2.1). Here u ∈ C([0,∞), L2[0, l]) means u(·, t) is continuous as

an element of L2[0, l], namely, ||u(·, t)− u(·, s)||L2[0,l] → 0 as t→ s.
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Furthermore, if g(x) is continuous over [0, l] with g(0) = g(l) = 0 and g′(x) ∈
L2[0, l], then the solution u(x, t) ∈ C([0, l]× [0,∞)).

Remark 2.4. The reason we choose to work with solution in the space C([0,∞), L2[0, l])

is partly influenced by the energy estimates as in Corollary 1.2, which make L2[0, l]) a

natural space in which to consider solutions. As the statement of the above theorem

(and its proof below) shows, construction of a solution in C([0,∞), L2[0, l]) only re-

quires the initial data g ∈ L2[0, l], while construction of a solution in C([0, l]× [0,∞))

would require some additional conditions on g. The condition g′(x) ∈ L2[0, l] can be

removed using the maximum principle to be developed later on.

Proof. The uniqueness in the class of solutions that are C2([0, l]× (0,∞))∩C([0, l]×
[0,∞)) was addressed by the energy method in Corollary 1.2. The same proof works in

the class C2,1
x,t ([0, l]×(0,∞))∩C([0,∞), L2[0, l]). More advanced theory will show that

any solution of (2.1) in the class C2,1
x,t ((0, l)×(0,∞))∩C([0, l]×[0,∞)) is automatically

in C∞([0, l] × (0,∞)) ∩ C([0,∞), L2[0, l]). Therefore uniqueness holds in the class

C2,1
x,t ((0, l)× (0,∞))∩C([0, l]× [0,∞)). We will also prove the uniqueness in this class

directly using the maximum principle in later sections.

For the existence and regularity part, we simply take cn to be the Fourier coeffi-

cients of g, and construct

u(x, t) =
∞∑
n=1

cn sin
(nπx

l

)
e−(nπl )

2
t.

The proof for u ∈ C∞([0, l]× (0,∞)) relies on a standard property taught in advance

calculus, see Lemma A.1 in the Appendix. Below is a sketch of the argument.

To prove u ∈ C∞([0, l] × (0,∞)), it suffices to prove that for any τ > 0, u ∈
C∞([0, l]× [τ,∞)). We take an(x, t) = cn sin

(
nπx
l

)
e−(nπl )

2
t on [0, l]× [τ,∞).

∞∑
n=1

|∂xan(x, t)| =
∞∑
n=1

∣∣∣nπcn
l

cos
(nπx

l

)
e−(nπl )

2
t
∣∣∣ ≤ π

l

∞∑
n=1

∣∣∣ncne−(nπl )
2
τ
∣∣∣ ,

for t ≥ τ , and the series on the R.H.S converges, using
∑∞

n=1 |cn|2 < ∞ and the

exponentially fast decay of e−(nπl )
2
τ in n:

∞∑
n=1

∣∣∣ncne−(nπl )
2
τ
∣∣∣ ≤ ( ∞∑

n=1

|cn|2
) 1

2
(
∞∑
n=1

n2e−2(nπl )
2
τ

) 1
2

<∞.

So
∑∞

n=1
nπcn
l

cos
(
nπx
l

)
e−(nπl )

2
t converges uniformly over (x, t) ∈ [0, l]×[τ,∞), and by

the Lemma A.1,
∑∞

n=1 cn sin
(
nπx
l

)
e−(nπl )

2
t is continuously differentiable in x for (x, t)
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over [0, l]× [τ,∞). A similar argument shows that it is continuously differentiable in t

for (x, t) over [0, l]× [τ,∞). Then an induction argument, using the exponentially fast

decay of e−(nπl )
2
τ in n shows that

∑∞
n=1 cn sin

(
nπx
l

)
e−(nπl )

2
t is infinitely continuously

differentiable in both x and t for (x, t) over [0, l] × [τ,∞). Since τ > 0 is arbitrary,

we conclude that u ∈ C∞([0, l]× (0,∞)).

Then, the remaining issue is the continuity of u(·, t) in L2[0, l], which follows as a

consequence of the Parseval identity for the Fourier coefficients: for any t, t′ ≥ 0,

||u(·, t)− u(·, t′)||2L2[0,l] =
2

l

∞∑
n=1

c2
n

∣∣∣e−(nπl )
2
t − e−(nπl )

2
t′
∣∣∣2 .

Now for any given ε > 0, we can find N such that
∑∞

n=N+1 c
2
n <

ε
8
, which then leads

to
∞∑

n=N+1

c2
n

∣∣∣e−(nπl )
2
t − e−(nπl )

2
t′
∣∣∣2 ≤ 4

∞∑
n=N+1

c2
n ≤

ε

2
for t, t′ ≥ 0;

on the other hand, there exists δ > 0 such that, when |t− t′| < δ,

N∑
n=1

c2
n

∣∣∣e−(nπl )
2
t − e−(nπl )

2
t′
∣∣∣2 ≤ ε

2
,

which proves that u(·, t) is (uniformly) continuous in L2[0, l]. (Those familiar with

Lebesgue’s integral should recognize a proof using Lebesgue’s Dominated Convergence

Theorem.)

When g satisfies that g(x) is continuous over [0, l] with g(0) = g(l) = 0 and

g′(x) ∈ L2[0, l],

cn =
2

l

∫ l

0

g(x) sin
(nπx

l

)
dx =

2

nπ

∫ l

0

g′(x) cos
(nπx

l

)
dx.

The Fourier coefficients of g′(x) is l2- summable by Parseval relation. So by the

Cauchy-Schwarz inequality

∞∑
n=1

|cn| ≤
2

π

(
∞∑
n=1

1

n2

)1/2( ∞∑
n=1

[∫ l

0

g′(x) cos
(nπx

l

)
dx

]2
)1/2

<∞.

Therefore,
∑∞

n=1 cn sin
(
nπx
l

)
e−(nπl )

2
t converges to u(x, t) uniformly over (x, t) ∈ [0, l]×

[0,∞), and u(x, t) is continuous there. A deeper analysis using the heat kernel or

other tools—to be introduced later—can give the same result but remove the condi-

tion that g′(x) ∈ L2[0, l].
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Note that the solution u(x, t) constructed above decays in t exponentially, and the

rate of exponential decay is determined by the first term e−(πl )
2
t (when c1 6= 0), as

u(x, t) = e−(πl )
2
t

{
c1 sin

(πx
l

)
+
∞∑
n=2

cn sin
(nπx

l

)
e−

(n2−1)π2

l2
t

}
.

and
∑∞

n=2 cn sin
(
nπx
l

)
e−

(n2−1)π2

l2
t decays exponentially in t, and can be considered as

a perturbation of c1 sin
(
πx
l

)
.

Note also that, unless further assumptions on g as given in the second part of

the above Theorem are made, the solution u(x, t) may not be continuous at (0, 0)

and (l, 0). At issue here is the compatibility of the given initial and boundary data

at these two corner points: the boundary conditions u(0, t) = u(l, t) = 0 for t > 0

dictates that u(0, 0) = u(l, 0) = 0, if u is continuous on the closure of the region, it

would require g(0) = u(0, 0) = 0, and g(l) = u(l, 0) = 0; but the conclusions in the

first paragraph of the above theorem does not require any such assumption.

Remark 2.5. The assumption that g′ ∈ L2[0, l] in the second part of the above The-

orem can be removed, i.e., the second part of the above Theorem can be established

under only the condition that g ∈ C[0, l] and g(0) = g(l) = 0. Recall that for any

point x0 ∈ [0, l], there exists a continuous function g on [0, l] whose Fourier (sine)

series
∑∞

n=1 cn sin(nπx0

l
) does not converge to g(x0). We will prove later that even

though the Fourier (sine) series
∑∞

n=1 cn sin(nπx
l

) of g may not converge point wise to

g(x) for x ∈ [0, l],
∑∞

n=1 cn sin
(
nπx
l

)
e−(nπl )

2
t ∈ C([0, l]×[0,∞)), and→ g(z) = u(z, 0),

as (x, t)→ (z, 0) with t > 0, as long as g ∈ C[0, l] and g(0) = g(l) = 0.

One ingredient is to examine the convergence of a sequence of solutions u(N)(x, t) =∑N
n=1 c

N(n) sin(nπx
l

)e−(nπ
l

)2t, where cN(n) are chosen such that
∑N

n=1 c
N(n) sin(nπx

l
)→

g(x) (uniformly) as N →∞ (Look up Fejér Theorem). Other ingredients include the

Maximum Principle and gradient estimates for solutions to (2.1).

A general theme in our course is to understand the question: if an IBVP or

IVP has solutions for a sequence of data which is converging in an appro-

priate norm, would it imply that the sequence of solutions converge in an

appropriate norm, or at least a subsequence would converge?

Answers to such questions often amount to getting estimates of solutions in terms

of data in appropriate norms. In the context of (2.1), if we are interested in estab-

lishing solvability of (2.1) for initial data in X = {g ∈ C[0, l] : g(0) = g(l) = 0}, the

following three components would suffice:

(a). Establish solvability for a dense set of data in X;
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(b). Prove that for any T > 0, there exists C > 0, which may depend on T , such

that for any solution u(x, t) to (1.9) (with u(·, 0) ∈ X)), we have

max{|u(x, t)| : (x, t) ∈ [0, l]× [0, T ]} ≤ C max{|u(x, 0)| : x ∈ [0, l]}. (2.7)

(c). Prove that for any T > τ > 0, there exists C ′ > 0, which may depend on T and

τ , such that for any solution u(x, t) to (2.1), we have

max{|u(x, t)|, |ut(x, t)|, |ux(x, t)|, |uxx(x, t)| : (x, t) ∈ [0, l]× [τ, T ]}
≤C ′max{|u(x, 0)| : x ∈ [0, l]}.

(2.8)

For, then, if given g ∈ X, we can find a sequence of solutions uk(x, t) of (2.1), with

uk(x, 0) ∈ X and uk(x, 0)→ g (uniformly) in X , and if we apply (2.7) to uk(x, t)−
ul(x, t), we would conclude that {uk(x, t)} is a Cauchy sequence in C([0, l] × [0, T ]),

therefore converges to a function u in C([0, l] × [0, T ]); furthermore, (2.8) applied

to uk(x, t) − ul(x, t) would imply that, on any subregion [0, l] × [τ, T ], {ut(x, t)},
{ux(x, t)}, and {uxx(x, t)} are also Cauchy in C([0, l] × [τ, T ]), therefore each has

a limit in this space; this then implies that the limit u(x, t) ∈ C2,1
x,t ([0, l] × [τ, T ]);

and, since 0 < τ < T is arbitrary, we conclude that u is a solution of (2.1) in

C2,1
x,t ([0, l]× (0, T ]) ∩ C([0, l]× [0, T ]), with u(x, 0) = g(x).

We may not need to put in the restrictions on T or τ for the estimates in other

context. In fact, we could allow T = ∞ in this context; but the restriction on

[0, l] × [τ, T ] is needed for (2.8) in this context, as the right hand side of (2.8) is in

terms of max{|u(x, 0)| : x ∈ [0, l]}, and there is no way that we can control derivatives

of u(x, t) in [0, l]× [0, T ] directly in terms of max{|u(x, 0)| : x ∈ [0, l]}.
It actually suffices to establish (2.7) and (2.8) for the set of solutions which

correspond to data in the dense subset referred to in (a) (Think through this!).

Thus it suffices to establish (2.7) and (2.8) for all finite series solutions u(x, t) =∑N
n=1 cn sin

(
nπx
l

)
e−(nπl )

2
t. (2.7) will be established later by the Maximum Principle,

in fact with C = 1.

Finally, we show how to establish one of the estimates in (2.8) for solutions repre-

sented in finite series (the argument actually works for solutions in infinite series)—

our discussion above already shows the usefulness of (a)–(c); we are de-

riving them here using explicit representation for these sample solutions,

but will develop methods to derive such estimates even when no explicit

representation of solutions is readily available.
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We will estimate max{|ut(x, t)| : (x, t) ∈ [0, l]× [τ, T ]} in terms of max{|u(x, 0)| :
x ∈ [0, l]}. For τ ≤ t ≤ T ,

|ut(x, t)| ≤
(π
l

)2
∞∑
n=1

|cn|n2e−(nπl )
2
τ

≤
(π
l

)2
(
∞∑
n=1

|cn|2
)1/2( ∞∑

n=1

n4e−(nπl )
2
2τ

)1/2

=C ′||u(·, 0)||L2[0,l]

≤C ′
√
lmax{|u(x, 0)| : x ∈ [0, l]},

where C ′ =
(
π
l

)2
(∑∞

n=1 n
4e−(nπl )

2
2τ
)1/2

. One can see that this C ′ tends to ∞ if we

allow τ → 0.

Question: Can the method be adapted to solutions of the modified equation such

as ut − uxx + bux + cu = 0 to draw the same or similar conclusions? Which parts of

the argument can be adapted to construct a solution of a higher dimensional problem

such as the following?
∂2
t u(x, t)− c2∆u(x, t) = 0, x ∈ D, t > 0,

u(x, t) = 0, x ∈ ∂D, t > 0,

u(x, 0) = g(x), x ∈ D.

What additional information is needed to implement this approach? Try out the case

when D is a simple domain such as a square or a round disc in R2.

Exercises

Exercise 2.3.1. Suppose u solves ut − uxx = 4u on the interval (0, π), with the

homogeneous Neumann condition ux(x, t) = 0 at x = 0, π. Characterize the initial

data u0(x) = u(x, 0) for which u(x, t) stays bounded as t → ∞; then characterize

limt→∞ u(x, t) for such solutions.

Exercise 2.3.2. Prove that for any g ∈ L2[0, l] there is a solution u ∈ C∞([0, l] ×
(0,∞))∩C([0,∞), L2[0, l]) to the homogeneous heat equation ut(x, t)− uxx(x, t) = 0

over (0, l)× (0,∞) satisfying the Neumann boundary condition ux(0, t) = ux(l, t) = 0

for all t > 0, and the initial data u(x, 0) = g(x) in the L2 sense. If, furthermore, g(x)

is differentiable over [0, l] and g′(x) ∈ L2[0, l], then u ∈ C([0, l] × [0,∞)). (However,

ux(x, t) may not be continuous over [0, l] × [0,∞)); formulate a sufficient condition

which would guarantee that ux(x, t) is continuous over [0, l]× [0,∞).)
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Exercise 2.3.3. This exercise considers the regularity behavior near t = 0 of the

solution

u(x, t) =
∞∑
n=1

cne
−n2t sin(nx) (2.9)

to (2.1) with l = π, cn = 2
π

∫ π
0
g(x) sin(nx) dx. Recall that the function u(x, t) defined

by (2.9) is C∞ in (x, t) ∈ [0, π]× (0,∞).

(i). Assume now that g(x) has bounded derivative, with |g′(x)| ≤ M for some

constant M . Assume further that g satisfies the boundary condition, i.e. g(0) =

g(π) = 0.

(a). Prove that
∑∞

n=1 |cn| <∞.

(b). Show that as t decreases to 0, the function u(x, t) defined by (2.9) converges

uniformly to g(x).

(ii). Suppose now that, in addition to the assumptions in (i), g(x) has three bounded

derivatives (|g′′′(x)| ≤M), and g′′(0) = g′′(π) = 0.

(a). Show that as t decreases to 0, uxx(x, t) converges uniformly to g′′(x).

(b). If g is smooth in [0, π] but g′′(0) 6= 0 or g′′(π) 6= 0, is it possible that the

conclusion of part (a) still holds?

(iii). The solution formula (2.9) makes sense even when g doesn’t vanish at the end-

points; assume below that g(x) ≡ 1 over (0, π).

(a). Does u(x, t) satisfy the boundary conditions u(0, t) = u(π, t) = 0 for t > 0?

(b). Discuss the sense in which u(x, t) approaches g as t↘ 0 in this case.

(c). Verify that t 7→
∫ π

0
|ux(x, t)|2 dx → ∞ as t ↘ 0, even though g′(x) = 0

over (0, π).

(iv). Verify that, for any g ∈ L2[0, l], the corresponding solution u(x, t) satisfies that

t 7→
∫ π

0
|u(x, t)|2 dx is in C[0,∞), and that t 7→

∫ π
0
|ux(x, t)|2 dx is in L1[0,∞);

in fact, ∫ ∞
0

∫ π

0

|ux(x, t)|2 dxdt ≤
∫ π

0

|g(x)|2 dx.

Exercise 2.3.4. Does the separation of variables method, as presented, work in

constructing solutions to the following IBVP?
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
ut(x, t)− uxx(x, t) + bux(x, t) = 0, 0 < x < π,

u(0, t) = u(π, t) = 0,

u(x, 0) = g(x), 0 < x < π,

where b is some non-zero constant. Hint: If you are having some difficulty directly

adapting the separation of variables method to this setting, you may need to consider

a change of variables of the form v(x, t) = eδxu(x, t) to obtain a problem for v(x, t)

to which the separation of variables method applies readily.

2.4 Fourier’s Method Applied to a Cauchy Prob-

lem of the One Dimensional Wave Equation

We now apply Fourier’s method to find solutions to
utt − c2uxx = 0, in R× [0,∞),

u(x, 0) = g(x),

ut(x, 0) = h(x).

(2.10)

We first look for solutions to the first equation in (2.10) of the form eixξT (t). This

leads to T ′′(t) + c2|ξ|2T (t) = 0. So T (t) = A cos(cξt) + B sin(cξt) for some constants

A and B. It is often more convenient to use the solutions in their complex form

T (t) = Aeicξt +Be−icξt. Thus for each parameter ξ, we have the solution[
Aeicξt +Be−icξt

]
eixξ = Aeiξ(x+ct) +Beiξ(x−ct).

Aeiξ(x+ct) represents a traveling wave which remains a constant along each line x+ct =

a constant, and its form remains unchanged, moving to the left at a speed of c; while

Beiξ(x−ct) represents a traveling wave which remains a constant along each line x−ct =

a constant, and its form remains unchanged, moving to the right at a speed of c. This

structure remains when we superpose such solutions:∫ [
A(ξ)eiξ(x+ct) +B(ξ)eiξ(x−ct)

]
dξ =

∫
A(ξ)eiξ(x+ct)dξ +

∫
B(ξ)eiξ(x−ct)dξ.

Denote the first term as G(x + ct) and the second term as H(x− ct). We are led to

solutions of the form G(x + ct) + H(x− ct). It is now routine to check that for any

G,H ∈ C2(R), both G(x + ct) and H(x − ct) are solutions to the first equation in

(2.10), thus so is G(x+ ct) +H(x− ct).
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We abandon (for now) our initial attempt to construct solutions to (2.10) by

superposing eiξ(x±ct), but explore whether we can choose G and H so that u(x, t) =

G(x+ ct) +H(x− ct) satisfies the initial conditions in (2.10). We need{
G(x) +H(x) = g(x),

cG′(x)− cH ′(x) = h(x).

From the second equation, we find G(x)−H(x) = c−1
∫ x

0
h(ξ)dξ+d for some constant

d. Combining with the first equation, we find
G(x) =

g(x) + d

2
+

1

2c

∫ x

0

h(ξ)dξ,

H(x) =
g(x)− d

2
− 1

2c

∫ x

0

h(ξ)dξ.

Thus

u(x, t) = G(x+ ct) +H(x− ct)

=
g(x+ ct) + d

2
+

1

2c

∫ x+ct

0

h(ξ)dξ +
g(x− ct)− d

2
− 1

2c

∫ x−ct

0

h(ξ)dξ

=
g(x+ ct) + g(x− ct)

2
+

1

2c

∫ x+ct

x−ct
h(y) dy.

This formula is called d’Alembert’s formula (discovered in the mid-1700’s).

Theorem 2.3. For any g ∈ C2(R), and h ∈ C1(R), there is a unique solution

u(x, t) ∈ C2(R× [0,∞)) solving (2.10)

Remark 2.6. (i). The uniqueness is not addressed by the method here, and will

be taken up in the following sections.

(ii). The d’Alembert’s formula exhibits that the solution at (x, t) depends on its

initial data only in the range [x − ct, x + ct], which is called the interval of

dependence of (x, t) on t = 0. Viewed from a different perspective, this means

that signals travel with a finite speed, which in this case is c. Recall that the

solution of the heat equation as provided by (2.18) shows that the value of

u(x, t) is influenced by its initial value at every location, in other words, there

is an infinite speed of propagation for the heat equation.

(iii). The derivation process here showed that the general solution of the homogeneous

one dimensional wave equation is G(x− ct) +H(x+ ct) for some C2 functions

G and H. This exhibits the wave character of the solutions. In fact, even if G
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or H are not necessarily C2, but are only continuous, with piecewise continuous

derivatives, G(x−ct)+H(x+ct) should still be regarded as a solution of the wave

equation, although it may not satisfy its differential form (1.10) everywhere. It

still satisfies (1.10) at (x, t) whenever G is C2 at x−ct and H is C2 at x+ct, and

satisfies the integral form (1.11) whenever G′ and H ′ are continuous at (x1, t)

and (x2, t).

In fact, there is another integral formulation of (1.10) which dispenses with any

explicit reference to the derivative of the solution. We will say more about this

at the end of this section.

(iv). For the Cauchy problem to the wave equation in higher dimension, we can

still easily find solutions of the form
[
Aeic|ξ|t +Be−ic|ξ|t

]
eix·ξ, and use them to

construct the general solution of the wave equation, but it is not as elementary to

obtain as simple a representation in terms of the initial data. The phenomenon

of finite speed of propagation is still valid for higher dimensional wave equation,

but it will take additional efforts to show that using the Fourier representation.

For each ξ 6= 0 ∈ Rn, ei(x·ξ±c|ξ|t) remains a constant along the planes x·ξ±c|ξ|t =

a, which are perpendicular to ξ and are moving at a speed of c. These are

called plane wave solutions. One new ingredient in higher dimensions is that we

now have a continuum parameter family of directions in which the plane wave

solutions move.

(v). If (1.10) is modified slightly into utt−c2uxx+αu = 0, then the same approach can

easily give the formal solution
∫
R

[
A(ξ)ei(ξx+

√
c2ξ2+αt) +B(ξ)ei(ξx−

√
c2ξ2+αt)

]
dξ,

but it would take additional effort to find a more explicit representation of

such a solution in terms of the initial data. Note that for each parameter ξ,

ei(ξx±
√
c2ξ2+αt) still represents a finite speed plane wave, but its wave speed,

±
√
c2ξ2 + α/ξ for ξ 6= 0, depends on ξ now.

Question. Is there a difference of behavior between the cases of α > 0 and

α < 0?

Exercises

Exercise 2.4.1. Using separation of variables (or Fourier transforms) to verify that
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a (formal) solution of
utt − c2uxx + αu = 0, in R× [0,∞),

u(x, 0) = g(x),

ut(x, 0) = h(x),

with α ≥ 0, takes the form of

u(x, t) =

∫
R

[
ĝ(ξ) cos(

√
c2ξ2 + αt) + ĥ(ξ)

sin(
√
c2ξ2 + αt)√
c2ξ2 + α

]
eiξxdξ,

where ĝ(ξ) and ĥ(ξ) are the Fourier transforms of g and h, respectively, defined

through g(x) =
∫
R ĝ(ξ)eixξdξ, and h(x) =

∫
R ĥ(ξ)eixξdξ. Note that the property of

finite speed of propagation of solutions to (2.10) (the α = 0 case) can’t be read off

directly from this representation.

2.5 Fourier Series Solution of the One Dimensional

Initial-Boundary Value Problem for the Wave

Equation

When we apply separation of variables method to the one dimensional initial-boundary

value problem for the wave equation

utt − c2uxx = 0, on (x, t) ∈ [0, l]× R+,

u(0, t) = u(l, t) = 0, for t > 0,

u(x, 0) = g(x), for x ∈ [0, l],

ut(x, 0) = h(x), for x ∈ [0, l],

(2.11)

we find that a separable solution of the form X(x)T (t) to the first two equations

leads to the same Sturm-Liouville eigenvalue problem (1.23) for X(x), from which we

know that for each n ∈ N we can take X(x) = sin(nπ
l
x) and the accompanying T (t)

must solve T ′′(t) + ( cnπ
l

)2T (t) = 0. This leads us to separable solutions of the form[
A cos( cnπ

l
t) +B sin( cnπ

l
t)
]

sin(nπ
l
x), which satisfy the first two sets of equations in

(2.11). Thus we can look for solutions to the initial-boundary value problem (2.11)

in the form

u(x, t) =
∞∑
n=1

[
An cos(

cnπ

l
t) +Bn sin(

cnπ

l
t)
]

sin(
nπ

l
x).
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The An, Bn are chosen based on the formal relations

g(x) = u(x, 0) =
∞∑
n=1

An sin(
nπ

l
x),

and

h(x) = ut(x, 0) =
∞∑
n=1

cnπ

l
Bn sin(

nπ

l
x).

Thus

An =
2

l

∫ l

0

sin(
nπ

l
x)g(x) dx,

and
cnπ

l
Bn =

2

l

∫ l

0

sin(
nπ

l
x)h(x) dx.

Unlike the case for the heat equation, where the constructed solution series decays

in n exponentially for t > 0, the series solution for (2.11) does not have exponential

decay in n, unless the initial data g(x) and h(x) make An and Bn decay exponentially

in n, or at least fast enough to make the series converges. The solution does not show

decay in t either. This is consistent with conservation of energy to be discussed later.

The wave character of the solution can be seen by the trigonometric identities:

cos
(cnπ

l
t
)

sin
(nπ
l
x
)

=
1

2

[
sin
(nπ
l

(x− ct)
)

+ sin
(nπ
l

(x+ ct)
)]
,

sin
(cnπ

l
t
)

sin
(nπ
l
x
)

=
1

2

[
cos
(nπ
l

(x− ct)
)
− cos

(nπ
l

(x+ ct)
)]
.

The terms sin
(
nπ
l

(x− ct)
)

and cos
(
nπ
l

(x− ct)
)

represent waves moving to the right

with a speed of c, while the terms sin
(
nπ
l

(x+ ct)
)

and cos
(
nπ
l

(x+ ct)
)

represent

waves moving to the left with a speed of c. The above shows that certain superposition

of two traveling waves gives rise to a standing wave, as a result, the constructed

solution is really the superposition of two traveling waves with velocity ±c.
The following theorem provides some sufficient conditions to make sense of the

(uniform) convergence of the series solution; as we will see in a later section, there is

a more robust method to prove the convergence of the series solution in an L2 sense.

Theorem 2.4. Suppose that g ∈ C3[0, l] with g(0) = g(l) = 0 and g′′(0) = g′′(l) = 0,

and that h ∈ C2[0, l] with h(0) = h(l) = 0. Then the series solution u(x, t) constructed

above is C2([0, l]× [0,∞)) and satisfies (2.11).

Proof. We will use Lemma (A.1) in the Appendix to prove that the series solution

u(x, t) constructed above is C2([0, l]× [0,∞)) and

utt(x, t) = −
∞∑
n=1

(cnπ
l

)2 [
An cos(

cnπ

l
t) +Bn sin(

cnπ

l
t)
]

sin(
nπ

l
x),
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and

uxx(x, t) = −
∞∑
n=1

(nπ
l

)2 [
An cos(

cnπ

l
t) +Bn sin(

cnπ

l
t)
]

sin(
nπ

l
x),

therefore u(x, t) satisfies the homogeneous equation in (2.11).

The proof also shows that u(0, t), u(l, t), u(x, 0) and ut(x, 0) can be evaluated by

the series, and therefore satisfies the remaining equations in (2.11).

According to Lemma (A.1) in the Appendix, it suffices to check that the series

on the right hand sides of the equations for utt(x, t) and uxx(x, t) are uniformly and

absolutely convergent on [0, l]× [0, T ] for any T > 0, and for that it suffices to check

that
∑∞

n=1 n
2(|An|+ |Bn|) <∞.

Using the regularity and boundary conditions on g and h, we can do integration

by parts as follows to find

An =
2

l

∫ l

0

sin(
nπ

l
x)g(x) dx

=
2

nπ

[
−g(x) cos(

nπ

l
x)

∣∣∣∣l
x=0

+

∫ l

0

g′(x) cos(
nπ

l
x) dx

]

=
2l

(nπ)2

[
g′(x) sin(

nπ

l
x)

∣∣∣∣l
x=0

−
∫ l

0

g′′(x) sin(
nπ

l
x) dx

]

=
2l2

(nπ)3

[
g′′(x) cos(

nπ

l
x)

∣∣∣∣l
x=0

+

∫ l

0

g′′′(x) cos(
nπ

l
x) dx

]

=
2l2

(nπ)3

[∫ l

0

g′′′(x) cos(
nπ

l
x) dx

]
.

It now follows that

∞∑
n=1

n2|An| ≤
∞∑
n=1

2l2

nπ3

∣∣∣∣∫ l

0

g′′′(x) cos(
nπ

l
x) dx

∣∣∣∣
≤2l2

π3

(
∞∑
n=1

1

n2

)1/2( ∞∑
n=1

[∫ l

0

g′′′(x) cos(
nπ

l
x) dx

]2
)1/2

<∞,

here we used
∑∞

n=1

[∫ l
0
g′′′(x) cos(nπ

l
x) dx

]2

= 2
l

∫ l
0
|g′′′(x)|2 dx <∞ by Parseval iden-

tity.
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Similarly,

Bn =
2

cnπ

∫ l

0

sin(
nπ

l
x)h(x) dx

=
2l

c(nπ)2

[
−h(x) cos(

nπ

l
x)

∣∣∣∣l
0

+

∫ l

0

cos(
nπ

l
x)h′(x) dx

]

=
2l2

c(nπ)3

[
h′(x) sin(

nπ

l
x)

∣∣∣∣l
0

−
∫ l

0

sin(
nπ

l
x)h′′(x) dx

]

= − 2l2

c(nπ)3

∫ l

0

sin(
nπ

l
x)h′′(x) dx,

so we also have

∞∑
n=1

n2|Bn| ≤
∞∑
n=1

2l2

cnπ3

∣∣∣∣∫ l

0

sin(
nπ

l
x)h′′(x) dx

∣∣∣∣
≤2l2

π3

(
∞∑
n=1

1

(cn)2

)1/2( ∞∑
n=1

∣∣∣∣∫ l

0

sin(
nπ

l
x)h′′(x) dx

∣∣∣∣2
)1/2

<∞.

Remark 2.7. In the above theorem, we look for a solution in C2([0, l]× [0,∞)), and

expect the first equation in (2.11) to also hold on the boundary of [0, l]×[0,∞). Along

x = 0 or l, since we expect u(0 or l, t) = 0 for all t > 0, this leads to utt(0 or l, t) = 0.

Thus, applying the equation at (0, 0) and (l, 0) to a solution in C2([0, l] × [0,∞)),

we expect uxx(0, 0) = g′′(0) = 0, and uxx(l, 0) = g′′(l) = 0. The other conditions,

g(0) = g(l) = 0 and h(0) = h(l) = 0 come from similar consideration. Note that

the differentiability assumptions on the initial data are one order higher than the

differentiability of the solution. This is an artifact of the method. We will discuss

how to address this issue shortly later in this section.

Note also that if the compatibility conditions, g(0) = g(l) = 0, h(0) = h(l) = 0,

or g′′(0) = g′′(l) = 0 do not hold, then the series will not produce a function in

C2([0, l]× [0,∞)) or one in C2((0, l)× (0,∞)), and that any discontinuities of u(x, t)

or its first or second derivatives at the corner points (0, 0) or (l, 0) would be propagated

along x− ct = 0, x+ ct = l, and their iterated reflections in the vertical sides of the

rectangle {(x, t) : 0 ≤ x ≤ l, t ≥ 0}. This is a feature of the wave equation: any

singularity of the initial or boundary data gets propagated into the interior region

where the homogeneous wave equation holds—this is in contrast with the behavior

of solutions to the heat equation. Such non-C2((0, l) × (0,∞)) solutions should be

regarded as generalized solutions to the wave equation.
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In fact, the above features can be seen as follows.

u(x, t) =
∞∑
n=1

[
An cos(

cnπ

l
t) +Bn sin(

cnπ

l
t)
]

sin(
nπ

l
x)

=
1

2

∞∑
n=1

{
An

[
sin
(nπ
l

(x− ct)
)

+ sin
(nπ
l

(x+ ct)
)]

+Bn

[
cos
(nπ
l

(x− ct)
)
− cos

(nπ
l

(x+ ct)
)]}

=
1

2
{g̃(x− ct) + g̃(x+ ct) + k(x− ct)− k(x+ ct)} ,

where

g̃(y) =
∞∑
n=1

An sin
(nπ
l
y
)
,

k(y) =
∞∑
n=1

Bn cos
(nπ
l
y
)
.

We recognize that g̃(y) is the Fourier sine series expansion of g over (0, l), therefore,

represents the 2l-periodic extension of the odd extension of g to (−l, l). Since h(x) =

ut(x, 0) =
∑∞

n=1( cnπ
l

)Bn sin(nπ
l
x), for 0 < x < l, we see that∫ y

0

h(z) dz =

∫ y

0

(
∞∑
n=1

(
cnπ

l
)Bn sin(

nπ

l
z)

)
dz

=
∞∑
n=1

(cnπ
l

)
Bn

∫ y

0

sin(
nπ

l
z)dz

= −c
∞∑
n=1

Bn

(
cos(

nπ

l
y)− 1

)
= −c [k(y)− k(0)] ,

for 0 < y < l. If we define h̃(z) =
∑∞

n=1

(
2
l

∫ l
0

sin(nπ
l
x)h(x) dx

)
sin(nπ

l
z) as the Fourier

sine series expansion of h over (0, l), which represents the 2l-periodic extension of the

odd extension of h to (−l, l), then k(y) = k(0) − c−1
∫ y

0
h̃(z) dz for all y. Thus, we

find

u(x, t) =
1

2
[g̃(x− ct) + g̃(x+ ct)] +

1

2c

∫ x+ct

x−ct
h̃(z) dz,

which is the same d’Alembert solution to an IVP for (1.10). From this representation,

it’s clear that if g̃(y) ∈ C2(R) and h̃(y) ∈ C1(R), we would get a solution which
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is in C2(R × [0,∞)). But these conditions on g̃(y) and h̃(y) are equivalent to the

compatibility conditions at the corner points on g and h respectively.

Note that this approach has lowered the differentiability assumptions on g and

h. On the other hand, if one or more of the compatibility conditions fails at a

corner point, then g̃(y) or h̃(y), or both, would lose some differentiability at the

corresponding corner points, and that behavior is propagated along x ± ct = 0, or

l, or ml for m ∈ Z—when examining the behavior of the solution in (0, l) × [0,∞),

these lines look like the reflections of x± ct = 0, or l at the vertical lines x = 0 or l.

In contrast, for the IBVP of the heat equation (2.1), even if its initial data g

has discontinuities, they are not propagated into the interior region where the ho-

mogeneous heat equation holds. In other words, the (homogeneous) heat equation

smoothes out any discontinuities of its initial (and boundary) data. Of course, if the

coefficients in a diffusion equation have discontinuities, such as in Exercise 1.5.2, its

solution may not be infinitely times differentiable. In the case of Exercise 1.5.2, the

solutions there are continuous with a jump discontinuity of their first derivative at

x = 0, where the diffusion coefficient has a jump discontinuity.

We now summarize our above discussion on the improved Theorem 2.4 as

Theorem 2.5. Suppose that g ∈ C2[0, l] with g(0) = g(l) = 0 and g′′(0) = g′′(l) = 0,

and that h ∈ C1[0, l] with h(0) = h(l) = 0. Then (2.11) has a solution in C2([0, l] ×
[0,∞)); in fact, the series solution u(x, t) constructed for Theorem 2.4 is C2([0, l]×
[0,∞)) and satisfies (2.11).

Proof. Under the assumptions on g(x) and h(x) here, we can first extend g(x) to be

an odd function on [−l, l], and then extend it by period 2l to R, call it g̃(x); and

do the same for h(x), and call the extended function h̃(x). Then g̃(x) ∈ C2(R),

and h̃(x) ∈ C1(R). Let ũ(x, t) denote the solution provided by d’Alembert’s formula.

Then ũ(x, t) satisfies the initial conditions in (2.11) on (0, l), and

ũ(0, t) =
g̃(ct) + g̃(−ct)

2
+

1

2c

∫ +ct

−ct
h̃(y) dy = 0;
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in addition,

ũ(l, t)

=
g̃(l + ct) + g̃(l − ct)

2
+

1

2c

∫ l+ct

l−ct
h̃(y) dy

=
g̃(−l + ct) + g̃(l − ct)

2
+

1

2c

(∫ l

l−ct
+

∫ l+ct

l

)
h̃(y) dy (using g̃(l + ct) = g̃(−l + ct))

=
1

2c

(∫ l

l−ct
+

∫ −l+ct
−l

)
h̃(y) dy (using g̃(−l + ct) + g̃(l − ct) = 0 and h̃(y − 2l) = h̃(y))

=0 (using h̃(y) = −h̃(−y)).

Thus this ũ provides a solution for (2.11). After uniqueness property is established,

we know that this ũ is identical to the series solution u(x, t) constructed for Theorem

Theorem 2.4, therefore it is C2([0, l]× [0,∞)).

Question: Can the method be adapted to solutions of the modified equation such

as utt − c2uxx + aut + bux + du = 0 to draw the same or similar conclusions? Which

parts of the argument can be adapted to construct a solution of a higher dimensional

problem such as the following?
∂2
ttu(x, t)− c2∆u(x, t) = 0, x ∈ D, t > 0,

u(x, t) = 0, x ∈ ∂D, t > 0,

u(x, 0) = g(x), x ∈ D,
∂tu(x, 0) = h(x), x ∈ D.

What additional information is needed to implement this approach? Try out the case

when D is a simple domain such as a square or a round disc in R2.

Exercises

Exercise 2.5.1. Construct a Fourier series solution u(x, t) to (2.11) with g(x) =

cos(πx
l

) and h(x) = 0 for 0 < x < l, and prove that it is discontinuous along x = ct

and x = −ct+ l. (Hint: Study the discontinuities of the Fourier sine series of g over

(0, l), and use

cos(
cnπ

l
t) sin(

nπ

l
x) =

1

2

[
sin
(nπ
l

(x− ct)
)

+ sin
(nπ
l

(x+ ct)
)]

in studying the behavior of
∑∞

n=1An cos( cnπ
l
t) sin(nπ

l
x).)
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Exercise 2.5.2. Prove that if g(x) = 0 and h(x) = 1 for 0 < x < l, then the series

solution u(x, t) ∈ C([0, l] × [0,∞)), but fails to be in C1([0, l] × [0,∞)). Study the

set where its first derivatives have discontinuities.

Exercise 2.5.3. Use the d’Alembert representation to redo the above two exercises.

Exercise 2.5.4. Construct a Fourier series solution u(x, t) to the following problem


utt − c2uxx + αu = 0, on (x, t) ∈ [0, l]× R+,

u(0, t) = u(l, t) = 0, for t > 0,

u(x, 0) = g(x), for x ∈ [0, l],

ut(x, 0) = h(x), for x ∈ [0, l],

where α is a positive parameter. Discuss the effect of α on the behavior of the solution.

Recall that the constructed solutions to (2.11) are all time periodic with period 2l/c.

Are the solutions here also a common time-period?

Exercise 2.5.5. Construct a Fourier series solution u(x, t) to the following problem


utt − c2uxx + βut = 0, on (x, t) ∈ [0, l]× R+,

u(0, t) = u(l, t) = 0, for t > 0,

u(x, 0) = g(x), for x ∈ [0, l],

ut(x, 0) = h(x), for x ∈ [0, l],

where β is a positive parameter. Discuss the effect of β on the behavior of the solution;

in particular, discuss the cases 0 < β < 2cπ
l

, β = 2cπ
l

, and 2cπ
l
< β < 4cπ

l
.

Exercise 2.5.6. Does the separation of variables method work in constructing a

solution to the following IBVP?
utt − c2uxx + γux = 0, on (x, t) ∈ [0, l]× R+,

u(0, t) = u(l, t) = 0, for t > 0,

u(x, 0) = g(x), for x ∈ [0, l],

ut(x, 0) = h(x), for x ∈ [0, l],

where γ is some non-zero constant.
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2.6 Separation of Variables in Polar Coordinates

and Fourier Series Solution of the Dirichlet

Problem of the Laplace Equation on a Round

Disk

We now apply similar methods to find a solution formula for the Laplace equation

on a round disk in R2. Based on knowledge of complex analytic functions, we know

directly that for any n ≥ 0, zn = rneinθ and z̄n = rne−inθ are harmonic functions on

B1(0) ⊂ R2.

We now examine how the separation of variables method produces the same family

of harmonic functions. We first write the Laplace operator in polar coordinates ∆u =

urr +ur/r+uθθ/r
2, and apply separation of variables to look for solutions of the form

u = R(r)Θ(θ). Then R(r) and Θ(θ) must satisfy[
R′′(r) +

R′(r)

r

]
Θ(θ) +

R(r)

r2
Θ′′(θ) = 0,

which can be rewritten as

r2R−1(r)

[
R′′(r) +

R′(r)

r

]
+

Θ′′(θ)

Θ(θ)
= 0,

whenever R(r) 6= 0 and Θ(θ) 6= 0. It now follows that Θ′′(θ) + λΘ(θ) = 0 for some

constant λ and all θ ∈ [0, 2π], and that

R′′(r) +
R′(r)

r
− λ

r2
R(r) = 0 for 0 < r < 1. (2.12)

It’s natural to impose the condition that u(r, 0) = u(r, 2π) and uθ(r, 0) = uθ(r, 2π) for

all 0 < r < 1, which leads to the condition that Θ(0) = Θ(2π) and Θ′(0) = Θ′(2π).

Thus we must look for those constants λ for which the problem Θ′′(θ) + λΘ(θ) = 0 for all θ ∈ [0, 2π],

Θ(0) = Θ(2π) and Θ′(0) = Θ′(2π)
(2.13)

has non-trivial solutions.

One can check that this problem has non-trivial solutions iff λ = n2 for n ∈ Z≥0;

and for n ∈ N, the solution space to (2.13) is spanned by {sin(nθ), cos(nθ)}; while

for n = 0, the solution space to (2.13) is spanned by {1}.
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For each λ = n2, we look for solutions R(r) to (2.12) in the form R(r) = rα and

find that α must satisfy α2 − n2 = 0. Thus, for each n ∈ N, the solution space to

(2.12) is spanned by {rn, r−n}, and for n = 0, the solution space to (2.12) is spanned

by {1, ln r}. To conclude, for each n ∈ Z \ {0}, r±neinθ is a harmonic function of

(x, y) = (r cos θ, r sin θ), at least in the domain where r > 0.

(2.12) is an ODE with a singularity at r = 0, which has solutions that may be

singular at r = 0. The singular coefficients in (2.12) is an artifact of the degeneracy

in the change of coordinates (x, y) = (r cos θ, r sin θ) at r = 0, as (2.12) comes from

the Laplace equation, and the Laplace equation does not have any singularity at

(x, y) = (0, 0). Since we are looking for solutions which are regular in a region

that contains (x, y) = (0, 0), this consideration implies that we should limit our

consideration of solutions R(r) to (2.12) to those which are bounded near r = 0.

Thus, to construct harmonic functions that are smooth in B1(0), we drop the

choices r−n cos(nθ), r−n sin(nθ) for n ∈ N, as well as ln r. So∑
n∈a finite set in Z≥0

{
anr

neinθ + bnr
ne−inθ

}
provides a harmonic function on B1(0) with boundary value∑

n∈a finite set in Z≥0

{
ane

inθ + bne
−inθ} ,

which is a trigonometric polynomial in θ.

In fact, we now have a solution of the Dirichlet problem on B1(0) with any trigono-

metric polynomial as boundary value. To deal with the problem of arbitrary boundary

data (continuous, say), we form the infinite sum

u =
∞∑
n=0

{
anr

neinθ + bnr
ne−inθ

}
and hope to be able to choose an and bn to obtain arbitrary boundary data.

For the Dirichlet problem ∆u(reiθ) = 0 for 0 ≤ r < 1,

u(eiθ) = g(eiθ) for 0 ≤ θ ≤ 2π,
(2.14)

where g(eiθ) for 0 ≤ θ ≤ 2π is the given boundary value, we have formally

g(eiθ) = u(eiθ) =
∞∑
n=0

{
ane

inθ + bne
−inθ} ,
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which leads us to take

an =
1

2π

∫ 2π

0

g(eiφ)e−inφdφ, for n ≥ 0,

bn =
1

2π

∫ 2π

0

g(eiφ)einφdφ, for n > 0, and b0 = 0.

Then the series solution is

u(reiθ) =
1

2π

[∫ 2π

0

g(eiφ)dφ+
∞∑
n=1

∫ 2π

0

g(eiφ)rn
(
ein(θ−φ) + e−in(θ−φ)

)
dφ

]

=
1

2π

∫ 2π

0

g(eiφ)

[
1 +

∞∑
n=1

rn
(
ein(θ−φ) + e−in(θ−φ)

)]
dφ

=

∫ 2π

0

g(eiφ)
1− r2

2π (1 + r2 − 2r cos(θ − φ))
dφ.

(2.15)

Here we have used the summation of the two geometric series

∞∑
n=1

rnein(θ−φ) =
rei(θ−φ)

1− rei(θ−φ)
and

∞∑
n=1

rne−in(θ−φ) =
re−i(θ−φ)

1− re−i(θ−φ)
.

Let

p(θ, r) =
1− r2

2π (1 + r2 − 2r cos θ)
.

Then we have

u(reiθ) =

∫ 2π

0

g(eiφ)p(θ − φ, r) dφ.

(2.15) is called the Poisson formula for the Laplace operator on the unit disk. In terms

of rectangular coordinates X = (x, y) = (r cos θ, r sin θ) ∈ D, Y = (cosφ, sinφ) ∈ ∂D,

p(θ − φ, r) = 1−|X|2
2π|X−Y |2 , which we denote as P (X, Y ). P (X, Y ) (and often p(θ − φ, r))

is called Poisson kernel for the Laplace operator on the unit disk.

Remark 2.8. Note that we initially aim for an infinite series solution using Fourier

expansion, but find out that the resulting Fourier expansion can be expressed directly

as an integral in terms of the boundary value and the Poisson kernel. At this point,

we need not necessarily spend effort to provide verification using the infinite series; in

fact it’s a lot harder to use the Fourier series directly to verify that the constructed

solution is continuous on the closed unit disc when g is continuous on S1 = ∂D. We

will use the integral representation directly to verify that (2.15) provides a solution

in C(D)∩C2(D). Such approaches of starting with looking for a formal solution and

then using the formal solution to find more useful representations or structures of the

solution is very common in the study of PDEs.
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Theorem 2.6. For any g ∈ C(∂D), there is a unique u ∈ C(D) ∩ C2(D) solving

(2.14).

Proof. Again the uniqueness part will be addressed by the maximum principle in a

later section. For the existence part, our proof will use the following properties of the

Poisson kernel P (X, Y ) = 1−|X|2
2π|X−Y |2 for X = (x, y) ∈ D and Y = (cosφ, sinφ) ∈ ∂D

P (X, Y ) ∈ C∞(D× ∂D), and ∆XP (X, Y ) = 0 for any (X, Y ) ∈ D× ∂D.

(AP1).
∫
∂D P (X, Y ) dσ(Y ) = 1, for any X ∈ D.

(AP2). For any Y0 ∈ ∂D and any δ > 0,
∫
Y ∈∂D,|Y0−Y |>δ P (X, Y ) dσ(Y ) → 0 as X → Y0

in D.

(AP3). P (X, Y ) ≥ 0 for all (X, Y ) ∈ D× ∂D .

The first item can be verified directly, or can be seen from the relation that

P (X, Y ) = (2π)−1

[
1 +

∞∑
n=1

rn
(
ein(θ−φ) + e−in(θ−φ)

)]
,

which can be regarded as the sum of two power series both having their radii of

convergence equal to 1, therefore, term-wise differentiation can be carried out inside

D, and noting ∆Xr
ne±in(θ−φ) = 0, we have ∆XP (X, Y ) = 0 for any (X, Y ) ∈ D× ∂D.

(AP1) can also be verified directly, or can be seen from the uniform convergence

in Y ∈ ∂D of P (X, Y ) = 1 +
∑∞

n=1 r
n
(
ein(θ−φ) + e−in(θ−φ)

)
for any fixed X ∈ D, and∫ 2π

0
e±in(θ−φ)dφ = 0 for any n ∈ N.

(AP3) is obvious from the form for P (X, Y ), while (AP2) is established by not-

ing that, as a function of Y ∈ ∂D, the family of functions {P (X, Y )}X∈D becomes

concentrated near Y0 ∈ ∂D as X → Y0. More precisely, for any fixed δ > 0, when

|X − Y0| ≤ δ/2 and |Y − Y0| ≥ δ, |X − Y | ≥ |Y − Y0| − |X − Y0| ≥ δ/2, so

P (X, Y ) ≤ 1−|X|2
2π(δ/2)n

, and for any given ε > 0, there exists 0 < δ′ < δ/2 such that when

|X − Y0| ≤ δ′, P (X, Y ) ≤ ε.

Now for any X ∈ D, there exist δ > 0 and constant C = C(δ) > 0 such that

|∇α
ZP (Z, Y )| ≤ C for all y ∈ ∂D, X with |Z −X| ≤ δ, and |α| ≤ 2, so we can apply

Lemma A.1 in the Appendix to conclude that

∆Xu(X) =

∫
Y ∈∂D

g(Y )∆XP (X, Y ) dσ(Y ) = 0.
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To prove u(X) → g(Y0) as X → Y0 ∈ ∂D, for a given ε > 0, we first use the

continuity of g to find δ > 0 such that |g(Y ) − g(Y0)| < ε when |Y − Y0| < δ. Then

we write, using (AP1),

u(X)− g(Y0) =

∫
Y ∈∂D

[g(Y )− g(Y0)]P (X, Y ) dσ(Y ),

and estimate

|u(X)− g(Y0)| ≤
(∫

Y ∈∂D,|Y−Y0|≤δ
+

∫
Y ∈∂D,|Y−Y0|≥δ

)
|g(Y )− g(Y0)|P (X, Y ) dσ(Y ).

The first integral is bounded above by ε
∫
Y ∈∂D P (X, Y ) dσ(Y ) = ε, while the second

integral is bounded above by 2 max |g(Y )|
∫
Y ∈∂D,|Y−Y0|≥δ P (X, Y ) dσ(Y ), which can be

made smaller than ε as X → Y0 by using (AP2).

A family of functions {P (X, Y )}X , treated as functions of Y ∈ ∂D and parametrized

by X ∈ D, satisfying (AP1)–(AP3) above is called an approximation to identity (on

∂D). As X → Z ∈ ∂D, this family of functions of Y becomes concentrated at Z

and behaves like Dirac’s delta function of Y at Z. Families of functions having this

property will arise in other contexts.

Question: Can the method be adapted to solutions of the modified equation such

as ∆u+ cu = 0 to draw the same or similar conclusions?

Exercise 2.6.1. (a). Prove that for any bounded sequence {an} and {bn}, the series

defining u above converges uniformly on any smaller disk {r ≤ r0 < 1} and gives

rise to a smooth harmonic function in B1(0).

(b). Verify that

p(θ−φ, r) :=
1

2π

[
1 +

∞∑
n=1

rn
(
ein(θ−φ) + e−in(θ−φ)

)]
=

1− r2

2π (1 + r2 − 2r cos(θ − φ))
.

(c). Verify that if we write X = (r cos θ, r sin θ) and Y = (cosφ, sinφ), then

p(θ − φ, r) =
1− |X|2

2π|X − Y |2
= P (X, Y ).

(d). Verify that for X ∈ D,
∫
∂D P (X, Y )dσ(Y ) = 1.
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Exercise 2.6.2. Apply separation of variables to construct solutions to the following

BVP on the sector Σθ0 := {(x, y) = (r cos θ, r sin θ) : 0 ≤ r < 1, 0 < θ < θ0}:
∆u(x, y) = 0 for (x, y) ∈ Σθ0 .

u(r cos θ, r sin θ) = 0 for θ = 0 or θ0 and 0 ≤ r ≤ 1,

u(cos θ, sin θ) = g(θ) for 0 < θ < θ0,

where g(θ) is a given continuous function on [0, θ0]. Then change one of the boundary

conditions, say, using uθ(r cos θ0, r sin θ0) = 0 to replace u(r cos θ0, r sin θ0) = 0 for

0 ≤ r ≤ 1, and find a solution of this modified BVP.

Exercise 2.6.3. Model on the proof of Theorem 2.6 to show that if g is Riemann

integrable on [−l, l] and continuous at some x ∈ (−l, l), then

N−1

N−1∑
n=0

(
n∑
−n

gke
ikπx
l

)
→ g(x) as N →∞.

Furthermore, if g ∈ C[−l, l] with g(−l) = g(l), then the convergence is uniform over

x ∈ [−l, l]. (Hint: (2.3) and (2.4) will play a role.)

2.7 Solution of the Cauchy Problem for the Heat

Equation

We next make sense of the formal solution
∫
R c(ξ)e

ixξ−ξ2tdξ to the homogeneous heat

equation which we have found in the last chapter.

Theorem 2.7. For any c(ξ) ∈ L1(R),
∫
R c(ξ)e

ixξ−ξ2tdξ defines a smooth function for

x ∈ R and t > 0, which is in C(R× [0,∞)) and satisfies ∂u
∂t

= ∆u.

Proof. We first sketch a proof that (x, t) ∈ R × R+ 7→
∫
R c(ξ)e

ixξ−ξ2tdξ is a smooth

function by first proving that

∂

∂x

(∫
R
c(ξ)eixξ−ξ

2tdξ

)
=

∫
R
c(ξ)iξeixξ−ξ

2tdξ, (2.16)

and
∂

∂t

(∫
R
c(ξ)eixξ−ξ

2tdξ

)
=

∫
R
c(ξ)(−ξ2)eixξ−ξ

2tdξ, (2.17)
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2.7. CAUCHY PROBLEM FOR THE HEAT EQUATION

for (x, t) ∈ R×R+, then using similar arguments to prove the continuous differentia-

bility of any order of derivatives.

It suffices to prove the continuous differentiability for (x, t) ∈ R × [τ,∞), where

τ > 0 is arbitrarily given; and it suffices to check the conditions in Lemma A.1 in

the Appendix for (x, t; ξ) over R× (τ,∞)×R, and with s(x, t; ξ) = c(ξ)eixξ−ξ
2t. This

follows easily because

∣∣sx(x, t; ξ)∣∣ =
∣∣iξc(ξ)eixξ−ξ2t

∣∣ ≤ |ξ||c(ξ)|e−τξ2

,

and ∣∣st(x, t; ξ)∣∣ =
∣∣(−ξ2)c(ξ)eixξ−ξ

2t
∣∣ ≤ |ξ|2|c(ξ)|e−τξ2

.

Note that each of the bounds above on the right is integrable over ξ ∈ R, so we can

apply Lemma A.1 in the Appendix.

Version of (2.16) for second order differentiation in x gives

∂2

∂x2

(∫
R
c(ξ)eixξ−ξ

2tdξ

)
=

∫
R
c(ξ)(−ξ2)eixξ−ξ

2tdξ,

which, together with (2.17), proves that ∂u
∂t

= ∆u. The continuity of
∫
R c(ξ)e

ixξ−ξ2tdξ

in R × [0,∞) follows also from Lemma A.1 in the Appendix, or alternatively,

Lebesgue’s Dominated Convergence Theorem, using c(ξ) ∈ L(R).

The main issue next is to verify that, if we choose c(ξ) appropriately, namely,

c(ξ) = 1
2π

∫
R u(y, 0)e−iyξ dy∗, then the u(x, t) defined above takes on the initial value

u(x, 0) in appropriate sense as t→ 0.

One situation where this can be checked easily is when we assume u(x, 0) can be

represented as in (1.22) with c(ξ) ∈ L1(R). Then u(x, t)→ u(x0, 0) as (x, t)→ (x0, 0)

by Lebesgue’s dominated convergence theorem (or Lemma A.1). But this assumption

on u(x, 0) is through c(ξ), its Fourier transform, and may not be as easy to verify.

It turns out we can verify the continuity of u(x, t) up to t = 0 under much weaker

condition on u(x, 0). We proceed by deducing a further representation formula for

∗A more detailed discussion of this formula will be given in a later section on Fourier transform.
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CHAPTER 2. FOURIER’S METHOD

u(x, t) as follows.

u(x, t)

=
1

2π

∫
R

{∫
R
u(y, 0)e−iyξ dy

}
eixξ−ξ

2tdξ

=
1

2π

∫
R
u(y, 0)

{∫
R
ei(x−y)ξ−ξ2tdξ

}
dy (interchange the order of integration)

=
1

2π

∫
R
u(y, 0)e−

|x−y|2
4t

√
π

t
dy (using

∫
R
e−u

2+iaudu =
√
πe−

a2

4 )

=

∫
R
u(y, 0)

1√
4πt

e−
|x−y|2

4t dy,

(2.18)

here, to justify the interchange of integrals, we could assume u(y, 0) to have compact

support; but the above representation can be used under much relaxed condition on

u(y, 0).

The integral kernel

K(x− y, t) =
1

2π

∫
R
ei(x−y)ξ−ξ2tdξ =

1√
4πt

e−
|x−y|2

4t ,

is called the heat kernel or fundamental solution to the heat equation and enjoys

the following properties:

(HK). For any y ∈ R, (∂t − ∂2
x)K(x− y, t) = 0, for any x and t > 0.

(AP1).
∫
RK(x− y, t) dy = 1, for any x and t > 0.

(AP2). For any δ > 0,
∫
|x−y|>δK(x− y, t) dy → 0 as t→ 0.

(AP3). K(x− y, t) ≥ 0.

(HK) follows from almost identical arguments as those used in the proof of the previ-

ous Theorem, using the integral representation for K(x− y, t), or can be verified by

direct differentiation. (AP1)–(AP3) above are similar to the (AP1)–(AP3) satisfied

by the Poisson kernel on the unit disk. This family of functions {K(x − y, t)}t>0

also forms an approximation to identity (on R). With these properties above, we will

prove

Theorem 2.8. Define u(x, t) in terms of u(x, 0) through (2.18), where u(x, 0) ∈
L1(R) (or is bounded and Lebesgue measurable or Riemann integrable over any bounded

interval in R). Then
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2.7. CAUCHY PROBLEM FOR THE HEAT EQUATION

(i). u(x, t) is a C∞ solution of ut − uxx = 0 on (x, t) ∈ R× (0,∞).

(ii). ||u(x, t)− u(x, 0)||L1(R) → 0, as t→ 0, if u(x, 0) ∈ L1(R).

(iii). u(x, t) is continuous at u(x0, 0), if u(x, 0) is continuous at x0.

(iv). ||u(·, t)||L1(R) ≤ ||u(·, 0)||L1(R).

Remark 2.9. Notice also that even if the initial data has discontinuity, the solution

given by (2.18) instantly becomes a smooth function of (x, t) for t > 0. In addition,

the value of u(x, t) depends on the values of u(y, 0) for all y ∈ R, which indicates that

solutions to the heat equation have an infinite speed of “propagation”.

One advantage of the above representation (2.18) is that it provides a solution

(possibly on a finite time interval) even for initial data u(x, 0) that has some growth,

as long as it is slower than ea|x|
2

for some a > 0—even though the formula was derived

under much stricter requirement on u(x, 0); Chapter 4 will pick up the technical

discussion on this again. In fact, this kind of approach will be used repeatedly:

on a first try, one does not pay too close attention to justify every step, only after

one obtains some useful results, does one go back to check every step, or verify the

conclusion by other means.

Uniqueness is not settled by this approach.

Remark 2.10. Even though (2.18) and (1.21) are both established for one space

dimension times the time axis — the latter was discovered through separation of

variables in one space dimension times the time axis and led to (2.18), their forms

and the content of the above Theorem remain the same when x ∈ Rn: one simply

takes ξ ∈ Rn, replaces xξ by x · ξξξ, the dot product between x and ξξξ, replaces ξ2

in (1.21) by |ξξξ|2, replaces
√

4πt in K(x − y, t) by (4πt)n/2, and interprets |x − y| in

K(x− y, t) as
√

(x1 − y1)2 + · · ·+ (xn − yn)2. This is due to the simple reason that

K(x− y, t) = K(x1 − y1, t) · · ·K(xn − yn, t) has a product structure, and

(∂t −∆x)K(x− y, t)

=
n∑
k=1

K(x1 − y1, t) · · · [Kt(xk − yk, t)−Kxx(xk − yk, t)] · · ·K(xn − yn, t)

=0.

Alternatively,

1

(2π)n

∫
Rn
ei(x−y)·ξξξ−|ξξξ|2tdξξξ =

1

(2π)n

n∏
j=1

∫
R
ei(xj−yj)ξj−ξ

2
j tdξj =

1

(4πt)n/2
e−
|x−y|2

4t .
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Our development here did not depend logically on any systematic theory of Fourier

transforms, other than using the inversion formula

c(ξ) =
1

2π

∫
R
u(x, 0)e−ixξ dx

(for one space dimension) to (1.22) in formally deriving (2.18). Once we came up

with (2.18), we justified its validity without any direct usage of Fourier transforms.

It is often efficient to use this inversion relation to explore how certain proto-

type solutions (to constant coefficient PDEs) behave. For exploring solutions to the

Cauchy problem for constant coefficient PDEs, we often make a variation of the sep-

aration of variables method and look for solutions of the form eix·ξξξT (t) and try to

understand how the “Fourier mode” eix·ξξξ would evolve under the PDE, as the gist of

Fourier transform says that reasonable functions can be synthesized as superpositions

of various Fourier modes eix·ξξξ.

Proof of Theorem 2.8. This proof is a bit lengthy. The proof for (i) is very similar to

our proof for Theorem 2.6; students on a first reading can first focus on the proof for

(ii) and/or (iii) below.

We will apply Lemma A.1 in the Appendix to prove (i).

When u(y, 0) ∈ L1(R), we set s(x, t; y) = K(x − y, t)u(y, 0), then for any y ∈ R,

(x, t) ∈ R × R+ 7→ s(x, t; y) is smooth in (x, t). Fix any τ > 0. Now for any

(x, t) ∈ R× (τ,∞), we have

|∂ts(x, t; y)| =
∣∣∣∣ |x− y|24t

− 1

2

∣∣∣∣ 1√
4πt3

e−
|x−y|2

4t |u(y, 0)|

≤
(
|x− y|2

4t
+

1

2

)
1√
4πt3

e−
|x−y|2

4t |u(y, 0)|

≤ C√
4πτ 3

|u(y, 0)|,

using
(
|x−y|2

4t
+ 1

2

)
e−
|x−y|2

4t ≤ C. Now the bound on the right hand side is integrable

in R so we can appeal to Lemma A.1 in the Appendix to conclude that

∂t

(∫
R
K(x− y, t)u(y, 0) dy

)
=

∫
R
∂tK(x− y, t)u(y, 0) dy.

Differentiation in x, and higher order (mixed) differentiation, is proved in a simi-

lar way, using the following pattern proved by induction: there exists a polynomial

pk,l(
x√
t
) of degree k + 2l in x√

t
such that

∣∣∂kx∂ltK(x, t)
∣∣ ≤ |pk,l( x√

t
)|

tk/2+l
K(x, t), for all (x, t) ∈ R× R+. (2.19)
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When u(y, 0) is bounded, for any (x, t) ∈ R× (0,∞), we will verify that

ŝ(τ ; y) = s(x, t+ τ ; y) = K(x− y, t+ τ)u(y, 0)

satisfies the hypothesis for Lemma A.1 in the Appendix for |τ | < t/2, therefore it is

differentiable at τ = 0, and

∂t

(∫
R
K(x− y, t)u(y, 0) dy

)
=

d

dτ

∣∣∣∣
τ=0

(∫
R
K(x− y, t+ τ)u(y, 0) dy

)
=

∫
R
∂tK(x− y, t)u(y, 0) dy.

When |τ | < t/2, we have the bound

|∂τ ŝ(τ ; y)| ≤
(
|x− y|2

4(t+ τ)
+

1

2

)
1√

4π(t+ τ)3
e−
|x−y|2
4(t+τ) |u(y, 0)|

≤
(
|x− y|2

2t
+

1

2

)
1√
πt3/2

e−
|x−y|2

8t |u(y, 0)|

The bound on the right hand side above is in L1(R) considered as a function of y:∫
R
|u(y, 0)|

(
|x− y|2

2t
+

1

2

)
1√
πt3/2

e−
|x−y|2

8t dy

=
||u(·, 0)||L∞(R)√

π/2t

∫
R

|z|2 + 1

2
e−
|z|2

8 dz <∞.

We are now ready to appeal to Lemma A.1 in the Appendix (or Lebesgue’s dominated

convergence theorem) to conclude that

ut(x, t) =
d

dτ

∣∣∣∣
τ=0

(∫
R
ŝ(τ ; y) dy

)
=

∫
R
u(y, 0)∂tK(x− y, t) dy.

The additional differentiability of u follows in a similar fashion. In particular

uxx(x, t) =

∫
R
u(y, 0)∂2

xK(x− y, t) dy.

Finally ut(x, t)− uxx(x, t) = 0 because Kt(x− y, t)−Kxx(x− y, t) = 0.

For (ii), using (AP1), we have

u(x, t)−u(x, 0) =

∫
R
u(y, 0)K(x−y, t) dy−u(x, 0) =

∫
R

[u(x− z, 0)− u(x, 0)]K(z, t) dz.

Since K(z, t) > 0 and
∫
RK(z, t) dz = 1, the above integral can be thought of as a

convex linear combination of the family of functions u(· − z, 0) − u(·, 0). Thus from
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the convexity of L1 norm, we get

||u(x, t)− u(x, 0)||L1(R)

=

∫
R

∣∣∣∣ ∫
R

[u(x− z, 0)− u(x, 0)]K(z, t) dz

∣∣∣∣ dx
≤
∫
R

(∫
R
|u(x− z, 0)− u(x, 0)| dx

)
K(z, t) dz

≤
∫
|z|≤δ
||u(x− z, 0)− u(x, 0)||L1(R)K(z, t) dz +

∫
|z|>δ
||u(x− z, 0)− u(x, 0)||L1(R)K(z, t) dz.

For any ε > 0, using the continuity of translation in L1(R), there exists δ > 0 such

that for |z| ≤ δ, we have

||u(x− z, 0)− u(x, 0)||L1(R) < ε,

which implies∫
|z|≤δ
||u(x− z, 0)− u(x, 0)||L1(R)K(z, t) dz < ε

∫
|z|≤δ

K(z, t) dz < ε,

using (AP1) and (AP3). Using (AP2) and (AP3),∫
|z|>δ
||u(x− z, 0)− u(x, 0)||L1(R)K(z, t) dz ≤ 2||u(x, 0)||L1(R)

∫
|z|>δ

K(z, t) dz < ε

when t > 0 is sufficiently small.

For (iii), we again express

u(x, t)−u(x0, 0) =

∫
R
u(y, 0)K(x−y, t) dy−u(x0, 0) =

∫
R

[u(x− z, 0)− u(x0, 0)]K(z, t) dz.

Since u(y, 0) is assumed to be continuous at y = x0, for any ε > 0, there exists δ > 0

such that

|u(y, 0)− u(x0, 0)| ≤ ε for |y − x0| ≤ 2δ.

Then for |x − x0| ≤ δ, when |z| ≤ δ, we have |x − z − x0| ≤ |x − x0| + |z| ≤ 2δ, so

|u(x− z, 0)− u(x0, 0)| < ε, and∫
|z|≤δ
|u(x− z, 0)− u(x0, 0)|K(z, t) dz ≤ ε.

Let’s assume u ∈ L∞(R) here, then∫
|z|≥δ
|u(x− z, 0)− u(x0, 0)|K(z, t) dz ≤ 2||u(·, 0)||L∞(R)

∫
|z|≥δ

K(z, t) dz.
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But by (AP2), there exists h > 0 such that when 0 < t < h, 2||u(·, 0)||L∞(R)

∫
|z|≥δK(z, t) dz ≤

ε. Putting these together, we find that, when 0 < t < h, |x− x0| ≤ δ,

|u(x, t)− u(x0, 0)|

≤
∫
|z|≤δ
|u(x− z, 0)− u(x0, 0)|K(z, t) dz +

∫
|z|≥δ
|u(x− z, 0)− u(x0, 0)|K(z, t) dz

≤2ε.

(iv) is proved using Fubini Theorem to interchange the integrals

u(x, t) =

∫
R
u(x− z, 0)K(z, t) dz,

so that

||u(·, t)||L1(R) ≤
∫
R
||u(·−z, 0)||L1(R)K(z, t) dz ≤ ||u(·, 0)||L1(R)

∫
R
K(z, t) dz = ||u(·, 0)||L1(R).

Exercise 2.7.1. Let u(x, t) be given by (2.18) and |u(·, 0)| be bounded by M . Prove

that there exists a constant C > 0 such that

|ux(x, t)| ≤
CM√
t
, |ut(x, t)|+ |uxx(x, t)| ≤

CM

t
.

Exercise 2.7.2. (a). Apply separation of variables/Fourier transforms to construct

solutions to the Laplace equation ∆u = 0 on the half plane R2
+: ∆u = 0, on (x, y) ∈ R2

+,

u(x, 0) = g(x), on (x, 0) ∈ ∂R2
+.

(2.20)

Here we are implicitly assuming that u remains bounded as (x, y) approaches

∞.

(b). Rewrite the solution in the last part directly as a convolution with g. Hint:

the solution should have the form

u(x, y) =
1

π

∫
R

yg(u)

|x− u|2 + y2
du.

(c). Prove if g ∈ L1(R), then the u(x, y) above is smooth in (x, y) ∈ R2
+ and satisfies

∆u = 0 there.
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(d). Prove that if g ∈ L1(R), then u(x, y)→ g in L1(R) as y ↘ 0.

(e). Prove that if g is bounded over R and that g is continuous at x0, then u(x, y)

is continuous at (x0, 0).

Exercise 2.7.3. Follow the procedure below to weaken the hypotheses in Theorem

2.2, namely, replace the assumptions on g(x) there by assuming only g ∈ C[0, l] with

g(0) = g(l) = 0, and prove that there is a solution u(x, t) ∈ C2([0, l] × (0,∞)) ∩
C([0, l] × [0,∞)) that satisfies (2.1). First extend g to be an odd function to [−l, l],
then extend it to a 2l-periodic function on R. Call it g̃. Show that u(x, t) :=

∫
R
K(x−

y, t)g̃(y)dy is a solution of (2.1) in C2([0, l]× (0,∞)) ∩ C([0, l]× [0,∞)). Show that

there is also a version of Theorem 2.2 under a weaker assumption on g: if g ∈ Lp[0, l]
for some 1 ≤ p ≤ ∞, and g is continuous at some 0 < x0 < l, then the solution u(x, t)

defined above is continuous at x0.

Exercise 2.7.4. Construct a solution to the Cauchy problem{
ut(x, t)− uxx(x, t) + γux(x, t) = 0, x ∈ R, t > 0,

u(x, 0) = g(x), x ∈ R,

where γ is some real constant. If you run into difficulty in applying separation of

variables or Fourier transforms, you may consider a new variable v(x, t) = u(x+γt, t)

(or v(x, t) = eδxu(x, t) for some δ) and solve for a Cauchy problem for v(x, t).

2.8 A Notion of Generalized Solution to the Wave

Equation

We now discuss a notion of generalized solution using an integral form. It is based

on the following divergence structure for two C2 functions u(x, t) and η(x, t):[
utt(x, t)− c2uxx(x, t)

]
η(x, t)− u(x, t)

[
ηtt(x, t)− c2ηxx(x, t)

]
= [ut(x, t)η(x, t)− u(x, t)ηt(x, t)]t − c

2 [ux(x, t)η(x, t)− ηx(x, t)u(x, t)]x .

If u(x, t) is C2(R2) solution of (1.10), and η ∈ C2
c (R2), then integrating the above

over R2, we see that∫∫
R2

u(x, t)
[
ηtt(x, t)− c2ηxx(x, t)

]
dxdt = 0. (2.21)

102



2.8. A NOTION OF GENERALIZED SOLUTION TO THE WAVE EQUATION

If one would like to take into account of the initial data u(x, 0) and ut(x, 0) of u(x, t),

then integrating over R× R+, we obtain

∫ ∞
0

∫
R
u(x, t)

[
ηtt(x, t)− c2ηxx(x, t)

]
dxdt =

∫
R

[h(x)η(x, 0)− g(x)ηt(x, 0)] dx.

(2.22)

Both (2.21) and (2.22) make sense if u(x, t) is locally integrable in R2.

We define u(x, t) to be a generalized solution to (2.10) if it is locally integrable

in R2, and (2.22) holds for all η ∈ C2
c (R2). If consideration of initial data is not

relevant, we define u(x, t) to be a generalized solution to (1.10) if it is locally

integrable in R2, and (2.21) holds for all η ∈ C2
c (R2).

One advantage of this definition is that uniform limits of C2 solutions are gener-

alized solutions (although they may not known to be differentiable).

One can also construct a generalized solution easily when g ∈ C(R) and h ∈
L1

local(R), as one can choose gk ∈ C2(R) and hk ∈ C1(R) such that gk → g uniformly

over any compact interval of R, and hk → h in L1(I) over any compact interval I of

R, and use the d’Alembert’s formula to construct a solution uk(x, t) to (2.10) with

uk(x, 0) = gk(x) and ut(x, 0) = hk(x). Then d’Alembert’s formula shows that, on any

compact subset of R2, uk(x, t) has a uniform limit. This limit defines a generalized

solution of the Cauchy problem for (2.10)—we could use the d’Alembert’s formula to

define a notion of generalized solution, but the notion defined here can easily extend to

situations where an explicit representation is either unavailable or difficult to obtain.

In general, if G and H are continuous, then u(x, t) = G(x − ct) + H(x + ct) is a

generalized solution of (1.10).

Note also that, suppose that G is C2 except at a finite number of points, say,

{x1, · · · , xN}, then G(x− ct) is a smooth solution of the wave equation except along

the lines x − ct = xi, 1 ≤ i ≤ N , along which the discontinuity of the derivative

persists. This is different from the behavior of solutions to the heat equation, which

smoothes out any discontinuity instantly. A similar relation holds for H(x+ ct).

If we choose H(x) = −G(x), then u(x, t) = G(x−ct)+H(x+ct) satisfies u(x, 0) =

0, and ut(x, 0) = −2cG′(x) ifG′(x) is defined. If we chooseG(x) such that−2cG′(x) =

δ(x), e.g., G(x) can be taken to be the limit of Gk(x), with

−2cG′k(x) =

k
2

for − 1
k
≤ x ≤ 1

k
,

0 otherwise,
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and Gk(x) normalized to be equal to 0 for x ≥ 1
k
. This leads to

Gk(x) =


1
2c

for x ≤ − 1
k
,

− k
4c

(x− 1
k
) for − 1

k
≤ x ≤ 1

k
,

0 for x ≥ 1
k
.

Thus

G(x) =

 1
2c

if x ≤ 0,

0 if x > 0;

and

E(x, t) =

G(x− ct)−G(x+ ct) = 1
2c

if t > 0,−ct ≤ x ≤ ct,

0 elsewhere.

In the above we see that for any x 6= 0, Gk(x)→ G(x) as k →∞, but a more proper

view is the convergence in the sense of distribution defined by∫
R
Gk(x)η(x) dx→

∫
R
G(x)η(x)dx for any η ∈ C∞c (R) as k →∞.

E(x,t) satisfies[
∂2
t − c2∂2

x

]
E(x, t) = δ(0, 0) in the sense of distribution,

and is called a fundamental solution to the wave equation. Another view is that this

E(x, t) solves the wave equation with a single point source at (0, 0):{ [
∂2
t − c2∂2

x

]
E(x, t) = 0, for t > 0,

E(x, 0) = 0, Et(x, 0) = δ(x),

This will be discussed in more detail in a later chapter.

In order for this notion of generalized solution of be a useful one, there is a need

to establish uniqueness of solution among this class of solutions to the appropriately

formulated IVP. This can be done following an approach by Holmgren, using the

existence of solutions to the non-homogeneous wave equation. We will supply a proof

after establishing the existence of solutions to these equations in the first section of

next Chapter.

In addition to having appropriate limits of smooth solutions as candidates for

generalized solutions, another class of potential candidates for generalized solutions

are piecewise smooth solutions. We will first present a simple example to illustrate

that this can’t be done arbitrarily, and that the integral formulation for a general-

ized solution may provide some requirement on the behavior of the solution across

potential interface of discontinuity.
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Example 2.1. All (C2) solutions to u′′(x) = 0 on R are of the form u(x) = ax+ b for

some constants a and b. An integral formulation for a generalize solution of u′′(x) = 0

is
∫
u(x)η′′(x)dx = 0 for all η ∈ C2

c . Suppose that u(x) is piecewise linear on either

side of x = 0, then the condition
∫
u(x)η′′(x)dx = 0 implies that

0 =

∫ 0

−∞
u(x)η′′(x)dx+

∫ ∞
0

u(x)η′′(x)dx

= u(0−)η′(0)−
∫ 0

−∞
u′(x)η′(x)dx− u(0+)η′(0)−

∫ ∞
0

u′(x)η′(x)dx

= [u(0−)− u(0+)]η′(0)− [u′(0−)− u′(0+)]η(0).

Since we have the freedom to choose η(0) and η′(0) arbitrarily, it follows that u(0−)−
u(0+) = 0, and u′(0−)−u′(0+) = 0. Thus a piecewise solution satisfying the integral

formulation must in fact be smooth across the interface point; namely, one can’t

arbitrarily use piecewise solutions to construct a generalized solution.

This simple example is inserted here to illustrate that a generalized solution re-

quires more than asking for the equation to be satisfied almost everywhere, and how

the integral formulation is used to extract information on the behavior of a general-

ized solution. More general results and proofs on generalized solutions to equations

like the Laplace equation will be presented later on. For equations like the one in this

example, a continuous, or just locally integrable, generalized solution will in fact be

C∞ smooth.

Remark 2.11. Another point which should be pointed out is that a jump discontinu-

ity of second derivatives to solutions to (1.10) can only occur along x±ct = constant,

the so called characteristic lines of (1.10).

More precisely, suppose that x = ξ(t) defines a C1 curve, that u± are C2 functions

of (x, t) in {(x, t) : x ≥ (≤)ξ(t)} (respectively), that u± are solution of (1.10) in their

corresponding region, and that u±, u±t , and u±x agree along x = ξ(t), but some of

the second derivatives of u± do not agree along x = ξ(t). Then ξ(t) must satisfy

ξ′(t) = ±c, namely, x = ξ(t) = ±ct+constant.

This is seen as follows. Define χ(t) := u±(ξ(t), t), φ(t) := u±x (ξ(t), t), and ψ(t) :=

u±t (ξ(t), t). Then χ(t), φ(t), ψ(t) are C1 functions of t, and

φ′(t) = u±xx(ξ(t), t)ξ
′(t) + u±xt(ξ(t), t), (2.23)

ψ′(t) = u±tx(ξ(t), t)ξ
′(t) + u±tt(ξ(t), t). (2.24)

Together with u±tt(ξ(t), t)−c2u±xx(ξ(t), t) = 0, these form 3 linear equations in u±xx(ξ(t), t),

u±tx(ξ(t), t), and u±tt(ξ(t), t).
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A jump discontinuity along x = ξ(t) in one of these second derivatives is in-

terpreted as this 3 × 3 linear system not determining a unique solution. Thus the

determinant of its coefficient matrix must be singular:

det

∣∣∣∣∣∣∣
ξ′(t) 1 0

0 ξ′(t) 1

−c2 0 1

∣∣∣∣∣∣∣ = 0.

This leads to |ξ′(t)|2 − c2 = 0. Therefore, ξ′(t) = ±c.
The same holds for solutions defined in terms of the integral formulation (2.21).

In fact, a stronger conclusion holds: if u± are C2 functions of (x, t) in {(x, t) : x ≥ (≤
)ξ(t)} (respectively), that u± are solution of (1.10) in their corresponding region, and

that (2.21) holds in a domain containing the curve x = ξ(t), then, unless this curve

is a characteristic curve, namely, x = ±ct + x0 for some x0, u±, together with their

derivatives up to order two, must agree along x = ξ(t). This indicates that (2.21)

places restrictions on the behavior on piecewise defined solutions: one can’t simply

piece together two solutions to (1.10) along a non-characteristic curve and expect the

resulting function to be a generalized solution.

One way to prove this conclusion is to use what we have done earlier: carrying out

integration by parts of the integrals in (2.21) in each region on either side of the curve

x = ξ(t), resulting in some integrals along this curve, then examining the implications

of the vanishing of the integral along this curve. The details will be omitted here.

Exercises

Exercise 2.8.1. Define

Ek(x, t) =

Gk(x− ct)−Gk(x+ ct) if t > 0,

0 elsewhere,

where Gk(x, t) is given earlier in the section. Prove that, for any η ∈ C2
c (R2),∫ ∫

R2

Ek(x, t)
[
ηtt(x, t)− c2ηxx(x, t)

]
dxdt =

∫ ∞
0

∫
R
Ek(x, t)

[
ηtt(x, t)− c2ηxx(x, t)

]
dxdt

=

∫
R
−2cG′k(x)η(x, 0)dx,

and that ∫ ∫
R
E(x, t)

[
ηtt(x, t)− c2ηxx(x, t)

]
dxdt = η(0, 0),

where E(x, t) is the fundamental solution of the wave equation defined earlier in the

section.
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Exercise 2.8.2. Define

E(·, t) ∗ h(x) =

∫
R
h(x− y)E(y, t) dy,

and

E(·, ·) ∗ f(x, t) =

∫∫
E(x− y, t− s)f(y, s)dyds.

Verify that

E(·, t) ∗ h(x) =
1

2c

∫ x+ct

x−ct
h(y)dy,

and

E(·, ·) ∗ f(x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s)dyds.

Exercise 2.8.3. Here is another way to analyze (1.10) and its integral formulation.

(i) Consider the change of variables (x, t) 7→ (y, s), where y = x − ct, s = x + ct,

and v(y, s) = u(x, t). Verify that utt(x, t)− c2uxx(x, t) = −4c2vys(y, s).

(ii) Prove that any C2 solution of vys(y, s) = 0 in a rectangle R: y0 < y < y1 and

s0 < s < s1 must be of the form of g(y) + h(s) for some C2 function g and h.

(iii) A continuous function v(y, s) is called a generalized solution of vys(y, s) = 0 in

R if
∫∫
R v(y, s)ηys(y, s)dyds = 0 for any C2

c (R). For s0 < s∗ < s1, let R0 =

{(y, s) : y0 < y < y1, s0 < s < s∗}, and R1 = {(y, s) : y0 < y < y1, s∗ < s < s1}.
Suppose that v(y, s) ∈ C2(R0) satisfies vys(y, s) = 0 inR0, and v(y, s) ∈ C2(R1)

satisfies vys(y, s) = 0 in R1. Denote v(y, s∗±) = lims→s∗± v(y, s). Prove that

v(y, s) is a generalized solution of vys(y, s) = 0 in R, iff v(y, s∗+)− v(y, s∗−) is

a constant.

(iv) Suppose that s = φ(y) is a C1 curve in R and that v(y, s) is a C2 solution

of vys(y, s) = 0 in {(y, s) ∈ R : s ≥ φ(y)} and in {(y, s) ∈ R : s ≤ φ(y)}
separately, and is a generalized solution of vys(y, s) = 0 in R. Prove that at

any (y, s) ∈ R, if φ′(s) 6= 0, then limh→0± v(y, s + h), limh→0± vy(y, s + h),

limh→0± vs(y, s + h) are all respectively equal. Finally prove that v(y, s) is C2

near (y, s). Translated back to (1.10), conclude that a generalized solution of

(1.10) which is piecewise C2 across a C1 curve must be C2 across it unless the

curve is of the form x± ct = x0 for some constant x0, in which case the solution

can have a certain jump discontinuity.
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2.9 Basic Properties of Fourier Transforms∗

We first give an argument for the Fourier inversion formula in the case that g is a C1

function with compact support on R, namely,

g(x) =

∫
R
ĝ(ξ)eixξ dξ, with ĝ(ξ) = (2π)−1

∫
R
g(x)e−ixξ dx. (2.25)

Let l be large enough that the support of g is contained in (−l, l). Then we know

that the full Fourier series of g on (−l, l) converges to g(x) uniformly over [−l, l]. The

full Fourier series of g on (−l, l) is given by

∞∑
n=−∞

cne
inπx
l ,

with cn = (2l)−1
∫ l
−l g(y)e−

inπy
l dy = (2l)−1

∫
R g(y)e−

inπy
l dy. This relation holds for

any such large l. Since g has compact support,

ĝ(ξ) = (2π)−1

∫ ∞
−∞

g(y)e−iξy dy = (2π)−1

∫ l

−l
g(y)e−iξy dy

is defined for all ξ ∈ R, and cn = π
l
ĝ(ξn), where {ξn = nπ

l
} are the grid points of the

partition of R into intervals of length π
l
. Then for any x, −l < x < l,

g(x) =
∞∑

n=−∞

cne
inπx
l =

∞∑
n=−∞

ĝ(ξn)eiξnx
π

l
,

which is a Riemann sum for the (improper) integral
∫
R ĝ(ξ)eiξxdξ. We will see momen-

tarily that, under our conditions on g, this improper integral converges absolutely, so

in the limit l→∞, we obtain

g(x) =

∫
R
ĝ(ξ)eiξxdξ. (2.26)

The convergence of the integral
∫
R |ĝ(ξ)| dξ uses the Parseval relation for g over

(−l, l) ∫ l

−l
|g(x)|2 dx =

∞∑
n=−∞

|cn|22l =
∞∑

n=−∞

2π2|ĝ(ξn)|2

l
.

The R.H.S. is a Riemann sum of the integral 2π
∫
R |ĝ(ξ)|2dξ. We justify the integra-

bility of this integral by noting that

ĝ(ξn + t) = (2π)−1

∫ ∞
−∞

g(y)e−iyte−iξny dy = ̂g(x)e−ixt(ξn),

∗This section is included for completeness. Most of the material is not used in a substantial way

in the remaining notes; a student may look up the material of this section only when needed.
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so the same Parseval relation for g(x)e−ixt over (−l, l) implies that for any t∫ l

−l
|g(x)|2 dx =

∫ l

−l
|g(x)e−ixt|2 dx =

∞∑
n=−∞

2π2|ĝ(ξn + t)|2

l
.

Integrating both sides over t ∈ [0, π
l
], we obtain

π

l

∫
R
|g(x)|2 dx =

∞∑
n=−∞

2π2

l

∫ π
l

0

|ĝ(ξn + t)|2 dt =
2π2

l

∫
R
|ĝ(ξ)|2 dξ.

Eliminating the factors π
l

on both sides gives us∫
R
|g(x)|2 dx = 2π

∫
R
|ĝ(ξ)|2dξ (2.27)

for any C1 function g with compact support on R. This is called the Plancherel

identity, and it is based on this identity that Fourier transform is extended to all

L2(R) functions.

Now, for ξ 6= 0, integrating-by-parts gives us

ĝ(ξ) = −iξ−1ĝ′(ξ).

The Plancherel relation for g′ implies that
∫
|ξ|>1
|ĝ′(ξ)|2 dξ is convergent. Thus by the

Cauchy-Schwarz inequality we have∫
|ξ|>1

|ĝ(ξ)| dξ ≤
(∫
|ξ|>1

|ξ|−2 dξ

)1/2(∫
|ξ|>1

|ĝ′(ξ)|2 dξ
)1/2

<∞,

which justifies the absolute integrability of ĝ(ξ) over R.

We have so far used the Parseval relation in its quadratic form; it has a bilinear

form: ∫ l

−l
g(x)h(x) dx = 2l

∞∑
n=−∞

cndn,

where dn = (2l)−1
∫ l
−l h(x)e−

inx
l dx are the Fourier coefficients of h(x) over (−l, l).

This then leads to a bilinear form of the Plancherel identity, first for C1(R) functions

g, h with compact support, then for g, h ∈ L2(R) by a density argument:∫
R
g(x)h(x) dx = 2π

∫
R
ĝ(ξ)ĥ(ξ) dξ. (2.28)

There are various conventions in defining the Fourier transform. Another com-

monly used convention is to define

g̃(ξ) =

∫ ∞
−∞

g(y)e−iξy dy = 2πĝ(ξ), (2.29)
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then (2.26) turns into

g(x) =
1

2π

∫
R
g̃(ξ)eiξxdξ, (2.30)

and the Plancherel identity would take the form of∫
R
|g(x)|2 dx = (2π)−1

∫
R
|g̃(ξ)|2dξ. (2.31)

Our definition of ĝ(ξ) follows closely the convention for the Fourier coefficients of the

Fourier series of a function, as reflected in (2.26).

A further commonly used convention is to define

Fg(ξ) =
1√
2π

∫ ∞
−∞

g(y)e−iξy dy =
√

2πĝ(ξ), (2.32)

then (2.26) takes on a symmetric form

g(x) =
1√
2π

∫
R
Fg(ξ)eiξxdξ = [F ◦ Fg] (−x), (2.33)

and the Plancherel identity would take the form of∫
R
|g(x)|2 dx =

∫
R
|Fg(ξ)|2dξ, (2.34)

which shows that F is an isometry on L2(R).

However, a property of the Fourier transform involving convolution, to be intro-

duced in Theorem 2.10 below, would carry a power of 2π as a factor when formulated

in terms of ĝ or F . It turns out that if we define

Fg(k) =

∫ ∞
−∞

g(y)e−i2πky dy = g̃(2πk) = 2πĝ(2πk) =
√

2πF(2πk), (2.35)

then we still have

g(x) =

∫
R

Fg(k)ei2πkx dk, and

∫
R
|g(x)|2 dx =

∫
R
|Fg(ξ)|2dξ. (2.36)

In physics context k is called the wave number while ξ = 2πk is called the angular

wave number; k−1 is called the wave length (the distance between two neighboring

peaks).

We have done our discussion so far in R. We extend the definitions to Rn and

summarize the main properties.

For any g ∈ L(Rn), we define

ĝ(ξξξ) = (2π)−n
∫
Rn
g(x)e−ix·ξξξ dx for ξξξ ∈ Rn, (2.37)

and

Fg(k) = (2π)nĝ(2πk) =

∫
Rn
g(x)e−i2πx·k dx for k ∈ Rn. (2.38)
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Theorem 2.9. The following holds for any g, h in Cm
c (Rn), the space of m-times

continuously differentiable functions with compact support, when m > n/2.

(i). |ξξξ|m|ĝ(ξξξ)| → 0 as ξξξ →∞.

(ii). g(x) =
∫
Rn ĝ(ξξξ)eix·ξξξ dξξξ =

∫
Rn Fg(k)ei2πk·x dk.

(iii). F ◦F (g)(x) = g(−x).

(iv).
∫
Rn g(x)h(x) dx = (2π)n

∫
Rn ĝ(ξξξ)ĥ(ξξξ) dξξξ =

∫
Rn F (g)(k)F (h)(k) dk.

(v).
∫
Rn |g(x)|2 dx = (2π)n

∫
Rn |ĝ(ξξξ)|2 dξξξ =

∫
Rn |F (g)(k)|2 dk.

(vi). ̂g(x + y)(ξξξ) = eiξξξ·yĝ(ξξξ).

(vii). ̂g(x)eiξξξ′·x(ξξξ) = ĝ(ξξξ − ξξξ′).

(viii). D̂xjg(x)(ξξξ) = iξj ĝ(ξξξ); F
(
Dxjg(x)

)
(k) = i2πkjFg(k).

These properties, except for the first and last one, also hold for g, h ∈ L2(Rn) by a

density argument.

Even for g ∈ L(Rn) one can show that ĝ(y) → 0 as y → ∞. The condition m >

n/2 is imposed to make sure that ĝ(y) has sufficiently fast decay to be integrable in Rn

so the integrals in (ii) converge absolutely; relaxing this condition would necessitate

the interpretation of (ii) as elements of L2(Rn).

As a consequence of (iii) and (iv), F is invertible on L2(Rn)∗ and in fact is an

isometry on it. (iii) also implies that F 4 is the identity map, so as a consequence, if

F has any eigenvalue λ, it must be a 4th root of 1.

The convolution plays an important role in studying Fourier transforms. The

convolution between φ, η ∈ Cc(Rn) is defined as

φ ∗ η(x) =

∫
Rn
φ(x− y)η(y) dy =

∫
Rn
φ(y)η(x− y) dy.

Heuristically it is an average of φ weighted by η (or average of η weighted by φ).

Here are some basic properties of convolution.

Theorem 2.10. Suppose that φ, ψ, η ∈ Cc(Rn) and p, q, r ≥ 1 satisfy 1
r

+ 1 = 1
p

+ 1
q
,

then

∗Note that F does not map Cmc (Rn) into Cmc (Rn) so does not define an invertible map on

Cmc (Rn); our condition on m guarantees that F : Cmc (Rn) 7→ L(Rn)∩L2(Rn) is well defined so the

integrals in F ◦F converge absolutely when acting on Cmc (Rn).
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(a). φ ∗ η(x) = η ∗ φ(x).

(b). (φ ∗ ψ) ∗ η = φ ∗ (ψ ∗ η).

(c). F (φ ∗ η) = F (φ)F (η) and φ̂ ∗ η = (2π)nφ̂η̂.

(d). ‖φ ∗ η‖Lr(Rn) ≤ ‖φ‖Lp(Rn)‖η‖Lq(Rn).

(d) allows to extend φ ∗ η as an element in Lr(Rn) when φ ∈ Lp(Rn) and η ∈ Lq(Rn).

We will only provide a proof for (c) and the q = 1 special case of (d).

Proof of (c) and q = 1 case of (d) of Theorem 2.10.

F (φ ∗ η)(k) =

∫
Rn
φ ∗ η(x)e−i2πx·k dx

=

∫
Rn

∫
Rn
φ(x− y)η(y)e−i2πx·k dx dy

=

∫
Rn

∫
Rn
φ(x)η(y)e−i2π(x+y)·k dx dy

=

∫
Rn

(∫
Rn
φ(x)e−i2πx·k dx

)
η(y)e−i2πy·k dy

= F (φ)(k)F (η)(k).

The q = 1 case of (d) is an integral form of the Minkowski inequality with |η(y)| dy
as weight, as in this case r = p, so

‖φ ∗ η‖Lp(Rn) ≤
(∫

Rn

∣∣∣∣∫
Rn
φ(x− y)η(y) dy

∣∣∣∣p dx)1/p

≤
∫
Rn

(∫
Rn
|φ(x− y)|p dx

)1/p

|η(y)| dy

=‖φ‖Lp(Rn)‖η‖L1(Rn).

Here is a typical example of how Fourier transform is used in constructing solutions

of a linear PDE with constant coefficients. To construct a solution to

utt − c2uxx + αux + βu = f(x, t), in R× [0,∞),

for each t one treats both sides of the above equation as functions of x and takes

Fourier transform on both sides—assuming that Fourier transform of each of the

terms is well defined. Using the linearity and the above properties and denoting
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û(ξ, t) and f̂(ξ, t) as the respective Fourier transform of u(x, t) and f(x, t) in x, and

assuming û(·, t)tt(ξ) = û(ξ, t)tt, we have

û(ξ, t)tt + c2ξ2û(ξ, t) + iαξû(ξ, t) + βû(ξ, t) = f̂(ξ, t),

which produces an ODE in û(ξ, t) in the t variable, with ξ as a parameter. For

simplicity, let’s take α = 0, β > 0, and f ≡ 0, then

û(ξ, t) = A(ξ) cos
(√

c2ξ2 + βt
)

+B(ξ) sin
(√

c2ξ2 + βt
)

for some constants A(ξ), B(ξ). Suppose that u(x, 0) = u0(x) and ut(x, 0) = u1(x),

then setting t = 0 gives us

A(ξ) = û0(ξ),
√
c2ξ2 + βB(ξ) = û1(ξ).

In the final construction of u(x, t), if we are able to identify an appropriate S(x, t)

such that Ŝ(ξ, t) = sin
(√

c2ξ2 + βt
)
/
√
c2ξ2 + β, then we would have the relation

û(ξ, t) = û0(ξ)∂tŜ(ξ, t) + û1(ξ)Ŝ(ξ, t).

We would then be able to use (c) to identify u(x, t) as

(2π)−1 (u0 ∗ ∂tS(x, t) + u1 ∗ S(x, t)) .

Unfortunately it is not a particularly simple task to identify S(x, t) using the defini-

tion and properties of Fourier transforms—in fact, very rarely can we compute the

Fourier transform of a function explicitly, or identify a function directly as an explicit

(elementary) function via its Fourier transform; but there are tools to read-off infor-

mation about a function through its Fourier transform. Note that Ŝ(ξ, t) ∈ L2(R),

but not in L(R), so one can’t directly use the integral
∫
R Ŝ(ξ, t)eiξx dξ to identify

S(x, t).

To make this procedure rigorous, one needs to assume that all the terms in the

PDE are in appropriate function spaces for which the properties of the Fourier trans-

form in Theorem 2.9 are valid, and also has to justify that one can exchange the order

of differentiation in t and Fourier transform, namely, û(x, t)tt = û(x, t)tt. Usually one

does not expect to settle the existence and uniqueness of the solution at the same

time, so needs not justify each step in constructing a solution candidate. One can use

the heuristic idea that u(x, t) is the superposition of its “Fourier modes” û(ξ, t)eiξx,

and each of this Fourier mode should satisfy the same equation. Plugging this into the

equation (and replacing f(x, t) by its Fourier mode f̂(ξ, t) at “frequency” ξ) would
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produce an equation for û(ξ, t)—the same equation as obtained by using the proper-

ties of the Fourier transform and one does not need to memorize the formal properties

in Theorem 2.9 in carrying out this procedure.

The Gaussian function, e−ax
2
, a > 0, is one of the rare functions whose Fourier

transform can be computed explicitly, and it is used in many contexts. In fact we did

the computation in deriving (2.18). The derivation contained the following compu-

tation for t > 0 ∫
R
eixξ−ξ

2tdξ =

√
π

t
e−

x2

4t ,

which implies that

ê−tx2 =
1√
4πt

e−
ξ2

4t ;
1̂√
4πt

e−
x2

4t =
1

2π
e−tξ

2

; F (e−tx
2

) =

√
π

t
e−

π2ξ2

t .

Our earlier derivation for solutions of (1.20) amounts to

û(·, t)(ξ) = û(·, 0)(ξ)e−ξ
2t.

By property (c) of Theorem 2.10, we also have

̂
u(·, 0) ∗ 1√

4πt
e−
|·|2
4t (ξ) = û(·, 0)(ξ)e−ξ

2t,

from which we conclude that

u(x, t) = u(x, 0) ∗ 1√
4πt

e−
x2

4t =

∫
R
u(x− y, 0)

1√
4πt

e−
y2

4t dy.

The same technique can be applied to any function f ∈ Lp(Rn) (for p = 1 or 2

now) to give
̂

f ∗ 1

(4πt)n/2
e−
|·|2
4t (ξξξ) = f̂(ξξξ)e−|ξξξ|

2t.

Since the R.H.S. above decays sufficiently fast in ξ for t > 0, we have

f ∗ 1

(4πt)n/2
e−
|·|2
4t (x) =

∫
Rn
f̂(ξξξ)e−|ξξξ|

2t+ix·ξξξ dξξξ.

Recall that the family
{
K(x, t) := 1

(4πt)n/2
e−
|x|2
4t

}
t>0

forms an approximation of iden-

tity as t↘ 0, namely, they satisfy (AP1)–(AP3), which were established for the n = 1

case right after (2.18). We have

Theorem 2.11. For any u ∈ Lp(Rn), 1 ≤ p <∞,

u ∗ 1

(4πt)n/2
e−
|·|2
4t (x)→ u in Lp(Rn).
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Using this theorem we conclude that, for p = 1 or 2,

f(x) = lim
t↘0

f ∗ 1

(4πt)n/2
e−
|·|2
4t (x) = lim

t↘0

∫
Rn
f̂(ξξξ)e−|ξξξ|

2t+ix·ξξξ dξξξ

in the sense of Lp(Rn).

This is a generalization of the Fourier inversion formula. When it is known that

f̂ ∈ L(Rn), the limit on the R.H.S exists point-wise and equals
∫
Rn f̂(ξξξ)eix·ξξξ dξξξ. Thus

when both f and f̂ are in L(Rn), we have established the point-wise inversion relation:

f(x) =

∫
Rn
f̂(ξξξ)eix·ξξξ dξξξ.

We will later extend Fourier transform to a much class of objects, called tempered

distributions, to make this tool more widely applicable.

Proof of Theorem 2.11. Set

u(x; t) =

∫
Rn
u(y)K(x− y, t) dy.

Using (AP1) we have

u(x; t)− u(x) =

∫
Rn
u(y)K(x− y, t) dy − u(x) =

∫
Rn

[u(x− z)− u(x)]K(z, t) dz,

We now apply the integral version of Minkowski∗ inequality to get

||u(x; t)− u(x)||Lp(Rn)

=||
∫
Rn

[u(x− z)− u(x)]K(z, t) dz||Lp(Rn)

≤
∫
Rn
||u(x− z)− u(x)||Lp(Rn)K(z, t) dz

≤
∫
|z|≤δ
||u(x− z)− u(x)||Lp(Rn)K(z, t) dz +

∫
|z|>δ
||u(x− z)− u(x)||Lp(Rn)K(z, t) dz.

Since p < ∞, we will use the continuity property of translation in Lp(Rn), namely,

for any ε > 0, there exists δ > 0 such that for |z| ≤ δ, we have

||u(x− z)− u(x)||Lp(Rn) < ε,

∗Minkowski inequality and its integral version are all reflections of the convexity property of the

Lp norm, which can be schematically expressed as the Lp norm of a convex combination of a family

of functions is ≤ the convex combination of the Lp norms of this family of functions.
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which implies∫
|z|≤δ
||u(x− z)− u(x)||Lp(Rn)K(z, t) dz < ε

∫
|z|≤δ

K(z, t) dz < ε,

using (AP1) and (AP3). Using (AP2) and (AP3),∫
|z|>δ
||u(x− z)− u(x)||Lp(Rn)K(z, t) dz ≤ 2||u(x)||Lp(Rn)

∫
|z|>δ

K(z, t) dz < ε

when t > 0 is sufficiently small.

Exercises

Exercise 2.9.1. Find χ̂[−a,a], where χ[−a,a] is the characteristic function of the interval

[−a, a]. Can you find the Fourier transform of χ̂[−a,a] using the definition directly?

Exercise 2.9.2. Use Fourier transform to construct a solution to
utt(x, t)− c2uxx(x, t) = 0, (x, t) ∈ R× R+

u(x, 0) = g(x), x ∈ R

ut(x, 0) = h(x), x ∈ R.

What modifications are needed when x ∈ R is replaced by x ∈ Rn?

Exercise 2.9.3. Find ê−|x| and ê−a|x| in R, where a > 0.

Exercise 2.9.4. Construct a solution to{
uxx(x, y) + uyy(x, y) = 0, (x, y) ∈ R× R+

u(x, 0) = g(x), x ∈ R.

Can you extend your approach to the higher dimensional case on Rn×R+ for n > 1?

Exercise 2.9.5. Prove that for f, g ∈ L(Rn) we have
∫
Rn f̂(x)g(x) dx =

∫
Rn f(x)ĝ(x) dx.

2.10 Hs(Rn) and Sobolev’s inequality

For any k ∈ N, define Hk(Rn) to be the completion of C∞c (Rn) in the norm

||u||Hk(Rn) :=

 k∑
|α|=0

||∂αxu||2L2(Rn)

1/2

.

116



2.10. HS(RN) AND SOBOLEV’S INEQUALITY

Thus for any u ∈ Hk(Rn), there exists a sequence {uj} ⊂ C∞c (Rn) such that uj−u→ 0

in L2(Rn), and for any α with |α| ≤ k, {∂αxuj} is Cauchy in L2(Rn). The L2(Rn) limit

of {∂αxuj} is then the L2(Rn) ∂αx -derivative of u, as for any φ ∈ C∞c (Rn), the relation∫
Rn
∂αxuj(x)φ(x) dx = (−1)|α|

∫
Rn
uj(x)∂αxφ(x) dx

turns in the limit into∫
Rn
∂αxu(x)φ(x) dx = (−1)|α|

∫
Rn
u(x)∂αxφ(x) dx,

with u, ∂αxu(x) ∈ L2(Rn). ∂αxu(x) is called the L2(Rn) ∂αx (weak) derivative of u.

The above formulation of weak derivative can be extended to more general con-

texts.

Definition. Let D be an open domain in Rn and 1 < p <∞. A function u ∈ Lp(D)

is said to have weak derivatives in Lp(D) of order k, if for every multi-index α with

|α| ≤ k, there exists a function uα ∈ Lp(D) such that∫
D

uα(x)φ(x) dx = (−1)|α|
∫
D

u(x) ∂αxφ(x) dx,

for all φ ∈ C∞c (D). uα is called the Lp(D) weak derivative ∂αx derivative of u.

The set of Lp(D) functions with weak derivatives in Lp(D) of order k is denoted

as W k,p(D).

Theorem 2.12. For any k ∈ N, W k,2(Rn) = Hk(Rn).

Proof. Our argument above implies that Hk(Rn) ⊂ W k,2(Rn).

For the converse, fix a non-negative ρ ∈ C∞c (B1(0)) with
∫
B1(0)

ρ(x) dx = 1 and

ρ(x) = ρ(0) = maxB1(0) ρ for x ∈ B 1
2
(0). Define ρε(x) = ε−nρ(ε−1x) for ε > 0.

Then ρε ∈ C∞c (Bε(0)). For any u ∈ W k,2(Rn), our conclusion would follow if we can

establish

(i). ρε ∗ u→ u and ρε ∗ uα → uα in L2(Rn) as ε→ 0 for all α with |α| ≤ k.

(ii). ρε ∗ u ∈ C∞(Rn) and ∂αx (ρε ∗ u) = ρε ∗ uα for all α with |α| ≤ k.

(iii). ρ(0)−1ρ(εx)ρε ∗ u ∈ C∞c (Rn) converges to u in Hk(Rn).

(i) is proved using an integral version of the Minkowski inequality as follows.
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‖ρε ∗ u(x)− u(x)‖L2
x(Rn)

=‖
∫
Rn
ρε(y) (u(x− y)− u(x)) dy‖L2

x(Rn)

≤
∫
Rn
ρε(y)‖u(x− y)− u(x)‖L2

x(Rn) dy

=

∫
‖y‖≤ε

ρε(y)‖u(x− y)− u(x)‖L2
x(Rn) dy.

u ∈ L2(Rn) has the property that for any σ > 0 there exists ε0 > 0 such that

‖u(x− y)− u(x)‖L2
x(Rn) < σ for all ‖y‖ ≤ ε < ε0. Using this and

∫
‖y‖≤ε ρε(y) dy = 1

we conclude (i).

The first statement of (ii) is a standard property of convolution. For the second

part, in the defining property for uα we replace φ(x) by φ(x− y), y is any vector in

Rn. After a change of variables this leads to∫
Rn
uα(x− y)φ(x) dx = (−1)|α|

∫
Rn
u(x− y) ∂αxφ(x) dx.

Since ρε ∗ u ∈ C∞(Rn), we have

(−1)|α|
∫
Rn
∂αx (ρε ∗ u(x))φ(x) dx

=

∫
Rn

(ρε ∗ u(x)) ∂αxφ(x) dx

=

∫
Rn

∫
Rn
ρε(y)u(x− y)∂αxφ(x) dx dy

=(−1)|α|
∫
Rn

∫
Rn
ρε(y)uα(x− y)φ(x) dx dy

=(−1)|α|
∫
Rn
ρε ∗ uα φ(x) dx

In the above the integrals in both x and y are done in a compact set over which the

integrands are absolutely integrable so the interchange of integrals is justified. Since

this holds for all φ ∈ C∞c (Rn), it follows that ∂αx (ρε ∗ u(x)) = ρε ∗ uα.

For (iii), we first note that

‖ρ(0)−1ρ(εx)ρε ∗ u− u‖L2(Rn)

≤‖ρ(0)−1ρ(εx) (ρε ∗ u− u) ‖L2(Rn) + ‖
(
ρ(0)−1ρ(εx)− 1

)
u‖L2(Rn)

≤‖ρε ∗ u− u‖L2(Rn) + ‖
(
ρ(0)−1ρ(εx)− 1

)
u‖L2(Rn).

Using ‖ρε ∗ u− u‖L2(Rn) → 0 as ε→ 0 and

‖
(
ρ(0)−1ρ(εx)− 1

)
u‖L2(Rn) ≤

(∫
(2ε)−1≤‖x‖≤ε−1

u(x)2 dx

)1/2

→ 0
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as ε→ 0, it follows that ‖ρ(0)−1ρ(εx)ρε ∗u−u‖L2(Rn) → 0 as ε→ 0. The convergence

in L2(Rn) of the derivatives follows in a similar fashion.

Note that by the Plancherel Theorem for Fourier Transforms,

||∂αxu||2L2(Rn) = (2π)n||∂̂αxu||2L2(Rn) = (2π)n||ξξξαû(ξξξ)||2L2(Rn),

so

||u||Hk(Rn) = (2π)n/2

∫
Rn

 k∑
|α|=0

|ξξξα|2
 |û(ξξξ)|2dξξξ

1/2

which is equivalent to ||(1+|ξξξ|)kû(ξξξ)||L2(Rn). If k > n/2, using ||(1+|ξξξ|)−k||L2(Rn) <∞,

we see that for any u ∈ C∞c (Rn),

|u(x)| ≤ (2π)n
∫
Rn
|û(ξξξ)|dξξξ ≤ (2π)n||(1 + |ξξξ|)kû(ξξξ)||L2(Rn)||(1 + |ξξξ|)−k||L2(Rn)

≤ C(n, k)||u||Hk(Rn).

(2.39)

(2.39) continues to hold for any u ∈ Hk(Rn). This is part of Sobolev imbedding

Theorem.

In fact, even for non-integer s ∈ R, ||(1 + |ξξξ|)sû(ξξξ)||L2(Rn) defines a norm on

C∞c (Rn). The completion of C∞c (Rn) in this norm is denoted as Hs(Rn). (2.39)

continues to hold if k there is replaced by a non-integer s as long as s > n/2.

Theorem 2.13. For any s > n/2, and any u ∈ Hs(Rn), u must be bounded and

continuous in Rn, and (2.39) holds. This is expressed as Hs(Rn) ⊂ Cb(Rn). Fur-

thermore, if s − n/2 > m ∈ N, then any u ∈ Hs(Rn) has bounded and continuous

derivatives for orders up to m in Rn, and for each α with |α| ≤ m,

sup
Rn
|∂αxu(x)| ≤ C(n, s)||u||Hs(Rn). (2.40)

A version of (2.40) holds for functions W k,p(D) when kp > n under suitable regularity

assumption on D.

We remark that the norm on Hs(Rn) is induced by an inner product defined as

(u, v) =

∫
Rn
|(1 + |ξξξ|)2sû(ξξξ)v̂(ξξξ) dξξξ for u, v ∈ Hs(Rn).

Using the inequality∣∣∣∣∫
Rn
û(ξξξ)v̂(−ξξξ) dξξξ

∣∣∣∣ ≤ (∫
Rn
|(1 + |ξξξ|)2s |û(ξξξ)|2 dξξξ

)1/2(∫
Rn
|(1 + | − ξξξ|)−2s |v̂(−ξξξ)|2 dξξξ

)1/2
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and the relation
∫
Rn u(x)v(x) dx = (2π)n

∫
Rn û(ξξξ)v̂(−ξξξ) dξξξ for u, v ∈ C∞c (Rn) (based

on (iv) of Theorem 2.9), we can use the right hand side to extend the definition

of
∫
Rn u(x)v(x) dx to u ∈ Hs(Rn), v ∈ H−s(Rn), which gives a well-defined bilinear

pairing between Hs(Rn) and H−s(Rn) defined by

〈u, v〉 := (2π)n
∫
Rn
|(1 + |ξξξ|)sû(ξξξ)(1 + |ξξξ|)−sv̂(−ξξξ) dξξξ for u ∈ Hs(Rn), v ∈ H−s(Rn),

such that, for each v ∈ H−s(Rn), u 7→ 〈u, v〉 defines a continuous linear functional on

u ∈ Hs(Rn). This notion of pairing will become clearer after we introduce tempered

distribution later.

Noting that H t(Rn) ⊂ H t′(Rn) whenever t ≥ t′, we see that if s + t ≥ 0,

then
∫
Rn u(x)v(x) dx extends to a well-defined pairing between u ∈ Hs(Rn) and

v ∈ H t(Rn). Finally u ∈ Hs(Rn) 7→ ∂xu ∈ Hs−1(Rn) is naturally defined, which

allows us to discuss linear partial differential operators (with appropriately smooth

coefficients) in the framework of Hs(Rn).

Example 2.2. We now construct solutions to the Schrödinger equation (1.27), nor-

malized in the form (i∂t + ∂2
x)u(x, t) = 0 for (x, t) ∈ R × R. If we use separation

of variables to look for a solution of the form T (t)eiξx for some ξ ∈ R, we find

iT ′(t) − ξ2T (t) = 0, from which we get T (t) = T (0)e−iξ
2t. Thus for every ξ ∈ R,

u(x, t) = ei(ξx−ξ
2t) is a solution. This is equivalent to taking the Fourier transform in

the x-variable on both sides, which would give us i∂tû(ξ, t)− ξ2û(ξ, t) = 0.

The above process gives us û(ξ, t) = û(ξ, 0)e−iξ
2t. Thus we construct a solution in

the form of

u(x, t) =

∫
R
û(ξ, 0)ei(ξx−ξ

2t) dξ.

Note that |û(ξ, t)| = |û(ξ, 0)|, so if u(·, 0) ∈ Hs(R), then so is u(·, t) with ||u(·, t)||Hs(R) =

||u(·, 0)||Hs(R).

To make u(x, t) a twice continuously differentiable function in x, it suffices to work

with a u(x, 0) such that û(ξ, 0) decays sufficiently fast as |ξ| → ∞. u(x, 0) ∈ C∞c (Rn)

will certainly do. But we use the preservation of the Hs(R) to produce classical

solutions for a bigger class of initial data: the Sobolev’s Theorem above says that

it suffices to work with Hs(R) with s > 2 + 1/2. It turns out that under this

condition, the u(x, t) is also once continuously differentiable in t and that it satisfies

the Schrödinger equation in the classical sense.

The sense in which this solution takes on its initial data is given by examining

||u(·, t)− u(·, 0)||Hs(R) =

(∫
R
(1 + |ξ|)2s|û(ξ, 0)|2|e−iξ2t − 1|2 dξ

)1/2

.
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Since
∫
R(1+ |ξ|)2s|û(ξ, 0)|2 dξ <∞ and |e−iξ2t−1| ≤ 2, with |e−iξ2t−1| → 0 as t→ 0,

we see that ||u(·, t)−u(·, 0)||Hs(R) → 0 as t→ 0 (using an argument similar to that at

the end of Proof of Theorem 2.2 or Lebesgue’s Dominated Convergence Theorem).

For u(·, 0) ∈ Hs(R) but s ≤ 2 + 1/2, we can use smooth solutions with uj(·, 0) ∈
C∞c (R) and uj(·, 0) → u(·, 0) ∈ Hs(R) to generate solutions that are converging in

the Hs(R) norm and define the limit as a generalized solution in Hs(R).

Formally the operator i∂t + ∂2
x arises from the operator for the heat equation,

−∂t + ∂2
x, after substituting t by it. Using this formal relation, we set

u(x, t) =

∫
R
K(x− y, it)g(y) dy =

∫
R

e
i|x−y|2

4t

√
4πit

g(y) dy

and can verify that it defines a solution of (i∂t+∂
2
x)u(x, t) = 0 at least for g ∈ C∞c (R).

It is possible to prove that u(x, 0) = g(x) in L2(R) sense, namely, ‖u(·, t)−g(·)‖L2(R) →
0 as t ↘ 0, but a direct proof using this representation is not easy; it is also much

harder to prove u(x, t)→ g(x) as t↘ 0 in the point wise sense.

Exercises

Exercise 2.10.1. Provide a detailed proof for (2.40).

Exercise 2.10.2. Assume that α = s − n/2 satisfies 0 < α < 1. Show that there

exists a constant C = C(n, s) > 0 such that for all u ∈ C∞c (Rn) and h ∈ Rn, there

holds

|u(x + h)− u(x)| ≤ C||u||Hs(Rn)‖h‖α,

therefore proving that the above inequality continues to hold for u ∈ Hs(Rn). Hint:

Use the representation

u(x + h)− u(x) = (2π)n
∫
Rn
û(ξξξ)eix·ξξξ

(
eih·ξξξ − 1

)
dξξξ,

break up the integral into the sum of
∫
‖ξξξ‖≤‖h‖−1 and

∫
‖ξξξ‖>‖h‖−1 and estimate them

separately.

Exercise 2.10.3. Assume g ∈ L1(R). Prove that (x, t) 7→
∫
RK(x − y, it)g(y) dy is

continuous in (x, t) ∈ R× (R \ {0}), and that

‖
∫
R
K(x− y, it)g(y) dy‖L∞(R) ≤

‖g‖L1(R)√
4π|t|

.
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2.11 More Sobolev Imbedding Theorems

Theorem 2.13 is about function spaces with L2 derivatives. We summarize here a few

basic imbedding theorems of W k,p(D) allowing p 6= 2. The proofs for these imbedding

theorems will not depend on Fourier transforms. Sections 4.2.3 and 4.3 also contain

some simple cases of Sobolev spaces in the context of applications related to the

energy method and variational method. Only case (b) of Theorem 2.15 will be used

at the end of chapter six.

We first state a basic approximation property for functions in W k,p(D) without

proof—it is an analogue of Theorem 2.12.

Theorem 2.14. Suppose that D ⊂ Rn is an open domain such that any point P ∈ ∂D
has an open neighborhood U in Rn, a hypercube Ka = {x ∈ Rn : |xi| < a}, a Ck

diffeormorphism Φ from Ka onto U , and some m ≤ n, such that (i). Φ(0) = P ;

(ii). Φ−1(U ∩D) = Km
a := {x ∈ Ka : xi > 0, i = 1, · · · ,m}. Then for any function

u ∈ W k,p(D), there exists a sequence uj ∈ W k,p(D) ∩ C∞(D) such that uj → u in

W k,p(D).

A most common domain satisfying the assumption of Theorem 2.14 is a domain

whose boundary is a Ck-hypersurface, which corresponds to the case of m = 1. A

domain satisfying the assumption of Theorem 2.14 is called a domain with piecewise

Ck boundary. We denote by W k,p
0 (D) the completion of C∞c (D) in the W k,p(D) norm.

With Theorem 2.14, we can prove properties of W k,p(D) (respectively W k,p
0 (D))

by proving the same properties in W k,p(D) ∩ C∞(D) (respectively C∞c (D)).

Another relevant geometric property of a domain is the following.

Definition. For any open subset Ω ⊂ Sn−1, let CΩ = {x = rω : ω ∈ Ω, r > 0} denote

the cone with opening Ω, and CΩ,R = {x = rω : ω ∈ Ω, R > r > 0} denote the

truncated cone of radius R.

A domain D is said to have the cone property if there exists c > 0 such that any

point P ∈ D has a truncated cone CΩP ,R such that the translated cone with vertex

at P , P + CΩP ,R ⊂ D and |ΩP | ≥ c, R ≥ c.

A domain D is said to have the strong cone property if there exist c > 0 and

ρ > 0 such that for any P,Q ∈ D with |P − Q| < ρ, there exist truncated cones

P + CΩP ,R ⊂ D and Q+ CΩQ,R ⊂ D such that R ≤ c−1|P −Q| and

|(P + CΩP ,R) ∩ (Q+ CΩQ,R)| ≥ c|P −Q|n.

A bounded domain with piecewise C1 boundary satisfies the cone and the strong

cone property.
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Recall that for 0 < α < 1, the Cα(D)-seminorm is defined by

[u]α;D := sup
P,Q∈D

|u(P )− u(Q)|
|P −Q|α

.

Theorem 2.15 (Morrey and Sobolev Imbedding). (a). If p > n, then there exists

C = C(p, n) > 0 such that for any u ∈ W 1,p
0 (D)

max
D
|u| ≤ CR1−n/p‖∇u‖Lp(D), where R is the diameter of D, (2.41)

and

[u]α;D ≤ C‖∇u‖Lp(D), where α = 1− n

p
. (2.42)

(b). If 1 ≤ p < n, then there exists C = C(p, n) > 0 such that for any u ∈ W 1,p
0 (D)

‖u‖Lp∗ (D) ≤ C‖∇u‖Lp(D), where
1

p∗
=

1

p
− 1

n
. (2.43)

(c). If D satisfies the cone property and p > n, then there exists C > 0 such that

any u ∈ W 1,p(D) satisfies

sup
x∈D
|u(x)| ≤ C‖u‖W 1,p(D). (2.44)

(d). If D satisfies both the cone and the strong cone property and p > n, then there

exists C > 0 such that any u ∈ W 1,p(D) satisfies

[u]α,D ≤ C‖u‖W 1,p(D), α = 1− n

p
. (2.45)

Proofs for (a), (c) and (d) rely on the following Lemma.

Lemma 2.16. There exists c = c(n) > 0 such that

(i). if u ∈ C1
c (BR), then for any x ∈ BR,

|u(x)| ≤ c

∫
BR

|∇u(z)|
|x− z|n−1

dz; (2.46)

(ii). if u ∈ C1(BR), then for any x ∈ BR,

|u(x)| ≤ c

∫
BR

|∇u(z)|+R−1|u(z)|
|x− z|n−1

dz; (2.47)
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(iii). if u ∈ C1(BR(x)), then

|BR(x)|−1

∫
BR(x)

|u(x)− u(z)| dz ≤ c

∫
BR(x)

|∇u(z)|
|x− z|n−1

dz. (2.48)

(2.47) and (2.48) continue to hold if BR is replaced by a truncated cone CΩ,R of radius

R, in which case the constant c is bounded above by |Ω|−1.

Proof. For (i), we take any u ∈ C1
c (BR) and any ωωω ∈ Sn−1, then

u(x) = −
∫ ∞

0

d

dr
u(x + rωωω) dr.

Integrating this over ωωω ∈ Sn−1, we obtain

|Sn−1||u(x)| ≤
∫
ωωω∈Sn−1

∫ ∞
0

|∇u(x + rωωω) drdωωω.

Setting z = x + rωωω and converting the integral in terms of z, we find

|Sn−1||u(x)| ≤
∫
BR

|∇u(z)|
|x− z|n−1

dz.

For (ii), we take a standard radial cut-off function η supported in B1(0) and η = 1

on B1/2(0), then apply the above estimate to u(z)η(|z−x|/R). Using |∇z(u(z)η(|z−
x|/R))| ≤ |∇u(z)|+ 4R−1|u(z)|, we establish (2.47).

For (iii), we write z = x + rωωω and use

u(z)− u(x) =

∫ r

0

d

ds
u(x + sωωω) ds =

∫ r

0

∇u(x + sωωω) ·ωωω ds,

and integrate over z ∈ BR(x) after taking absolute values on both sides to obtain∫
z∈BR(x)

|u(z)− u(x)| dz ≤
∫
z∈BR(x)

∫ r

0

|∇u(x + sωωω)| dsdz

≤
∫
ωωω∈Sn−1

∫ R

0

∫ r

0

|∇u(x + sωωω)|rn−1 ds dr dωωω

≤
∫
ωωω∈Sn−1

∫ R

0

Rn

n
|∇u(x + sωωω)| ds dωωω

=
Rn

n

∫
BR(x)

|∇u(z)|
|x− z|n−1

dz.

This proves (2.48) with c = |Sn−1|−1.

The modification of proof needed for the case that BR is replaced by a truncated

cone CΩ,R of radius R is straightforward.
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Proof of (a), (c), (d) of Theorem 2.15. For (a), if R is the diameter of D, then for

any x ∈ D, we can apply (2.47) at x but the domain of integration can still be D,

which is contained in BR(x). Note that∫
D

|∇u(z)|
|x− z|n−1

dz ≤
(∫

D

|∇u(z)|p dz
)1/p(∫

BR(x)

|x− z|−(n−1)p/(p−1) dz

)1−1/p

with (∫
BR(x)

|x− z|−(n−1)p/(p−1) dz

)1−1/p

=

(
p− 1

p− n
|Sn−1|

)1−1/p

R1−n/p.

This shows (2.41).

Next, we take any x 6= y and set ρ = |x − y|, then apply (2.48) on Bρ(x) and

Bρ(y). Using |Bρ(x) ∩Bρ(y)| ≥ c(n)|Bρ(x)| = c(n)|Bρ(y)|, we have

|u(x)− u(y)|

≤|Bρ(x) ∩Bρ(y)|−1

∫
Bρ(x)∩Bρ(y)

(|u(x)− u(z)|+ |u(z)− u(y)|) dz

≤c(n)−1

(
|Bρ(x)|−1

∫
Bρ(x)

|u(x)− u(z)| dz + |Bρ(y)|−1

∫
Bρ(y)

|u(y)− u(z)| dz

)

≤c

(∫
Bρ(x)

|∇u(z)|
|x− z|n−1

dz +

∫
Bρ(y)

|∇u(z)|
|y − z|n−1

dz

)
.

Using the estimate established above

∫
Bρ(x)

|∇u(z)|
|x− z|n−1

dz ≤

(∫
Bρ(x)

|∇u(z)|p dz

)1/p

c(p, n)R1−n/p,

and an identical estimate for
∫
BR(y)

|∇u(z)|
|y−z|n−1 dz, (2.42) follows with a C comparable to(

p−1
p−n |S

n−1|
)1−1/p

.

For (c), we apply (2.47) on CΩx,R and use(∫
CΩx,R

|x− z|−(n−1)p/(p−1) dz

)1−1/p

≤
(
p− 1

p− n
|Ωx|

)1−1/p

R1−n/p,

to obtain

|u(x)| ≤
(
p− 1

p− n

)1−1/p

R
(
|CΩx,R|−1

∫
CΩx,R

|∇u(z)|p dz

)1/p

+

(
|CΩx,R|−1

∫
CΩx,R

|u(z)|p dz

)1/p
 .
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CHAPTER 2. FOURIER’S METHOD

For (d), for any x,y ∈ D, if |x − y| < ρ, where ρ > 0 is as in the strong cone

property, we set V = (x + CΩx,R) ∩ (y + CΩy,R), where CΩx,R and CΩy,R are given as

in the strong cone property. Then

|V ||u(x)− u(y)| ≤
∫
V

|u(x)− u(z)| dz +

∫
V

|u(y)− u(z)| dz

≤
∫
CΩx,R

|u(x)− u(z)| dz +

∫
CΩy,R

|u(y)− u(z)| dz

≤c|CΩx,R|
∫
CΩx,R

|∇u(z)|
|x− z|n−1

dz + c|CΩy,R|
∫
CΩy,R

|∇u(z)|
|y − z|n−1

dz.

Our earlier argument gives∫
CΩx,R

|∇u(z)|
|x− z|n−1

dz ≤
(
p− 1

p− n

)1−1/p

R1−n/p|Ωx|1−1/p

(∫
CΩx,R

|∇u(z)|p dz

)1/p

and a similar one for
∫
CΩy,R

|∇u(z)|
|y−z|n−1 dz. Using |V | ≥ c|x− y|n and c||CΩy,R| ≤ Rn ≤

c−n|x− y|n, we obtain

|u(x)−u(y)| ≤ C(n, p, c)|x−y|1−n/p

(∫

CΩx,R

|∇u(z)|p dz

)1/p

+

(∫
CΩy,R

|∇u(z)|p dz

)1/p
 .

If |x− y| ≥ ρ, then

|u(x)− u(y)|
|x− y|1−n/p

≤ 2ρn/p−1 max{|u(x)|, |u(y)|},

and we can estimate max{|u(x)|, |u(y)|} in terms of ||u||W 1,p(D) as done in proving

(c). This concludes our proof of (2.45).

Proof of (b) of Theorem 2.15. (b) was first proved for p > 1 using (2.46) and a Hardy-

Littlewood inequality generalizing Young’s inequality on convolution dealing with the

issue that |x− y|1−n in (2.46) just fails to be in L
n
n−1 . The p = 1 case was first given

by Gagliardo and Nirenberg independently, which can also be used to derive the

1 < p < n cases.

We may take u ∈ C1
c (D) and treat it as in C1

c (Rn). For any x = (x1, · · · , xn) and

1 ≤ i ≤ n, we have

|u(x)| ≤
∫ ∞
−∞
|∂xiu(x1, · · · , xi−1, yi, xi+1, · · · , xn)| dyi.

So

|u(x)|
n
n−1 ≤

n∏
i=1

(∫ ∞
−∞
|∂xiu(x1, · · · , xi−1, yi, xi+1, · · · , xn)| dyi

) 1
n−1

.
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Integrating over x1 ∈ R and applying Hölder’s inequality on the last (n− 1)-factors,

we get∫ ∞
−∞
|u(x)|

n
n−1 dx1

≤
(∫ ∞
−∞
|∂x1u(y1, x2, · · · , xn)| dy1

) 1
n−1

n∏
i=2

(∫ ∞
−∞

∫ ∞
−∞
|∂xiu(x1, · · · , xi−1, yi, xi+1, · · · , xn)| dyi dx1

) 1
n−1

.

Repeating this for xi, i = 2, · · · , n, we obtain∫
Rn
|u(x)|

n
n−1 dx1 · · · dxn ≤

n∏
i=1

(∫
Rn
|∂xiu(x1, · · · , xi−1, yi, xi+1, · · · , xn)| dx1 · · · dxi−1dyidxi+1 · · · dxn

) 1
n−1

.

Since the integrations are effectively done in D, it then follows that

‖u‖
L

n
n−1 (D)

≤
n∏
i=1

(∫
D

|∂xiu(x1, · · · , xi−1, yi, xi+1, · · · , xn)| dx1 · · · dxi−1dyidxi+1 · · · dxn
) 1

n

.

Applying the geometric-arithmetic mean inequality to the right hand side, we obtain

‖u‖
L

n
n−1 (D)

≤ 1

n

n∑
i=1

∫
D

|∂xiu(x)| dx ≤ 1√
n

∫
D

(
n∑
i=1

|∂xiu(x)|2
)1/2

dx,

which is the p = 1 case of (5.23).

For the case of 1 < p < n, for any u ∈ C1
c (D), we consider v := |u|r−1u for some

r > 1 to be determined. Then ∇v = r|u|r−2u∇u, and the p = 1 case of (5.23) applied

to v gives(∫
D

|u|r
n
n−1

)n−1
n

≤ c(n)r

∫
D

|u|r−1|∇u| ≤ c(n)r

(∫
D

|u|(r−1)p′
)1/p′ (∫

D

|∇u|p
)1/p

,

where 1/p′ + 1/p = 1. Choose r such that (r − 1)p′ = r n
n−1

=: q, which gives q from

1/q = 1/p− 1/n, and leads to(∫
D

|u|q
)1/q

≤ c(p, n)

(∫
D

|∇u|p
)1/p

.

2.12 Additional Problems

Problem 2.12.1. This problem deals with the construction of solutions to the Dirich-

let problem on a round disk for the Helmholtz equation, namely, ∆u(x) + cu(x) = 0 x ∈ Br0(0),

u(x) = g(x) x ∈ ∂Br0(0),
(2.49)
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for some given constant c and (continuous) function g on ∂Br0(0).

(i). If we look for a solution of ∆u(x) + cu(x) = 0 of the form u = R(r)Θ(θ). Verify

that R(r) and Θ(θ) must satisfy[
R′′(r) +

R′(r)

r

]
Θ(θ) +

R(r)

r2
Θ′′(θ) + cR(r)Θ(θ) = 0,

from which deduce that Θ(θ) satisfies the same (2.13) for some λ and R(r)

satisfies

R′′(r) +
R′(r)

r
+

[
c− λ

r2

]
R(r) = 0.

Although the problem here only needs R(r) for 0 < r < r0, this ODE for R(r)

is a linear one, so we will consider its behavior for r ∈ [0,∞).

Recall that (2.13) has a non-trivial solution only iff λ = k2 for some k ∈ Z. If

c > 0, then verify that J(r) = R(r/
√
c) satisfies

J ′′(r) +
J ′(r)

r
+

[
1− α2

r2

]
J(r) = 0, (2.50)

with α2 = λ. (2.50) is called Bessel’s equation of order α. Many prob-

lems in mathematical physics are related to these functions so they are exten-

sively studied—separable solutions to the higher dimensional Helmholtz equa-

tion would lead to an equation similar to (2.50) in structure, and can in fact be

reduced to (2.50); see Exercises in sections 5.4 and 6.8.

(2.50) has two linearly independent solutions. Their leading behavior near r = 0

are determined by rβ, where β is determined so that rβ is a solution of an Euler

type ODE derived from (2.50) by keeping only the leading order terms near

r = 0: R′′(r) + 1
r
R′(r)− α2

r2R(r) = 0. So β = ±α. For β = α > 0, (2.50) has a

solution of the form

Jα(r) =
(r

2

)α ∞∑
m=0

(−1)m

m! Γ(α +m+ 1)

(r
2

)2m

for r > 0,

where Γ(z) =
∫∞

0
tz−1e−tdt is the Gamma function, with Γ(m) = (m−1)! when

m ∈ N. When β = −α /∈ Z, a second linearly independent solution of (2.50)

is given by J−α, which is obtained by simply replacing α by −α in the above.

When β = −α = −d ∈ Z<0, J−d as given above is not well defined due to the

poles of Γ at Z<0; a second linearly independent solution of (2.50) can be given

in the form of

Yα(r) =
2

π
Jα(r) ln

(r
2

)
− 1

π

(r
2

)−α ∞∑
m=0

am

(r
2

)2m

,
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where the an’s are given explicitly. The same conclusion holds also for α = 0.

Note that the leading order term of Y0(r) near r = 0 is 2
π

ln
(
r
2

)
.

(ii). Verify that in the case c < 0, a similar transformation leads to

J ′′(r) +
J ′(r)

r
+

[
−1− α2

r2

]
J(r) = 0. (2.51)

This is called modified Bessel equation of order α. Its solutions are spanned by

Jα(ir) and Yα(ir) — the same Jα and Yα as in the previous part; other than the

possibly multi-valued nature of
(
r
2

)±α
and ln

(
r
2

)
, the remaining construction of

Jα(r) and Yα(r) are given by power series of r with infinite radius of convergence,

so extends to the entire complex plane z = x + iy (with z ∈ C extending

x = r ≥ 0); (2.50) thus holds for z = x + iy ∈ C \ {R≤0}, with the derivatives

taken in the sense for complex analytic functions. When z = ir, r ∈ R+,

using dJ
dz

= dJ
idr

, d2J
dz2 = −d2J

dr2 , we see that, when J(r) and Y (r) are solutions to

(2.50), J(ir) and Y (ir) are solutions to the modified Bessel’s equation. Their

leading behavior near r = 0 are determined by (ir)±α (except for Y0(ir), which

has leading order term 2
π

ln
(
ir
2

)
); but their behavior near r = ∞ is distinct

from that of J(r) and Y (r), respectively—the leading behavior near r = ∞ of

solutions to the modified Bessel’s equation is determined by R′′(r)−R(r) = 0,

while the leading behavior near r = ∞ of solutions to the Bessel’s equation is

determined by R′′(r) + R(r) = 0; the precise asymptotic behavior of Bessel’s

functions are more subtle than what these two equations may suggest:

Jα(r) ∼
√

2

πr

(
cos(r − απ

2
− π

4
) +O(r−1)

)
as r →∞,

Yα(r) ∼
√

2

πr

(
sin(r − απ

2
− π

4
) +O(r−1)

)
as r →∞.

(iii). In constructing a solution of (2.49) in the case c < 0, separation of variables

leads to consideration of a proposed solution of the form

∞∑
k=0

[
ake

ikθ + bke
−ikθ] Jk(i√|c|r).

Here we do not use Yk, as it would be singular near r = 0. Note that Jk(i
√
|c|r)

has no zero for r ∈ (0,∞) for any k (this can be proved by the maximum
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principle or the energy method to be introduced later). Prove that (2.49) in

this case has a solution for any give g ∈ C(∂Br0(0)) (other methods for proving

the existence of a solution of this problem, such as the variational method, will

be introduced later).

(iv). In constructing a solution of (2.49) in the case c > 0, one would work with

a proposed solution of the form
∑∞

k=0

[
ake

ikθ + bke
−ikθ] Jk(√cr). Its boundary

value on ∂Br0(0) would be given by
∑∞

k=0

[
ake

ikθ + bke
−ikθ] Jk(√cr0).

Note that, this time, each Jk has a discrete but infinite number of zeros 0 <

rk,1 < rk,2 < · · · , with rk,l →∞ as l→∞. If c and r0 are such that
√
cr0 = rk,l

for some k, l, verify that v =
[
ake

ikθ + bke
−ikθ] Jk(√cr) is a solution of (2.49),

which is not trivial if ak and bk are not all zero. A non-trivial solution of (2.49) is

called an eigenfunction of ∆ on Br0(0) with zero Dirichlet boundary condition.

You will be asked below to prove that in such a case there will be necessary

conditions on g in order for (2.49) to have a solution—note that in such a case,

the component
[
ake

ikθ + bke
−ikθ] Jk(√cr) in the above construction will be 0

when r = r0, so, on a heuristic level, such a construction would not be able take

on a boundary value g if g has a non-zero component in
[
ake

ikθ + bke
−ikθ].

Follow the instruction below to prove that a necessary condition for (2.49) to

have a solution is that∫ 2π

0

g(r0e
iθ)e±ikθdθ = 0 for each k such that

√
cr0 = rk,l for some l.

(a). Verify that for any pair of C2 functions u and v,

[∆u(x) + cu(x)] v(x)−u(x) [∆v(x) + cv(x)] = div [v(x)∇u(x)− u(x)∇v(x)] .

(b). Suppose that
√
cr0 = rk,l for some k, l. Set v(x) = Jk(

√
cr)e±ikθ. Note that

[∆v(x) + cv(x)] = 0, and v = 0 on ∂Br0(0). Use the divergence structure

above and Green’s theorem to prove that if u is a solution of (2.49), then∫
∂Br0 (0)

g(r0e
iθ)
∂v(x)

∂r
r0dθ = 0.

Note that ∂v(x)
∂r
|∂Br0 (0) =

√
cJ ′k(
√
cr0)e±ikθ. Argue that J ′k(

√
cr0) 6= 0, and

use this to conclude the proof for the necessary condition.

Problem 2.12.2. This problem provides a different approach to the condition on

a hyper surface across which a piecewise C2 solution of a second order PDE of the
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form
∑n

i,j=1 aij(x)∂2
xixj

u(x) = f(x) may experience a jump discontinuity of the second

order derivatives. More precisely, let Σ be a hyper surface, u± are C2 functions on

the two sides of Σ, respectively, and satisfy the above PDE in their respective region,

and u±, together with their first derivatives agree across Σ, but experience a jump

discontinuity of some of their second derivatives.

Suppose that Σ is described by φ(x) = 0 near x0 ∈ Σ, where φ is a C1 function

and we may assume that ∂xnφ(x0) 6= 0. Thus the map x 7→ (y, τ) := (x′, φ(x)),

x′ = (x1, · · · , xn−1), defines a local diffeomorphism. Define v±(y, τ) = v±(x′, φ(x)) =

u±(x). Then what is given is that v±(y, τ) agree across τ = 0, and equal a C2 function

of y: v±(y, 0) = g(y). This transformation from u to v transforms the hyper surface

Σ into a piece of the flat hyper plane {(y, 0)}, and is a commonly used technique in

theoretical investigations.

(i). Verify that

u±xi(x) = v±yi(y, τ) + v±τ (y, τ)φxi(x), 1 ≤ i ≤ n− 1,

u±xn(x) = v±τ (y, τ)φxn(x),

u±xixj(x) = v±yiyj(y, τ) + v±yiτ (y, τ)φxj(x) + v±yjτ (y, τ)φxi(x) + v±τ (y, τ)φxixj(x),

u±xixn(x) = v±yiτ (y, τ)φxn(x) + v±τ (y, τ)φxixn(x) + v±ττ (y, τ)φxi(x)φxn(x),

u±xnxn(x) = v±ττ (y, τ)(φxn(x))2 + v±τ (y, τ)φxnxn(x).

The assumption that u±, together with their first derivatives agree across Σ,

is equivalent to v±(y, τ) and v±τ (y, τ) agree across τ = 0. Let v±τ (y, 0) = h(y).

Then v±yiτ (y, 0) = hyi(y) agree.

The above relations imply that if v±ττ (y, τ) agree across τ = 0, then all the second

derivatives of u would agree across Σ. Thus a jump discontinuity of some of

the second derivatives of u across Σ is equivalent to a jump discontinuity of

v±ττ (y, τ) across τ = 0.

(ii). Verify that the PDE
∑n

i,j=1 aij(x)∂2
xixj

u(x) = f(x), expressed in terms of v(y, τ)

has the form (
n∑

i,j=1

aij(x)φxiφxj(x)

)
v±ττ (y, τ) +R = f(x),

where R stands for sum of linear expressions in v±yiτ (y, τ), v±yi for 1 ≤ i ≤ n− 1,

and in v±τ . Since all these terms agree across τ = 0, conclude that v±ττ (y, τ) may
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experience a jump discontinuity across τ = 0 only if
∑n

i,j=1 aij(x)φxiφxj(x) = 0

for x ∈ Σ. Note that ∇φ(x) stands for a normal vector to Σ at x ∈ Σ, let

ν(x) be a unit normal vector to Σ at x ∈ Σ, so this condition is expressed as∑n
i,j=1 aij(x)νi(x)νj(x) = 0.

(iii). Conclude that for the wave equation utt(x, t) − c2∆u(x, t) = 0 in Rn × R, a

piecewise C2 solution may have a jump discontinuity of some of its second

derivatives across a hyper surface of the form t = ψ(x) only if 1 = c2|∇ψ(x)|2.

(iv). Conclude that for the Laplace equation ∆u(x) = 0 in Rn, a piecewise C2 solution

can’t have a jump discontinuity of any of its second derivatives across any hyper

surface in its domain.
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Chapter 3

Additional Elementary Solution

Methods

3.1 Method of Characteristic Curves Applied to

the One Dimensional Wave Equation

We next explore another approach related to the method of ODEs to find a solution

formula for the one dimensional wave equation utt − c2uxx = 0 for (x, t) ∈ R2. One

ingredient is to recognize that utt − c2uxx = (∂t − c∂x)(∂t + c∂x)u. So if we set

(∂t + c∂x)u = v(x, t), then we are to solve a system of first order equations

(∂t + c∂x)u = v(x, t), (3.1)

(∂t − c∂x)v = 0. (3.2)

A second ingredient is to think of the actions of the first order differential operators

in (3.1)-(3.2) at each point (x, t) as a directional derivative. Thus, for (3.2), there is

a vector-field which takes the value (−c, 1) at every (x, t), along the integral curve

of which v remains a constant. These integral curves are called the characteristic

curves for the wave equation. Here, the integral curves satisfy dx
dt

= −c, which

implies that x = −ct + x0. Thus v(−ct + x0, t) is a constant of t and is equal to

v(x0, 0), which follows from

d

dt
v(−ct+ x0, t) = −cvx(−ct+ x0, t) + vt(−ct+ x0, t) = (∂t − c∂x)v((−ct+ x0, t) = 0.

In other words, v(x, t) = v(x+ ct, 0). Plugging this into (3.1), and applying the same

method, we find

d

dt
u(ct+ x1, t) = (∂t + c∂x)u(ct+ x1, t) = v(ct+ x1, t) = v(2ct+ x1, 0).
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CHAPTER 3. ADDITIONAL ELEMENTARY SOLUTION METHODS

Thus

u(ct+ x1, t) = u(x1, 0) +

∫ t

0

v(2cτ + x1, 0)dτ = u(x1, 0) +

∫ x1+2ct

x1

v(y, 0) dy/2c.

On setting x = ct+ x1, we see x1 = x− ct, and

u(x, t) = u(x− ct, 0) +

∫ x+ct

x−ct
v(y, 0) dy/2c

= u(x− ct, 0) +

∫ x+ct

x−ct
[(∂t + c∂y)u(y, 0)] dy/2c

= u(x− ct, 0) +

∫ x+ct

x−ct
ut(y, 0) dy/2c+ [u(x+ ct, 0)− u(x− ct, 0)] /2

= [u(x+ ct, 0) + u(x− ct, 0)] /2 +
1

2c

∫ x+ct

x−ct
ut(y, 0) dy.

This recovers the d’Alembert’s formula.

Remark 3.1. The derivation process here also proves that a C2 solution of (2.11) is

unique, while that is not the case for the solution formula for the heat equation or

for the Poisson formula, or even the method for finding the d’Alembert’s formula in

the last section.

This method can be easily extended to solve the non-homogeneous problem
utt − c2uxx = f(x, t), in R× [0,∞),

u(x, 0) = g(x),

ut(x, 0) = h(x).

(3.3)

(3.2) now needs to be modified into

(∂t − c∂x)v = f(x, t).

But the same method gives now

v(x0 − ct, t) = v(x0, 0) +

∫ t

0

f(x0 − cτ, τ)dτ,

which can be rewritten as v(x, t) = v(x + ct, 0) +
∫ t

0
f(x + ct − cτ, τ)dτ , Then the

same relation d
dt
u(ct+ x0, t) = v(ct+ x0, t) gives

u(ct+ x0, t) = u(x0, 0) +

∫ t

0

v(x0 + cτ, τ)dτ

= u(x0, 0) +

∫ t

0

[
v(2cτ + x0, 0) +

∫ τ

0

f(x0 + 2cτ − cs, s)ds
]
dτ

= u(x0, 0) +

∫ x0+2ct

x0

v(y, 0) dy/2c+

∫ t

0

∫ τ

0

f(x0 + 2cτ − cs, s)dsdτ.
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On setting x = ct+ x0, we see x0 = x− ct, and

u(x, t) = u(x− ct, 0) +

∫ x+ct

x−ct
v(y, 0) dy/2c+

∫ t

0

∫ τ

0

f(x− ct+ 2cτ − cs, s)dsdτ

= u(x− ct, 0) +

∫ x+ct

x−ct

(∂t + c∂y)u(y, 0)

2c
dy +

∫ t

0

∫ t

s

f(x− ct+ 2cτ − cs, s)dτds

=
u(x+ ct, 0) + u(x− ct, 0)

2
+

1

2c

∫ x+ct

x−ct
ut(y, 0) dy +

1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dyds.

(3.4)

Theorem 3.1. Assume that g ∈ C2(R), h ∈ C1(R), and f ∈ C1(R× [0,∞)). Then

u(x, t) =
g(x+ ct) + g(x− ct)

2
+

1

2c

∫ x+ct

x−ct
h(y) dy +

1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dyds

provides a C2(R× [0,∞)) solution of (3.3), and this solution is unique.

The process that leads to (3.4) does not seem to need differentiability of f , but

the verification that the said formula indeed provides a C2(R × [0,∞)) solution of

(3.3) would require some differentiability of f , as

∂x

(∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s) dyds

)
=

∫ t

0

[f(x+ c(t− s), s) + f(x− c(t− s), s)] ds,

and further differentiation in x would require some differentiability of f in x. In fact,

when one checks through the proof here, only the C1 differentiability of f in x is

needed.

Corollary 3.2. Suppose that f ≡ 0 in the region |x| > R 0 ≤ t ≤ T , and g = h ≡ 0

in the region |x| > R. Then the solution u to (3.3) is 0 in the region |x| > R + ct.

Remark 3.2. In order to obtain a solution that is C2(R × [0,∞)), f is assumed to

be C1(R× [0,∞)), which has one additional order of differentiability than the second

order derivatives of the solution u. This “loss of differentiability” of the solution with

respect to data f is a feature of the solution of the wave equation. One can check

that, with f(x, t) = |ct − |x| − 1|, the solution as provided by the formulae above is

not in C2 near (0, 1/c).

Remark 3.3. The method of characteristic curves is most effect on solving first order

PDEs; we will discuss its general theory later on. It is applicable here because the

one-dimensional wave operator ∂2
t − c2∂2

x happens to be the product of two first order
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linear differential operators. If we consider a perturbation to the wave operator of

the form ∂2
t − c2∂2

x + a∂t + b∂x + d, then the method, as presented, may not apply

readily.

Remark 3.4. We now supply a proof for the uniqueness of generalized solution to

(2.10) using Holmgren’s approach. It suffices to prove that if u is a generalized solution

with u(x, 0) = ut(x, 0) = 0, then u is identically 0. From (2.22) we have∫∫
R×[0,∞)

u(ηtt − c2ηxx) dxdt = 0,

for all η ∈ C2(R × [0,∞)) with compact support in R × [0,∞). If we can find η to

solve ηtt−c2ηxx = u, and are allowed to insert such an η in the above integral relation,

it would lead to u ≡ 0. However, our solvability for such an equation requires some

regularity on u; and we would need η to have compact support in R × [0,∞). This

difficulty is resolved by the following approximation scheme.

We will assume that u ∈ L2(R× (0, T )) for any T > 0. Fix any T > 0, then there

exists a sequence uk ∈ C1
c (R× (0, T )) such that limk→∞ ||u− uk||L2(R×(0,T )) = 0. For

each uk, we can use d’Alembert’s formula to construct a classical solution ηk to
ηtt − c2ηxx = uk, for (x, t) ∈ R× (0, T ),

η(x, T ) = 0,

ηt(x, T ) = 0.

Note that the initial data for η is placed at t = T , and that ηk will have compact

support in R × [0,∞) — η(x, t) ≡ 0 for t ≥ T would make η ∈ C2
c (R × [0,∞)), as

uk has compact support in R× (0, T ). Thus we can use these ηn as test functions to

obtain ∫∫
R×(0,T )

uuk = 0, for each k.

Sending k →∞, we obtain
∫∫

R×(0,T )
u2 dxdt = 0. Thus u = 0.

Exercise 3.1.1. Apply the method of characteristic curves to study the solvability

of 
(∂t + c∂x)u = f(x, t) (x, t) ∈ R+ × R+,

u(x, 0) = g(x) x ∈ R+,

u(0, t) = h(t) t ∈ R+.

(a). Assume f ≡ 0 and c > 0. Derive a solutions formula for u(x, t), and discuss

conditions on g and h to make this u a continuous, and then a C1, solution in

R+ × R+.
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(b). Repeat the discussion in (a) assuming c < 0.

(c). Repeat the discussion in (a) assuming c > 0 and a general f .

Exercise 3.1.2. Apply the method of characteristic curves to study the solvability

of {
(∂t + cx∂x)u = f(x, t) (x, t) ∈ R× R+,

u(x, 0) = g(x) x ∈ R.

Hint: The integral curves of the vector field (cx, 1) satisfy dx
dt

= cx.

Exercise 3.1.3. Apply the method of characteristic curves to study the solvability

of {
(∂t + ct∂x)u = f(x, t) (x, t) ∈ R× R+,

u(x, 0) = g(x) x ∈ R.

3.2 The Duhamel’s Principle

We next explain the Duhamel’s principle, which gives a procedure for constructing a

solution of non-homogeneous linear PDEs based on the construction of solutions to the

corresponding homogeneous equations, assuming homogeneous boundary condition(s)

if we are solving an IBVP. We first illustrate this method in the context of solving an

IVP for the wave equation.

Theorem 3.3. Assume that f(x, t) ∈ C(R× [0,∞)) and that for each t, f(·, t) is C1

in x ∈ R. For each parameter s, let S(x, t; s)[f ] be the unique solution of
[
∂2
t − c2∂2

x

]
S(x, t; s)[f ] = 0, in R× [s,∞),

S(x, s; s)[f ] = 0,

∂tS(x, t; s)[f ]
∣∣
t=s

= f(x, s).

(3.5)

Then

u(x, t) =

∫ t

0

S(x, t; s)[f ]ds

solves 
utt(x, t)− c2uxx(x, t) = f(x, t), in R× [0,∞),

u(x, 0) = 0,

ut(x, 0) = 0.

(3.6)
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Remark 3.5. The conclusion above was written in a schematic form. In the partic-

ular case here, since S(x, t; s)[f ] = 1
2c

∫ x+c(t−s)
x−c(t−s) f(y, s)dy, we have

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)
f(y, s)dyds.

This reproduces the same formula as given in Theorem 3.1.

We now provide a justification for the solution representation derived from the

Duhamel principle. Formally,

ut(x, t) = S(x, t; t)[f ] +

∫ t

0

St(x, t; s)[f ]ds =

∫ t

0

St(x, t; s)[f ]ds,

utt(x, t) = St(x, t; t)[f ] +

∫ t

0

Stt(x, t; s)[f ]ds = f(x, t) +

∫ t

0

Stt(x, t; s)[f ]ds,

uxx(x, t) =

∫ t

0

Sxx(x, t; s)[f ]ds.

So

utt(x, t)− c2uxx(x, t) = f(x, t).

Of course, appropriate smoothness assumptions on f(x, t) is needed to justify dif-

ferentiation under the integral signs. In the case of the wave equation continuous

differentiability of f(x, t) in x would guarantee the existence of Stt(x, t; s)[f ] and

Sxx(x, t; s)[f ]. For some IVP, even when they exist for t > s, terms similar to

Stt(x, t; s)[f ] and Sxx(x, t; s)[f ] may not be well defined when t = s, or may con-

tain a negative power of t− s which is not integrable in s, without further regularity

assumption on f—we will see this in the context of the heat equation.

This Duhamel construction also works for solutions of general IVP of PDEs.

Remark 3.6. It turns out that solutions to the special homogeneous wave equation

(3.5) can be used to construct general solution to the Cauchy problem (3.3). A

solution of (3.3) can be constructed as

S(x, t; 0)[h] +
d

dt
S(x, t; 0)[g] +

∫ t

0

S(x, t; s)[f ]ds.

The only thing to be verified is that v(x, t) = d
dt
S(x, t; 0)[g] solves (1.10) with v(x, 0) =

g(x), and vt(x, 0) = 0. By construction S(x, t; 0)[g] solves (1.10). d
dt

and the wave op-

erator commute, so as long as g has appropriate regularity (C2 suffices), it’s clear that

v(x, t) = d
dt
S(x, t; 0)[g] solves (1.10). Also by construction, v(x, 0) = d

dt
S(x, 0; 0)[g] =

g(x), and vt(x, 0) = d2

dt2
S(x, t; 0)[g]|t=0 = c2∂2

xS(x, t; 0)[g]|t=0 = 0, as S(x, 0; 0)[g] = 0.
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In the case here as well as in cases where the differential equation is invariant

under translation in t, using the change of variable t − s = τ and the translation

invariance in t, one sees that S(x, t; s)[f ] = S(x, t− s; 0)[f(·, s)]. Thus (3.5) reduces

to solving a special case of (2.10).

The Duhamel principle here has its origin in the solution to a non-homogeneous

linear system of ODEs

w′(t)− A(t)w(t) = f(t), (3.7)

which is represented using solutions to the corresponding homogeneous linear system

of ODEs w′(t)−A(t)w(t) = 0. Here we assume that w(t) is an unknown vector valued

function with n components, and A(t) is a continuous n× n matrix valued function.

Suppose that W (t) is a matrix valued fundamental solution of w′(t)−A(t)w(t) = 0,

namely each column of W (t) is a solution of w′(t) − A(t)w(t) = 0, and W (0) is

non-degenerate (equals I, say). Then w(t) =
∫ t

0
W (t)W−1(s)f(s)ds is a solution of

(3.7) with w(0) = 0—it’s an elementary fact that W (t) remains invertible for all t.

Denote U(t; s) = W (t)W−1(s), and S(t; s)[f ] = W (t)W−1(s)f(s) = U(t; s)f(s), then

w(t) =
∫ t

0
S(t; s)[f ]ds, and U(t; s) as a (matrix valued) function of t is a solution to

U′(t) − A(t)U(t) = 0 with U(s) = I, S(t; s)[f ] as a function of t is a solution to

u′(t)− A(t)u(t) = 0 with u(s) = f(s).

We briefly review the derivation of the ODE case using the variation of parameters

method, then give a different, heuristic, derivation, which gives a better idea on why

f(x, s) is placed in that initial condition of (3.5) and can be adapted to the PDE

setting.

Recall that any solution w(t) to w′(t)−A(t)w(t) = 0 can be expressed as W (t)C

for some column vector C. When A(t) = A is a constant matrix, we can take

W (t) = eAt.

The variation of parameters method suggests that we can look for a solution of

(3.7) in the form of w(t) = W (t)C(t), where C(t) is a column vector of coefficient

functions to be determined; it follows routinely that W (t)C ′(t) = f(t), so C ′(t) =

W−1(t)f(t), from which we know that C(t) =
∫ t

0
W−1(s)f(s)ds is a solution, and

w(t) = W (t)

(∫ t

0

W−1(s)f(s)ds

)
=

∫ t

0

W (t)W−1(s)f(s)ds.
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We now give a heuristic derivation of the Duhamel formula, explaining how the

non-homogeneous term f(t) in (3.7) gets converted into the initial condition and how

this idea is adapted to the PDE setting∗.

The key idea is that if f(t) is 0 except for a short burst of time interval, say,

during [s, s+∆s], then any solution w(t) to the non-homogeneous equation will solve

the homogeneous equation w′(t) − A(t)w(t) = 0 for t ≤ s and for t ≥ s + ∆s.

The condition w(0) = 0 and the homogeneous equation would give us w(t) = 0 for

0 ≤ t ≤ s. We will use the data of f(t) for t ∈ [s, s+ ∆s] to approximate w(s+ ∆s)

by f(s)∆s, based on the equation w′(t)−A(t)w(t) = f(t) providing a rate of change

for w(t) at t = s. Then we solve w(t) for t ≥ s+∆s using the homogeneous equation

and w(s+ ∆s) = f(s)∆s as initial data, which would give us S(t; s+ ∆s)f(s)∆s.

To deal with general data f(t), we use partitions to decompose f as the superpo-

sition of “pulse funtions” as described above. Technically, we do a partition of [0, t]

into 0 = s0 < s1 < · · · < sN = t, and construct the “pulse functions” fj(τ) = f(sj)

when sj−1 ≤ τ < sj, and fj(τ) = 0 elsewhere; namely, fj(τ) = f(sj)χ{sj−1 ≤ τ < sj},
where χ{sj−1 ≤ τ < sj} = 1 if sj−1 ≤ τ < sj, and = 0 otherwise. If f is continuous,

then, when the partition size tends to 0,
∑N

j=1 fj(τ) provides a good approximation

to f(τ) over 0 ≤ τ ≤ t, and if we construct a solution vj(t) which solves the same

type of IVP with fj replacing f , vj(0) = 0,
∑N

j=1 vj(τ) is then expected to be a good

approximation for w(τ) for 0 ≤ τ ≤ t.

Here, fj(τ) may have jump discontinues at τ = sj−1, sj, so vj(τ) may not be C1,

but there is a well defined solution vj(τ) which is continuous, has a well defined left

derivative and right derivative at each point, and is piecewise C1.

Notice that, fj(τ) = 0 except when sj−1 ≤ τ < sj, and outside [sj−1, sj), vj(τ)

solves the homogeneous DE v′j(τ) − A(τ)vj(τ) = 0; furthermore, using the homoge-

neous DE satisfied by vj over [0, sj−1) and the initial condition vj(0) = 0, we conclude

that vj(τ) = 0 when 0 ≤ τ ≤ sj−1, and v′j(sj−1+) = f(sj); in addition, when the

partition is fine, namely, when sj − sj−1 is small, using v′j(sj−1+) = f(sj), we have

vj(sj) ≈ vj(sj−1) + v′j(sj−1+)(sj − sj−1) = f(sj)(sj − sj−1),

so vj(τ) can be approximated by Vj(τ) in the range sj ≤ τ ≤ t, where

V ′j (τ)− A(τ)Vj(τ) = 0 sj ≤ τ ≤ t; Vj(sj) = f(sj)(sj − sj−1).

But this implies that Vj(τ) = U(τ ; sj)f(sj)(sj−sj−1) for sj ≤ τ ≤ t. Thus
∑N

j=1 Vj(t) =∑N
j=1 U(t; sj)f(sj)(sj−sj−1), which is a Riemann sum for the integral

∫ t
0
U(t; s)f(s)ds.

∗The discussion here is only for building some intuitive understanding, and is not strictly needed

for proving the validity of the Duhamel Principle.
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Since we expect
∑N

j=1 Vj(t) to approach
∑N

j=1 vj(t), which tends to w(t) when the

partition size goes to 0, we thus expect w(t) =
∫ t

0
U(t; s)f(s)ds.

Below we adapt the Duhamel principle to give a heuristic derivation for a solution

of the wave equation. Intuitively, we can approximate f on the interval R× [0, t] by

the following piecewise defined function

f̃(x, τ) = f(x, sj), when sj−1 ≤ τ < sj,

where 0 = s0 < s1 < · · · < sN = t is a partition of [0, t]. We can rewrite f̃(x, τ) as

f̃(x, τ) =
N∑
j=1

f(x, sj)χ{sj−1 ≤ τ < sj},

where χ{sj−1 ≤ τ < sj} = 1 if sj−1 ≤ τ < sj, and = 0 otherwise. When sj − sj−1 > 0

is small, f(x, sj)χ{sj−1 ≤ τ < sj} represents “turning on” f(x, sj) only for a short

burst of time during sj−1 ≤ τ < sj. Let vj(x, τ) be a solution of
∂2
τvj(x, τ)− c2∂2

xvj(x, τ) = f(x, sj)χ{sj−1 ≤ τ < sj},
vj(x, 0) = 0,

∂τvj(x, 0) = 0.

Then, v(x, τ) =
∑N

j=1 vj(x, τ) is a solution of
vττ (x, τ)− c2vxx(x, τ) = f̃(x, τ), in R× [0, t],

v(x, 0) = 0,

vτ (x, 0) = 0.

We will construct an approximation to vj using a solution of the homogeneous

wave equation—note that vj solves the homogeneous wave equation outside of τ ∈
[sj−1, sj). First, applying the d’Alembert’s formula to vj in the range 0 ≤ τ ≤ sj−1,

we obtain vj(x, sj−1) = 0, ∂τvj(x, sj−1) = 0, thus ∂2
xvj(x, sj−1) = 0; but the PDE

gives ∂2
τvj(x, sj−1) = f(x, sj). When sj − sj−1 is small, vj(x, sj) ≈ vj(x, sj−1) +

∂τvj(x, sj−1)(sj − sj−1) = 0 (up to order sj − sj−1), and ∂τvj(x, sj) ≈ ∂τvj(x, sj−1) +

∂2
τvj(x, sj−1)(sj − sj−1) = f(x, sj)(sj − sj−1). So for τ > sj, vj(x, τ) is approximated

by Vj(x, t), which solves
vττ (x, τ)− c2vxx(x, τ) = 0, for sj < τ ≤ t,

v(x, sj) = 0,

vτ (x, sj) = f(x, sj)(sj − sj−1).
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Vj(x, τ) = v(x, τ) depends on f(x, sj) linearly, so we may write

Vj(x, τ) = S(x, τ ; sj)[f ](sj − sj−1),

where S(x, τ ; sj)[f ] solves the same problem as Vj(x, τ) = v(x, τ), with the only

difference being the second initial condition ∂τS(x, τ ; sj)[f ]
∣∣
τ=sj

= f(x, sj). Since

N∑
j=1

Vj(x, t) =
N∑
j=1

S(x, t; sj)[f ](sj − sj−1)

is a Riemann sum for the integral
∫ t

0
S(x, t; s)[f ]ds, we expect u(x, t) =

∫ t
0
S(x, t; s)[f ]ds

to be a solution of (3.6), with u(x, 0) = ut(x, 0) = 0.

Remark 3.7. Since S(x, t; s)[f ] depends on f linearly and f plays a role by its value

at s, we can adapt the idea used above to further treat f(·, s) as the superposition of

pulse-like function in the spatial variable x so that S(x, t; s)[f ] is the superposition

of solutions with pulse-like function as initial data, which motivates the notion of a

fundamental solution to the IVP.

This is done by using the approximation f(x, s) ≈
∑
f(yj, s)χε(x− yj), where yj

is a point in the j-th box (or ball) of a partition of the domain of f(x, s) of size ε,

and χε(x− yj) is the characteristic function of this j-th box, equal to 1 on this box,

and 0 elsewhere—namely, using spatial “pulse functions” to approximate f(y, s), then

S(x, t; s)[f ] will be approximated by
∑
f(yj, s)S(x, t; s)[χε(x− yj)]. Namely, we can

reduce the construction of a solution to a non-homogeneous IVP to one of solutions

to the corresponding homogenous PDE with a special kind of initial data: temporaly

and spatially localized near a point.

Since αj(ε)
def
=
∫
χε(x − yj) dx → 0 and the support of χε(x − yj) shrinks to

yj as ε → 0, αj(ε)
−1χε(x − yj) → δ(x − yj) in the distribution sense as ε → 0,

and in favorable cases, S(x, t; s)[αj(ε)
−1χε(x − yj)] has a limit as ε → 0, labeled as

S(x, t; s)[δ(· − yj)]. Furthermore, it is reasonable to expect

S(x, t; s)[f ] = lim
ε→0

∑
f(yj, s)S(x, t; s)[αj(ε)

−1χε(x−yj)]αj(ε) =

∫
U(x, t; y, s)f(y, s)dy,

where U(x, t; y, s) = S(x, t; s)[δ(· − y)] as a function of (x, t) solves the same problem

as Vj(x, t) = v(x, t) in the heuristic discussion, with the only difference being the

second initial condition

∂tU(x, t; y, s)
∣∣
t=s

= δ(x− y).

So the solution u(x, t) =
∫ t

0
S(x, t; s)[f ]ds can also be expressed as∫ t

0

∫
U(x, t; y, s)f(y, s)dyds.
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Here U(x, t; y, s) is a so called fundamental solution.

In the case of the wave equation, since it is defined as the limit of S(x, t; s)[α(ε)−1χε(x−
y)] as ε→ 0, and

S(x, t; s)[α(ε)−1χε(x− y)] =
1

2c

∫ x+c(t−s)

x−c(t−s)
α(ε)−1χε(x

′ − y) dx′,

it can be worked out easily as

U(x, t; y, s) =

 1
2c

if x− c(t− s) < y < x+ c(t− s) and t > s,

0 otherwise,

=

 1
2c

if −c(t− s) < x− y < c(t− s) and t > s,

0 otherwise.

The advantage of introducing U(x, t; y, s) is that it depends only on the wave equation,

not on f ; the price to be paid is that it has jump discontinuities along x−y = ±c(t−
s), t ≥ s. But

∫
U(x, t; y, s)f(y, s)dy =

∫ x+c(t−s)
x−c(t−s) f(y, s)dy regains differentiability in

x and t if f is continuous.

Exercises

Exercise 3.2.1. This problem deals with the Duhamel principle applied to the non-

homogeneous version of IBVP (2.1), replacing 0 on the right hand side of the equation

by f(x, t). Note that the Fourier series solution of (2.1) can be expressed as an

integral involving the initial data g as follows. Using cn = 2
l

∫ l
0
g(x) sin(nπx

l
) dx in

u(x, t) =
∑∞

n=1 cn sin(nπx
l

)e−(nπ
l

)2t, prove that for t > 0, u(x, t) =
∫ l

0
g(y)G(x, y, t) dy,

where

G(x, y, t) =
2

l

∞∑
n=1

sin(
nπy

l
) sin(

nπx

l
)e−(nπ

l
)2t.

Denote
∫ l

0
g(y)G(x, y, t) dy by H[g](x, t). Derive that

H[g](x, t)+

∫ t

0

H[f(·, s)](x, t−s)ds =

∫ l

0

g(y)G(x, y, t) dy+

∫ t

0

∫ l

0

G(x, y, t−s)f(y, s) dyds

is a (formal) solution of
ut − uxx = f(x, t), for (x, t) ∈ (0, l)× R+,

u(0, t) = u(l, t) = 0, for t > 0,

u(x, 0) = g(x), for x ∈ (0, l).
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Exercise 3.2.2. This problem deals with the Duhamel principle applied to the

Cauchy problem for the heat equation:

 ut − uxx = f(x, t), for (x, t) ∈ R× R+,

u(x, 0) = 0, for x ∈ R.
(3.8)

Note that U(x, τ ; s) =
∫
RK(x− y, τ − s)f(y, s) dy is a solution of

{
Uτ − Uxx = 0, for (x, τ) ∈ R× (s,∞),

U(x, s; s) = f(x, s), for x ∈ R.

Prove that, if f is C1 in its variables, bounded, and with bounded first derivative in

x, then

u(x, t) =

∫ t

0

∫
R
K(x− y, t− s)f(y, s) dyds ∈ C(R× R+) ∩ C2,1

x,t (R× R+)

is a solution of (3.8), where

C2,1
x,t (R× R+) = {u(x, t) : ∂ax∂

b
tu ∈ C(R× R+) for all a+ 2b ≤ 2},

and K(x, t) is the heat kernel to the heat equation as introduced in (2.18). (Remark:

Differentiation under the integral sign can not be justified if one merely assumes f to

be continuous, as the best one can get under this assumption is |Ut(x, t; s)| ≤ C max |f |
t−s ,

which is not sufficient to justify d
dt

∫ t
0
U(x, t; s)ds =

∫ t
0
Ut(x, t; s)ds. (Hint: Justify

Ut(x, t; s) =

∫
R
Kt(x− y, t− s)f(y, s) dy = −

∫
R
∇yK(x− y, t− s) · ∇yf(y, s) dy

and use it to get an improved bound on |Ut(x, t; s)|. As we will discuss later, some

Hölder continuity on f is enough to justify differentiation under the integral sign.)
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3.3 Reflection Method and Compatibility Condi-

tions: Applied to One Dimensional Wave Equa-

tion on the Half Line

We use the one dimensional wave equation on the half line to illustrate the reflection

method and discuss the issue of compatibility conditions. Consider

utt − c2uxx = f(x, t), for (x, t) ∈ R+ × [0,∞),

u(x, 0) = g(x), for x > 0,

ut(x, 0) = h(x), for x > 0,

u(0, t) = 0, for t > 0.

(3.9)

We want to use the d’Alembert’s formula for the Cauchy problem on the entire axis

to construct a solution of the above problem on the half axis. In order to satisfy the

boundary condition u(0, t) = 0, for t > 0, it is natural to do an odd extension of the

initial data and the right hand side of the equation:

g̃(x) =

g(x), if x ≥ 0;

−g(−x), if x < 0.

h̃(x) =

h(x), if x ≥ 0;

−h(−x), if x < 0.

f̃(x, t) =

f(x, t), if x ≥ 0;

−f(−x, t), if x < 0.

Then

ũ(x, t) =
1

2
[g̃(x+ ct) + g̃(x− ct)] +

1

2c

∫ x+ct

x−ct
h̃(y) dy +

1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)

f̃(y, τ) dy

(3.10)

is the solution formula provided by the d’Alembert’s formula—it is a smooth solution

of the wave equation provided g̃(x), h̃(x) and f̃(x, t) have sufficient smoothness. Due

to the odd symmetry, ũ(0, t) = 0 for all t > 0. In the region x > ct, ũ(x, t) is expressed

in terms of the given initial data and f(x, t) on x > 0:

ũ(x, t) =
1

2
[g(x+ ct) + g(x− ct)] +

1

2c

∫ x+ct

x−ct
h(y) dy +

1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)

f(y, τ) dy.
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In the region x < ct, we can convert the integral
∫ x+ct

x−ct h̃(y) dy to
∫ x+ct

ct−x h(y) dy to

obtain

ũ(x, t) =
1

2
[g(x+ ct)− g(ct− x)] +

1

2c

∫ x+ct

ct−x
h(y) dy +

1

2c

∫ t

0

dτ

∫ x+c(t−τ)

x−c(t−τ)

f̃(y, τ) dy

where the last integral can also be expressed in terms of integrals of f(y, t) in intervals

of y > 0. Note that when 0 < x < ct, the characteristic curve through (x, t) is a

straight line which intersects the t-axis at (0, t− x
c
), and it gets reflected into a straight

line which intersects the x-axis at ct− x.

From Theorem 3.1, in order for ũ(x, t) to be a C2 solution for all (x, t), a sufficient

condition is to assume g̃ to be C2, and h̃, f̃ to be C1. This amounts to

g ∈ C2[0,∞), g(0) = 0, g′′(0) = 0;

h ∈ C1[0,∞), h(0) = 0;

f ∈ C1([0,∞)× [0,∞)), f(0, t) = 0, for all t > 0.

But these conditions are too restrictive. Assuming only that g ∈ C2[0,∞), h ∈
C1[0,∞), and f ∈ C1([0,∞) × [0,∞)), the formula in (3.10) provides a function

which is C2 in (x, t) ∈ [0,∞)× [0,∞) with possibly the exception along x = ct.

In order for ũ to be continuous at the corner point (0, 0), a necessary condition is

that limx→0+ ũ(x, 0) = limt→0+ ũ(0, t), i.e., g(0) = 0. In order for ũ to be C1 at the

corner point (0, 0), a necessary condition is that limx→0+ ũt(x, 0) = limt→0+ ũt(0, t),

i.e., h(0) = 0. In order for ũ to be C2 at the corner point (0, 0), a necessary condition

is that limx→0+ ũxx(x, 0) = limt→0+ ũxx(0, t). Since limx→0+ ũxx(x, 0) = g′′(0), but

limt→0+ ũxx(0, t) can be calculated through the equation as

lim
t→0+

[utt(0, t)− f(0, t)] /c2 = −f(0, 0)/c2,

we have g′′(0) = −f(0, 0)/c2.

g(0) = 0, h(0) = 0, and g′′(0) = −f(0, 0)/c2 are the compatibility conditions

of up to second order derivatives for (3.9) at (0, 0). Note that these compatibility

conditions are obtained by examining the boundary/initial conditions, as well as the

PDE at the corner point (0, 0)—all these conditions are supposed to hold on the

closure of the domain, in particular, at the corner point (0, 0) for a solution which

is C2 in [0,∞) × [0,∞). It turns out that these compatibility conditions are also

sufficient conditions for ũ to be a C2 solution in (x, t) ∈ [0,∞)× [0,∞).

Remark 3.8. From both physical and mathematical points of view, it is too restric-

tive to demand to deal only with C2 solutions. Examination of the above discussion
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shows that if we assume g(0) = 0, then ũ(x, t) will be continuous in [0,∞)× [0,∞);

and if we we assume h(0) = 0, in addition to g(0) = 0, then ũ(x, t) will be C1 in

[0,∞) × [0,∞). In both cases the formula (3.10) should be regarded as providing a

generalized solution—we will discuss later (in section 3.5) on the appropriate rules in

defining generalized solutions; but first see Exercise 3.3.3 below.

Remark 3.9. The compatibility issue also arises in the initial-boundary value prob-

lem (2.1) for the heat equation. Theorem 2.2 provides solutions that are smooth in

[0, l]× (0,∞) without necessarily requiring g(x) = u(x, 0) to be compatible at x = 0

or l with the boundary conditions u(0, t) = u(l, t) = 0 for t > 0; but the resulting

solution may not be in C([0, l] × [0,∞)). In order to obtain a solution that is in

C([0, l] × [0,∞)), we need to assume g(0) = g(l) = 0; and in order to obtain a solu-

tion that is in C2([0, l] × [0,∞)), we need to assume further that g′′(0) = g′′(l) = 0,

as the equation in this case ut(x, t)−uxx(x, t) = 0 would need to be satisfied at (0, 0)

and (l, 0).

Exercise 3.3.1. Apply the reflection method to study the IBVP
ut − uxx = f(x, t), for (x, t) ∈ R+ × [0,∞),

u(x, 0) = g(x), for x > 0,

u(0, t) = h(t), for t > 0.

(a). Assume h ≡ 0. Use the method of this section to establish a solution formula for

u(x, t) in terms of g(x) and f(x, t). Then discuss compatibility of the boundary

and initial conditions at (x, t) = (0, 0), and the sense in which the solution

u(x, t) takes on the initial value g(x).

(b). Repeat the same discussion for a general h(t). (You may assume h(t) to be

continuously differentiable and carry out the substitution v(x, t) = u(x, t) −
h(t).)

Exercise 3.3.2. Adapt the reflection method to study the IBVP
ut − uxx = f(x, t), for (x, t) ∈ R+ × [0,∞),

u(x, 0) = g(x), for x > 0,

ux(0, t) = 0, for t > 0.

Exercise 3.3.3. This Exercise provides some details for the justification that under

the assumption that g ∈ C2[0,∞) with g(0) = 0, h ∈ C1[0,∞) with h(0) = 0,
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and f ∈ C1([0,∞) × [0,∞)) with g′′(0) = −f(0, 0)/c2, then (3.10) provides a C2

solution in (x, t) ∈ [0,∞) × [0,∞) to (3.9). Note that the odd extension h̃(x) of

h(x) is C1(R), so V (x, t) = 1
2c

∫ x+ct

x−ct h̃(y) dy provides a C2([0,∞) × [0,∞)) solution

of the homogeneous version of (3.9) with V (x, 0) = 0, Vt(x, t) = h(x) for x ∈ R+.

Let U(x, t) = 1
2

[g̃(x+ ct) + g̃(x− ct)], and W (x, t) = 1
2c

∫ t
0
dτ
∫ x+c(t−τ)

x−c(t−τ)
f̃(y, τ) dy.

We will see that both U(x, t) and W (x, t) are C1([0,∞) × [0,∞)), but their second

derivatives may experience a jump discontinuity across x = ct; however, U(x, t) +

W (x, t) is C2([0,∞)× [0,∞))!

(a). Prove that

Wx(x, t) =


(2c)−1

∫ t
0

[f(x+ c(t− s), s)− f(x− c(t− s), s)] ds if x > ct,

(2c)−1
∫ t−x

c

0
[f(x+ c(t− s), s) + f(c(t− s)− x, s)] ds

+(2c)−1
∫ t
t−x

c
[f(x+ c(t− s), s)− f(x− c(t− s), s)] ds if 0 ≤ x < ct;

Wt(x, t) =


2−1

∫ t
0

[f(x+ c(t− s), s) + f(x− c(t− s), s)] ds if x > ct,

2−1
∫ t−x

c

0
[f(x+ c(t− s), s)− f(c(t− s)− x, s)] ds

+2−1
∫ t
t−x

c
[f(x+ c(t− s), s) + f(x− c(t− s), s)] ds if 0 ≤ x < ct;

and that they are continuous over [0,∞)× [0,∞).

(b). Prove that

Wxx(x, t) =


(2c)−1

∫ t
0

[fx(x+ c(t− s), s)− fx(x− c(t− s), s)] ds if x > ct,

(2c)−1
∫ t

0
[fx(x+ c(t− s), s)− fx(|c(t− s)− x|, s)] ds

−c−2f(0, t− x
c
) if 0 ≤ x < ct,

Wtt(x, t) =


c
2

∫ t
0

[fx(x+ c(t− s), s)− fx(x− c(t− s), s)] ds+ f(x, t) if x > ct,

c
2

∫ t
0

[fx(x+ c(t− s), s)− fx(|c(t− s)− x|, s)] ds+ f(x, t)

−f(0, t− x
c
) if 0 ≤ x < ct.

Thus both Wxx(x, t) and Wtt(x, t) experience a jump discontinuity across x = ct,

if f(0, 0) 6= 0.

(c). Prove that

Uxx(x, t) =

1
2

[g′′(x− ct) + g′′(x+ ct)] if x > ct,

1
2

[−g′′(ct− x) + g′′(x+ ct)] if 0 ≤ x < ct,
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Utt(x, t) =

 c2

2
[g′′(x− ct) + g′′(x+ ct)] if x > ct,

c2

2
[−g′′(ct− x) + g′′(x+ ct)] if 0 ≤ x < ct.

Thus both Uxx(x, t) and Utt(x, t) experience a jump discontinuity across x = ct,

if g′′(0) 6= 0.

(d). Using the condition that g′′(0) = −f(0, 0)/c2 to prove that U(x, t) +W (x, t) is

C2([0,∞)× [0,∞)).

3.4 The Method of Eigenfunction Expansion

For non-homogeneous linear PDEs, in addition to the Duhamel principle, we can also

use the outcome of the separation of variables method as applied to the corresponding

homogeneous PDE and adapt the idea of variation of parameters method in the theory

of ODEs to form the method of eigenfunction expansions.

More specifically, when the n × n matrix A is diagonalized by the set of vectors

{~v1, · · · , ~vn}, then not only can we use them to generate all solutions to the homoge-

neous system ~w′(t) = A~w(t), we can also construct solutions to the non-homogeneous

system ~w′(t) = A~w(t) + ~f(t) in the form of
∑n

i=1 ci(t)~vi. Since {~v1, · · · , ~vn} forms

a basis for Rn, we can also write ~f(t) =
∑n

i=1 fi(t)~vi. Then each ci(t) would satisfy

c′i(t) = λici(t)+fi(t), where λi is the eigenvalue of A associated with ~vi. For the wave

or heat equation, we can regard eix·ξ (or sin(nπx
l

) in the case of homogeneous Dirichlet

boundary condition on [0, l]) as generalized eigenfunctions of ∆ that “diagonalize” ∆

and “form a basis for appropriate function space”.

We illustrate this method via (2.11) with a non-homogeneous right hand side

f(x, t). Note that the boundary conditions u(0, t) = u(l, t) = 0 are homogeneous,

and the associated eigenfunctions {sin(nπx
l

)} have incorporated these homogeneous

boundary conditions in solving the homogeneous equation.

Since any L2[0, l] function can be expanded as a series in {sin(nπx
l

)} which is con-

vergent in L2[0, l], we may look for a solution u(x, t) such that at any t, u(·, t), utt(·, t),
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and uxx(·, t) ∈ L2[0, l]:

u(·, t) =
∞∑
n=1

un(t) sin(
nπx

l
),

utt(·, t) =
∞∑
n=1

αn(t) sin(
nπx

l
),

uxx(·, t) =
∞∑
n=1

βn(t) sin(
nπx

l
).

We also assume that

f(·, t) =
∞∑
n=1

fn(t) sin(
nπx

l
).

Thus

αn(t)− c2βn(t) = fn(t), for all n.

But

αn(t) =
2

l

∫ l

0

utt(x, t) sin(
nπx

l
) dx = u′′n(t),

and

βn(t) =
2

l

∫ l

0

uxx(x, t) sin(
nπx

l
) dx

=
2

l
ux(x, t) sin(

nπx

l
)|x=l
x=0 −

2

l

∫ l

0

nπ

l
ux(x, t) cos(

nπx

l
) dx

= −2

l

nπ

l
u(x, t) cos(

nπx

l
)|x=l
x=0 −

2

l

∫ l

0

(nπ
l

)2

u(x, t) sin(
nπx

l
) dx

= −
(nπ
l

)2

un(t) (using the condition u(0, t) = u(l, t) = 0.)

Thus un(t) satisfies

u′′n(t) + c2
(nπ
l

)2

un(t) = fn(t).

This can also be obtained formally from

[
∂2
t − c2∂2

x

]{ ∞∑
n=1

un(t) sin(
nπx

l
)

}
=
∞∑
n=1

[
∂2
t − c2∂2

x

] {
un(t) sin(

nπx

l
)
}

=
∞∑
n=1

[
u′′n(t) + c2

(nπ
l

)2

un(t)

]
sin(

nπx

l
)

=
∞∑
n=1

fn(t) sin(
nπx

l
);
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the above steps provide a mechanism for justifying the interchange of differentiation

and summation.

We can use the initial conditions to obtain

un(0) =
2

l

∫ l

0

g(x) sin(
nπx

l
) dx, u′n(0) =

2

l

∫ l

0

h(x) sin(
nπx

l
) dx.

Thus our problem has been reduced to solving an infinite system of (decoupled) ODEs.

To complete the construction of a solution, the central issue is again the conver-

gence of the series
∑∞

n=1 un(t) sin(nπx
l

) and its differentiability. Instead of trying to

prove directly the convergence of this infinite series, we will examine the truncated

finite sums as an approximate solution: define

u(N)(x, t) =
N∑
j=1

un(t) sin(
nπx

l
),

f(N)(x, t) =
N∑
j=1

fn(t) sin(
nπx

l
),

g(N)(x, t) =
N∑
j=1

gn sin(
nπx

l
),

h(N)(x, t) =
N∑
j=1

hn sin(
nπx

l
).

Then 
∂2
t u(N) − c2∂2

xu(N) = f(N)(x, t), on (x, t) ∈ [0, l]× R+,

u(N)(0, t) = u(N)(l, t) = 0, for t > 0,

u(N)(x, 0) = g(N)(x), for x ∈ [0, l],

∂tu(N)(x, 0) = h(N)(x), for x ∈ [0, l].

We then need to study the convergence of {u(N)(x, t)} in an appropriate sense. The

most elementary notion of convergence is that of uniform convergence of {u(N)(x, t)}
and the sequences consisting of its derivatives of order up to two. This can be done

if we impose sufficient differentiability of f , g, and h.

In a later section we will apply the energy estimates to be developed there to

u(N)−u(N ′) to prove that {u(N)(x, t)}, {∂tu(N)(x, t)} and {∂xu(N)(x, t)} are Cauchy in

C([0, T ], L2[0, l]) for any T > 0, so each has a limit in C([0, T ], L2[0, l])—the energy

estimates are fairly easy to obtain and are quite robust so as to be extendible to

variable coefficient wave equations or even certain nonlinear wave equations.
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Let u(·, t) denote the limit of {u(N)(x, t)} in C([0, T ], L2[0, l]), then the limits of

{∂tu(N)(x, t)} and {∂xu(N)(x, t)} in C([0, T ], L2[0, l]) are respectively the ∂t and ∂x

derivatives of u(·, t) in an appropriate sense, and one can define u(·, t) to satisfy the

wave equation in an appropriate integral sense.

Remark 3.10. The eigenfunction expansion method can also be applied to the initial-

boundary value problem with non-homogeneous boundary conditions. For instance,

consider the IBVP of the heat equation
ut(x, t)− uxx(x, t) = f(x, t) for (x, t) ∈ (0, l)× R+,

u(0, t) = g0(t) u(l, t) = gl(t) for t ∈ [0,∞),

u(x, 0) = g(x) for x ∈ [0, l].

(3.11)

The usual strategy is to reduce (3.11) into several sub-problems of similar type,

where parts of the boundary conditions (or source terms) are homogeneous. For

example, we can first find an extension h(x, t) on [0, l] × [0,∞) of g0(t) and gl(t)

with sufficient regularity — let’s assume that we can find h ∈ C([0, l] × [0,∞)) ∩
C2,1
x,t ((0, l) × R+) such that h(0, t) = g0(t) and h(l, t) = gl(t) for t ∈ [0,∞) (this may

require some regularity on g0(t) and gl(t), especially if we require derivatives of h(x, t)

up to certain order to be continuous in the closed region [0, l]× [0,∞)). Then we look

for u(x, t) in the form of u(x, t) = h(x, t) + v(x, t), where v(x, t) would solve


vt(x, t)− vxx(x, t) = f(x, t)− ht(x, t) + hxx(x, t) := f̃(x, t) for (x, t) ∈ (0, l)× R+,

v(0, t) = v(l, t) = 0 for t ∈ R+,

v(x, 0) = g(x)− h(x, 0) := g̃(x) for x ∈ [0, l].

(3.12)

We can now apply the eigenfunction expansion method to (3.12).

The key to the eigenfunction expansion method is that the PDE fits into the

pattern ut−L[u] = f , where L[u] is a differential operator in the space variable x with

its coefficients independent of t, and the domain of definition of L may incorporate the

boundary conditions for u; then when one first looks for separable solutions T (t)X(x)

to the homogeneous version of the PDE ut−L[u] = 0, one is faced with the eigenvalue

problem L[X] = λX, and T ′(t) = λT (t); and finally, if L is “diagonalizable” in the

sense that it has a complete set of eigenfunctions Xn(x) : L[Xn] = λnXn, namely,

any function in an appropriate function space can be expanded as a “Fourier series”

in terms of these eigenfunctions, then we can expand f(x, t) =
∑
fn(t)Xn(x), and

152



3.4. THE METHOD OF EIGENFUNCTION EXPANSION

construct a solution of ut − L[u] = f in the form of
∑
Tn(t)Xn(x), which would lead

to the system of ODEs T ′n(t)− λnTn(t) = fn(t).

This scheme extends to PDEs that are higher order in t, such as the wave equation.

For many IBVP’s which involve a compact spatial region, the corresponding operator

L can often be related to a compact self-adjoint operator, for which there is a standard

theory of “diagonalizability”.

Specific examples of such operators include the Schrödinger type operators −∆ +

V (x) on a bounded domain acting on functions with zero boundary value, and their

variable coefficient versions such as the spherical Laplace operator ∆S2 = 1
sin θ

∂
∂θ

(
sin θ ∂

∂θ

)
+

1
sin2 θ

∂2

∂φ2 on the round sphere, or a domain on the round sphere—acting on functions

with zero boundary value.

For instance, if we consider an “annulus region” on the round sphere defined

by {(θ, φ) : θ0 < θ < θ1, 0 ≤ φ ≤ 2π}, and consider either the heat operator or

wave operator associated with ∆S2 , with homogeneous boundary condition, we would

need to understand whether ∆S2 has a “complete” set of eigenfunctions under this

boundary condition.

If X(θ, φ) is an eigenfunction on the annulus region: ∆S2X(θ, φ) = −λX(θ, φ),

then we can first do an eigenfunction expansion in the φ variable at each θ, as we

know that any function of φ (square integrable in φ over [0, 2π]) can be expanded in

terms of {einφ}n∈Z: X(θ, φ) =
∑∞

n=−∞Θn(θ)einφ, then Θn(θ) would satisfy

1

sin θ
(sin θΘ′n(θ))

′ − n2

sin2 θ
Θn(θ) + λΘn(θ) = 0,

with appropriate boundary condition at θ = θ0, and θ1. If 0 < θ0 < θ1 < π, then the

eigenvalue problem we need to solve (with homogeneous Dirichlet boundary condition)

is 
1

sin θ
(sin θΘ′n(θ))

′ − n2

sin2 θ
Θn(θ) + λΘn(θ) = 0, θ0 < θ < θ1,

Θn(θ0) = Θn(θ1) = 0.

(3.13)

This is an example of a regular Sturm-Liouville eigenvalue problem
(p(x)u′(x))

′ − q(x)u(x) + λw(x)u(x) = 0, a < x < b,

α1u(a) + α2u
′(a) = 0,

β1u(b) + β2u
′(b) = 0,

(3.14)

where p(x), q(x), and w(x) are real valued, continuous on [a, b], with p(x), w(x) > 0 on

[a, b], and (α1, α2) 6= (0, 0), (β1, β2) 6= (0, 0). The continuity assumptions in p(x), q(x),
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and w(x) are not as essential as the positive lower bound conditions implied by the

positivity assumptions on p(x) and w(x): there exists m > 0 such that p(x), w(x) ≥ m

on [a, b]. We will assume that p(x), q(x) and w(x) are bounded: there exists some

M > 0 such that p(x), |q(x)|, w(x) ≤ M for all x ∈ [a, b]. The eigenvalue problem

associated with Exercise 1.5.2 is an example where the p(x) is discontinuous.

In the eigenvalue problem for the spherical Laplace operator, if θ0 = 0 or θ1 = π,

then the coefficient in front of Θ′n(θ) as well Θn(θ) become singular, one no longer

prescribes a homogeneous boundary condition at the corresponding end; instead, one

requires Θn(θ) remain bounded in a neighborhood of that end. The correspond-

ing eigenvalue problem is an example of a singular Sturm-Liouville eigenvalue

problem.

Sturm and Liouville first studied these problems in the 1830’s when they extended

Fourier’s method to variable coefficient PDE problems. It turns out that for a regular

Sturm-Liouville eigenvalue problem,

(a). All its eigenvalues are real, and they are distributed discretely on the real axis;

(b). Its eigenfunctions associated with distinct eigenvalues are orthogonal in L2(a, b)

with w(x) as a weight, namely,
∫ b
a
X(x)Y (x)w(x) dx = 0 if X(x) and Y (x) are

eigenfunctions of (3.14) associated with distinct eigenvalues—for this reason it’s

more meaningful to work with L2
w(a, b), the set of functions square integrable

with w as a weight; and

(c). It has a complete set of eigenfunctions which span L2
w(a, b), namely, any func-

tion in L2
w(a, b) can be approximated in the mean square sense by a linear

combination of the eigenfunctions. As a consequence, any L2
w(a, b) function can

be expanded in a “Fourier series” in terms of the eigenfunctions, and there is

a Parseval type identity. In other words, (i) and (ii) of Theorem 2.1 holds in

this general context—the integrals there and in the Parseval identity need to

use the w-weighted integrals.

(a) and (b) are elementary, and will be left as an exercise; we will provide a proof for

(c) later.

The regular Sturm-Liouville problem has the additional property that the eigenspace

corresponding to any eigenvalue is one dimensional. This follows from the unique-

ness of IVP for the ODE: the solution space to the ODE without any boundary or

initial condition is two dimensional; if the eigenspace were two dimensional, it would

mean that all solutions to the ODE would satisfy the two homogeneous boundary

conditions, which is not true.
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When solving an IVP on Rn × (0, T ], the corresponding operator is no longer

directly related to a compact self-adjoint operator, but we have used informally that

eix·ξ for ξ ∈ Rn can be regarded as “generalized eigenfunction” of ∆ on Rn, and that

any L2(Rn) function can be expanded in terms of eix·ξ via the Fourier transform. We

can adapt the eigenfunction expansion method to this setting as well. Here is an

example to illustrate this adaptation.

Example 3.1. We will find an integral representation for a solution of ut − uxx = f(x, t) (x, t) ∈ R× (0,∞),

u(x, 0) = g(x) x ∈ R.
(3.15)

At each t > 0, we expand f(x, t) =
∫
R f̂(ξ, t)eixξdξ and u(x, t) =

∫
R û(ξ, t)eixξdξ; then

treating û(ξ, t)eixξ = T (t)eixξ as the component corresponding to the Fourier mode

eixξ, we obtain, for each ξ as a parameter, an ODE in û(ξ, t):
dû(ξ, t)

dt
+ ξ2û(ξ, t) = f̂(ξ, t),

û(ξ, 0) = ĝ(ξ),

where ĝ(ξ) is given in terms of g(x) =
∫
R ĝ(ξ)eixξdξ. Note that the procedure is

essentially the method of variation of parameters, with û(ξ, t) serving as the coefficient

function in front of eixξ.

Many treatments derive the above ODE by taking Fourier transforms; but setting

up appropriate framework in which Fourier transforms (in partial variables) can be

taken and interchanged with differential operators would take considerable techni-

cal preparation, we have found this informal eigenfunction expansion approach very

efficient—either approach would usually require some additional justifications, and

since our main aim is to discover possible integral representation for a solution, we

are happy to take this efficient approach.

The solution of the above ODE IVP is given by

û(ξ, t) = ĝ(ξ)e−|ξ|
2t +

∫ t

0

e−|ξ|
2(t−s)f̂(ξ, s)ds.

We can now obtain u(x, t) as

u(x, t) =

∫
R

[
ĝ(ξ)e−|ξ|

2t +

∫ t

0

e−|ξ|
2(t−s)f̂(ξ, s)ds

]
eixξdξ

=
1

2π

∫
R

[∫
R
g(y)ei(x−y)ξ−|ξ|2t dy +

∫ t

0

∫
R
e−|ξ|

2(t−s)+i(x−y)ξf(y, s) dy ds

]
dξ

=
1

2π

[∫
R
g(y)

(∫
R
ei(x−y)ξ−|ξ|2tdξ

)
dy +

∫ t

0

∫
R

(∫
R
e−|ξ|

2(t−s)+i(x−y)ξdξ

)
f(y, s) dy ds

]
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Since 1
2π

∫
R e

i(x−y)ξ−|ξ|2tdξ = K(x− y, t) is the heat kernel, we have now obtained

u(x, t) =

∫
R
g(y)K(x− y, t) dy +

∫ t

0

∫
R
K(x− y, t− s)f(y, s) dy ds.

Exercises

Exercise 3.4.1. Obtain formal series solutions to (3.12); then use the corresponding

energy estimates to prove that the series converges in C([0, T ];L2[0, l]) under the

assumption that g̃ ∈ L2[0, l] and f̃ ∈ L2([0, l]× [0, T ]).

Exercise 3.4.2. Use the eigenfunction expansion method to find formal series solu-

tions
∑∞

n=1 un(t) sin(nπx
l

) to
vtt(x, t)− vxx(x, t) = f(x, t) for (x, t) ∈ (0, l)× R+,

v(0, t) = v(l, t) = 0 for t ∈ R+,

v(x, 0) = g(x) for x ∈ (0, l),

vt(x, 0) = h(x) for x ∈ (0, l) .

Then use the corresponding energy estimates to prove that, if u(N) =
∑N

n=1 un(t) sin(nπx
l

),

then {u(N)} converges in C([0, l]×[0, T ]), and {u(N)
t } and {u(N)

x } converge in C([0, T ], L2[0, l])

under the assumption that g is absolutely continuous over [0, l] with g(0) = g(l) = 0,

g′, h ∈ L2[0, l] and f ∈ L2([0, l]× [0, T ]). (Review Remark 2.3 to understand the need

for the conditions on g; you may also find (1.30) helpful.)

Exercise 3.4.3. Set up an eigenfunction expansion scheme for constructing solutions

to 
ut(x, t)− uxx(x, t)− γux(x, t) = f(x, t), 0 < x < π,

u(0, t) = u(π, t) = 0,

u(x, 0) = g(x), 0 < x < π,

where γ is some non-zero constant. What are the eigenfunctions and their associated

Sturm-Liouville BVPs written in a standard form as (3.14)?

Exercise 3.4.4. Prove that any eigenvalue of (3.14) must be real valued. (Hint:

Multiple the equation of X(x) by X(x), and integrate over (a, b), using the boundary

conditions.)

Exercise 3.4.5. Suppose that X(x) and Y (x) are eigenfunctions of (3.14) associated

with distinct eigenvalues λ and µ, respectively. Based on the previous exercise, one
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may assume thatX(x) and Y (x) are real valued. Prove that
∫ b
a
X(x)Y (x)w(x) dx = 0.

(Hint: Multiple the equation of X(x) by Y (x) and the equation of Y (x) by X(x),

subtract the resulting equations, and integrate by parts over (a, b), using the boundary

conditions.)

3.5 Some Remarks on Generalized Solutions

We now add a few more words on the concept of generalized solutions. Here are the

guiding principles for the concept of generalized solutions:

(A). Classical solutions must be generalized solutions;

(B). Reasonable limits of classical solutions (in appropriate norms) should be gener-

alized solutions;

(C). Uniqueness should hold for the generalized solutions, and there should be some

kind of continuous dependence (in appropriate norms) of the generalized solu-

tions on data.

Generalized solutions may allow the solutions to have some singularities (discontinu-

ity of the solutions or their derivatives, or the size of the solutions or their derivatives

become infinite on some part of the region). Depending on the problem, there may

be different kinds of singularities that are relevant. For instance, there may be sit-

uations where discontinuity in the solutions need to be considered; while in other

situations, one may need to consider solutions that are continuous, but have discon-

tinuous derivatives. For problems coming from physical background, one often goes

back to the physical principles to find the appropriate notion of generalized solutions.

Earlier, we have already introduced a notion of a generalized solution for the one

dimensional homogeneous wave equation. It’s straightforward to extend that notion

to the corresponding non-homogeneous wave equation.

Definition. Given two integrable (or L2(R) ) functions g(x) and h(x). We say u ∈
L2

local(R× [0,∞)) is a generalized solution to (3.3) if∫∫
R×[0,∞)

f(x, t)ζ(x, t) dxdt

=

∫∫
R×[0,∞)

[u(ζtt − c2ζxx)] dxdt−
∫
R
[h(x)ζ(x, 0)− g(x)ζt(x, 0)] dx

for all ζ ∈ C2(R× [0,∞)) with compact support.
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In the first section of this chapter, we have already given an argument for the

uniqueness of generalized solution of (3.3). Below is an L2 type estimate on general-

ized solutions.

Lemma 3.4. Prove that, if u is a (generalized) solution of (3.3) or (2.11) with a

non-homogeneous right hand side f(x, t), then for any T > 0, there is a constant

M = M(T ) > 0 such that

||u||2L2(R×(0,T )) ≤M
[
||f ||2L2(R×(0,T )) + ||u(·, 0)||2L2(R) + ||ut(·, 0)||2L2(R) + ||ux(·, 0)||2L2(R)

]
The proof for this Lemma will be left as an exercise. With the help of Lemma 3.4,

we can give an argument for the existence of a generalized solution to (3.3) when

f ∈ L2
local(R× [0,∞)), g, g′, and h ∈ L2(R).

For any T > 0, we can take a sequence fn ∈ C∞c (R × [0, T ]) approximating f in

L2(R × [0, T ]), and a sequence gn, hn ∈ C∞c (R) such that gn − g → 0, g′n − g′ → 0,

and hn − h → 0 in L2(R). Then we can use d’Alembert’s formula to construct a

classical solution un(x, t) on R× [0, T ] to (3.3) with fn, gn, hn substituing for f, g, h,

respectively. Then Lemma 3.4 and the energy estimates imply that {un}, {∂tun}
and {∂xun} are Cauchy in L2(R × [0, T ]). So there is a limit u ∈ L2(R × [0, T ]),

v ∈ L2(R× [0, T ]), and w ∈ L2(R× [0, T ]) such that

un → u, ∂tun → v, and ∂xun → w in L2(R× [0, T ]).

For un, we have∫∫
R×[0,∞)

fn(x, t)ζ(x, t) dxdt

=

∫∫
R×[0,∞)

[un(ζtt − c2ζxx)] dxdt−
∫
R
[∂tun(x, 0)ζ(x, 0)− un(x, 0)ζt(x, 0)] dx,

and∫∫
R×[0,∞)

un(x, t)ζt(x, t) dxdt = −
∫∫

R×[0,∞)

∂tun(x, t)ζ(x, t) dxdt−
∫
R
un(x, 0)ζ(x, 0) dx,∫∫

R×[0,∞)

un(x, t)ζx(x, t) dxdt = −
∫∫

R×[0,∞)

∂xun(x, t)ζ(x, t) dxdt,

for all ζ ∈ C2(R× [0,∞)) with compact support. Taking limit as n→∞, we obtain

that ∫∫
R×[0,∞)

f(x, t)ζ(x, t) dxdt

=

∫∫
R×[0,∞)

[u(ζtt − c2ζxx)] dxdt−
∫
R
[h(x)ζ(x, 0)− g(x)ζt(x, 0)] dx,
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and∫∫
R×[0,∞)

u(x, t)ζt(x, t) dxdt = −
∫∫

R×[0,∞)

v(x, t)ζ(x, t) dxdt−
∫
R
g(x)ζ(x, 0) dx,

∫∫
R×[0,∞)

u(x, t)ζx(x, t) dxdt = −
∫∫

R×[0,∞)

w(x, t)ζ(x, t) dxdt.

The first equality shows that u is a generalized solution of (3.3); the remaining two

equalities show that we can identify v and w to be the generalized L2(R2) derivatives

∂tu, and ∂xu, respectively. Thus this construction shows that we have obtained a

generalized solution which has a notion of generalized first derivatives, not merely an

L2(R2) generalized solution.

Note that it’s difficult to get a good sense in which this notion of generalized

solution takes on the initial data—we expect some sense of continuity in t of the

generalized solution, and it’s not easy to make sense of such a continuity in this

notion of generalized solution.

As will be seen later on, having generalized L2(R2) first derivatives in the integral

sense defined above will provide some sense of continuity for the function. It thus

makes sense to incorporate the notion of generalized derivatives in the notion of a

generalized solution. For instance, we may require a generalized solution of have

generalized L2(R2) first derivatives in the integral sense defined above (in particular,

u(x, t) takes on initial value g(x) through the integral relation above) and satisfy∫∫
R×[0,∞)

f(x, t)ζ(x, t) dxdt = −
∫∫

R×[0,∞)

[utζt − c2uxζx] dxdt−
∫
R
h(x)ζ(x, 0) dx

for all ζ ∈ C1
c (R× [0,∞)).

Generalized solutions are also called weak solutions. Further study of the notion

of generalized derivatives and generalized solutions will be undertaken later on.

Concluding Remarks

Here are a few key features that have emerged.

(i). It is natural and fruitful to approach a PDE by first finding formal, exploratory

prototype solutions, and then try to build more general solutions. When the

equation has a nice structure (for instance, with constant coefficients, and is

homogeneous), and the domain has appropriate geometry, separation of vari-

ables is often effective. This method often reduces the problem to an eigenvalue

boundary value problem for an ODE. The key for building a general solution for

a linear PDE through superposition is to find the right notion of convergence.
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(ii). The convergence of the (prototype or later approximate) solutions can be es-

tablished if we have appropriate a priori estimates for smooth solutions such as

the energy estimates for solutions of the wave equation. Note that we don’t

have to have an explicit formula for the solution of derive a useful estimate.

We also learned that it is not fruitful to always insist on point-wise or uniform

convergence, that convergence in other (often integral) norms are often forced

upon us by the structure of the problem.

As we move forward, here are a few questions that we should keep in mind.

• We have been able to solve the three prototype equations when the domain

has special geometry. How to deal with the situation when the domain has no

special geometry?

• We have been been able to obtain solvability for these prototype equations with

non-homogeneous right hand side when it is sufficiently nice. Can we reduce

the smoothness assumptions on it?

• How do we solve problems which are variations of the prototype equations (with

some additional terms added, or with variable coefficients)?

• Given a general PDE which does not bear much resemblance to any of our

prototype equations, how do we go about investigating whether it is reasonable

(well-posed?) to study the boundary value or initial value problem for it? How

do we go about investigating whether its solution is behaving like those of the

heat equation or wave equation, or something completely different?

3.6 Additional Problems

Problem 3.6.1. It is known that, for each n ∈ Z, (3.13) has a sequence of eigenvalues

λl,n → ∞ as l → ∞, such that for each λl,n the eigenspace is one dimensional and

spanned by Θl,n(θ), say.

(i). Make the change of variables z = cos θ and Z(cos θ) = Θ(θ). Verify that Z(z)

satisfies the following general Legendre ODE

(1− z2)Z ′′(z)− 2zZ ′(z) +

(
λl,n −

n2

1− z2

)
Z(z) = 0, cos θ1 < z < cos θ0.
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(ii). Suppose that Θ1(θ) and Θ2(θ) are two eigenfunctions of (3.13) corresponding

to distinct eigenvalues λ1 6= λ2. Verify that
∫ θ1
θ0

Θ1(θ)Θ2(θ) sin θdθ = 0. Set

Z1(cos θ) = Θ1(θ) and Z2(cos θ) = Θ2(θ). Verify that
∫ cos θ1

cos θ0
Z1(z)Z2(z) dz = 0.

(iii). When n ∈ Z, θ0 = 0 and θ1 = π, look up ODE texts to confirm that the above

ODE has a non-trivial, bounded solution iff λl,n = l(l + 1) for some l ∈ N with

l ≥ |n|, and that we can identify Z(x) to be an associated Legendre (generalized)

polynomial

P n
l (z) =

(−1)n

2ll!
(1− z2)n/2

dn+l

dzn+l
(z2 − 1)l.

(iv). Write down a formal eigenfunction expansion in terms of {Θl,n(θ)einφ} for a

solution u(θ, φ, t) to (∂t−∆S2)u(θ, φ, t) = f(θ, φ, t) for θ0 < θ < θ1, 0 ≤ φ ≤ 2π,

t > 0, and with u(θ0, φ, t) = u(θ1, φ, t) = 0 for all 0 ≤ φ ≤ 2π, t > 0, u(θ, φ, 0) =

g(θ, φ) given.

Problem 3.6.2. Verify that a general Legendre type differential equation

(1− x2)Q′′(x)− bxQ′(x) +

(
d− c

1− x2

)
Q(x) = 0 (3.16)

can be transformed, with the change of variables S(x) = (1− x2)
b−2

4 Q(x), to

(1− x2)S ′′(x)− 2xS ′(x) +

(
d+

(b− 2)b

4
−
c+ (b−2)2

4

1− x2

)
S(x) = 0. (3.17)

This relation can be used to construct Q(x) in terms of S(x).

Review ODE texts on the behavior of linear ODEs near a regular singular point

to confirm that the leading order behavior of Q(x) near x = ±1 are determined by

(1− x2)−
b−2±

√
(b−2)2+4c
4 ,

and that (3.16) has a solution of the form

Q(x) = (1− x2)−
b−2±

√
(b−2)2+4c
4 · (a polynomial in x)

iff there exists some k ∈ Z≥0 such that d = (σ + k)(σ + b + k − 1), where σ =

− b−2±
√

(b−2)2+4c

2
.

Problem 3.6.3. Assume that the Laplace operator on the unit n-dimensional round

sphere Sn is given by

∆Snu =

(
sinn−1 θ uθ

)
θ

sinn−1 θ
+

∆Sn−1u

sin2 θ
,
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where θ is the angle between the point and the North Pole (namely, the geodesic dis-

tance between them), so the metric on Sn can be expressed as gSn = dθ2+sin2 θ dωωω2
Sn−1 .

(i). Verify that in looking for separable solution u = Θ(θ)Ω(ωωω) to ∆Snu = −λu, if

we assume ∆Sn−1Ω(ωωω) = −µΩ(ωωω), then we will be led to

Θ′′(θ) + (n− 1) cot θΘ′(θ) +
(
λ− µ

sin2 θ

)
Θ(θ) = 0. (3.18)

(ii). Setting x = cos θ and X(cos θ) = Θ(θ), verify that

Θ′(θ) = − sin θ X ′(x), Θ′′(θ) = sin2 θ X ′′(x)− cos θ X ′(x),

so we arrive at

(1− x2)X ′′(x)− nxX ′(x) +

(
λ− µ

1− x2

)
X(x) = 0. (3.19)

This is a general Legendre type differential equation.

(iii). Use the information from the previous exercise to confirm that if µ = m(m +

n − 2) and λ = l(l + n − 1) for some l = m + k, k ∈ Z≥0, then (3.19) has a

bounded solution on (−1, 1) of the form (1−x2)m/2· (a polynomial in x). Using

induction, this gives λ = l(l + n− 1), l ∈ Z≥0 as eigenvalues of ∆Sn .
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Chapter 4

First Study of the Maximum

Principle, Energy Method, and

Variational Method

4.1 The Maximum Principle and Applications to

Uniqueness and Estimation of Solutions

The maximum principle is a powerful tool in the study of heat and Laplace equations

and their generalizations: it is used in proving uniqueness, in bounding the solution

in terms of data, and in proving geometric properties (such as monotonicity and

symmetry) of solutions. What makes it so useful is that it is often proved using

elementary means without using any representation formula for a solution. Here is

the maximum principle in its simplest form.

Theorem 4.1. Suppose that U ⊂ Rn is bounded and u ∈ C2(U) ∩ C(U) satisfies

∆u(x) ≥ 0 in U . Then maxU u = max∂U u.

Corollary 4.2. Suppose that U ⊂ Rn is bounded. Then there is at most one solution

in the class C2(U) ∩ C(U) to the Dirichlet problem −∆u(x) = f(x) for x ∈ U ,

u(x) = g(x) for x ∈ ∂U .
(4.1)

Proof of Corollary. Let u1(x), u2(x) ∈ C2(U) ∩ C(U) be solutions to (4.1). Then
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v(x) = u1(x)− u2(x) ∈ C2(U) ∩ C(U) satisfies{
−∆v(x) = 0 for x ∈ U ,

v(x) = 0 for x ∈ ∂U .

Applying the maximum principle to v(x), we conclude that maxU v = 0; then applying

the maximum principle to −v(x), we conclude that maxU(−v) = 0. Thus v ≡ 0 in U

and u1(x) ≡ u2(x) in U .

The proof for Theorem 4.1 is also elementary.

Proof for Theorem 4.1. First suppose that ∆u(x) > 0 in U . Then maxU u must be

attained at some x0 ∈ U and x /∈ U ; for, if x0 ∈ U , then ∆u(x0) =
∑n

i=1 uxixi(x0) ≤ 0,

contradicting our hypothesis. Since x0 ∈ ∂U , we now have maxU u = u(x0) ≤
max∂U u. Since max∂U u ≤ maxU u trivially, we conclude that maxU u = max∂U u in

this case.

Now for any ε > 0, the function uε = u(x)+εx2
1 satisfies ∆uε(x) > 0 in U , therefore

maxU uε = max∂U uε. Sending ε→ 0, we see that maxU u = max∂U u.

Maximum principle can also be used to estimate the size of the solution.

Theorem 4.3. Suppose U ⊂ Rn is bounded and u ∈ C2(U) ∩ C(U) satisfies{
∆u(x) = f(x) in U ,

u(x) = g(x) on ∂U .

Then there exists a constant C > 0 depending on U only such that

max
U
|u| ≤ max

∂U
|g|+ C sup

U
|f(x)|.

Proof. The key is to construct a function v ≥ 0 in U satisfying ∆v(x) ≤ −1 in U—

v(x) = (d2 − x2
1)/2 will do here, if we assume U ⊂ {x ∈ Rn : 0 ≤ x1 ≤ d}. Then

w = (supU |f(x)|) v(x) + sup∂U |g| ± u(x) satisfies

∆w ≤ − sup
U
|f(x)| ± f(x) ≤ 0 in U ,

and on ∂U , w ≥ sup∂U |g|±g(x) ≥ 0, so we can apply Theorem 4.1 to −w to conclude

that w(x) ≥ 0 in U , from which follows our claimed bound on u.
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Remark 4.1. Maximum principle is the first instance for us to work out the prop-

erties of solutions directly from the equations, instead of relying on a representation

formula. Most of the more robust methods we will develop later on also have this

feature. This section presents the maximum principle in its simplest form; we will ex-

tend it to more general settings, obtain stronger results, and discuss more applications

later on.

Here is a simple version of the maximum principle for the heat equation.

Theorem 4.4. Suppose that U ⊂ Rn is bounded. Denote UT = U×(0, T ] and ∂′UT =

{(x, 0) : x ∈ U} ∪ {(x, t) : x ∈ ∂U, 0 < t ≤ T}. Suppose that u ∈ C2,1
x,t (UT ) ∩ C(UT )

satisfies {
∂tu(x, t)−∆u(x, t) ≤ 0 in UT ,

u(x, t) ≤ 0 on ∂′UT .

Then u ≤ 0 in UT .

Theorem 4.5. Suppose U and UT are the same as in Theorem 4.4 and u ∈ C2,1
x,t (UT )∩

C(UT ) satisfies {
∂tu(x, t)−∆u(x, t) = 0 in UT ,

u(x, t) = 0 on ∂′UT .

Then u ≡ 0 in UT .

Proof for Theorem 4.5. We can apply Theorem 4.4 to u and −u to conclude that

u ≡ 0 in UT .

Proof for Theorem 4.4. Again, if ∂tu(x, t) −∆u(x, t) < 0 in UT , then maxUT u must

be attained at some point (x0, t0) ∈ ∂′UT ; for if (x0, t0) ∈ UT \ ∂′UT , then we would

have x0 ∈ U and t0 > 0, which would imply ut(x0, t0) ≥ 0 and uxixi(x0, t0) ≤ 0

and then ∂tu(x0, t0) − ∆u(x0, t0) ≥ 0. Now that (x0, t0) ∈ ∂′UT , we conclude that

maxUT u = u(x0, t0) ≤ 0.

Now for any ε > 0, uε(x, t) = u(x, t)− εt satisfies (∂t −∆)uε(x, t) < 0 in UT , and

uε(x, t) ≤ 0 on ∂′UT , so we can conclude that uε(x, t) = u(x, t) − εt ≤ 0. Sending

ε→ 0, we conclude that u ≤ 0 in UT .

Estimation on the solution of the heat equation also follows routinely.
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Theorem 4.6. Suppose U ⊂ Rn is bounded and u ∈ C2,1
x,t (UT ) ∩ C(UT ) satisfies{

∂tu(x, t)−∆u(x, t) = f(x, t) in UT ,

u(x, t) = g(x, t) on ∂′UT .

Then

max
UT
|u| ≤

[
T sup

UT

|f |+ max
∂′UT
|g|
]
. (4.2)

Proof. Note that (∂t−∆)[u−t supUT |f |−max∂′UT |g|] ≤ 0 in UT , and u−t supUT |f |−
max∂′UT |g| ≤ 0 on ∂′UT . Thus by the maximum principle,

u(x, t) ≤ t sup
UT

|f |+ max
∂′UT
|g|, in UT .

Similarly

−u(x, t) ≤ t sup
UT

|f |+ max
∂′UT
|g|, in UT .

Thus (4.2) holds.

Remark 4.2. It was not easy to use the Fourier series solution directly to produce

a solution of (2.1) that is continuous over [0, l]× [0,∞) if we only assume g ∈ C[0, l]

with g(0) = g(l) = 0. The maximum principle provides a tool which would allow

us to produce such a solution assuming only g ∈ C[0, l] with g(0) = g(l) = 0.

Even though the Fourier (sine) series
∑∞

n=1 gn sin
(
nπx
l

)
of g(x) may not converge

to g(x) point-wise under this assumption, there is a Fejér theorem in the theory

of Fourier series which implies that there is a finite Fourier sine series of the form

g(N)(x) =
∑N

n=1 g
(N)
n sin

(
nπx
l

)
which converges to g(x) uniformly over [0, l] asN →∞.

Let u(N)(x, t) =
∑N

n=1 g
(N)
n e−(nπ

l
)2t sin

(
nπx
l

)
be the finite series solution of the heat

equation (2.1) with initial data g(N)(x). Then the maximum principle applied to

u(N)(x, t) − u(N ′)(x, t) implies that {u(N)(x, t)}N is Cauchy in C([0, l] × [0, T ]), so

there is a limit function u(x, t) in C([0, l] × [0, T ]) such that u(N)(x, t) → u(x, t)

uniformly in C([0, l] × [0, T ]). Therefore, u(x, 0) = g(x) for x ∈ [0, l]. To prove that

u ∈ C2([0, l]×(0, T ]) and satisfies the equation in (2.1), we use the following estimate:

for any 0 < τ < T , there exists a constant C > 0 depending on τ such that

max
[0,l]×[τ,T ]

|∇α,β
x,t u

(N)(x, t)| ≤ C max
[0,l]
|g(N)(x)| for |α|+ 2|β| ≤ 2.

The same estimate also applies to u(N)(x, t) − u(N ′)(x, t). Thus {∇α,β
x,t u

(N)(x, t)} is

Cauchy in C([0, l] × [τ, T ]) for each |α| + 2|β| ≤ 2, which implies that the limit

u(x, t) ∈ C2,1
x,t ([0, l] × [τ, T ]) and satisfies the heat equation there. Since τ > 0 is
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arbitrary, this proves that u(x, t) is in C2,1
x,t ([0, l]×(0, T ]) and satisfies the heat equation

there.

The estimate above is proved by using the exponential decay of e−(nπ
l

)2t in n when

t ≥ τ > 0:

|∇α,β
x,t u

(N)(x, t)| ≤
N∑
n=1

|g(N)
n |

(nπ
l

)|α|+2|β|
e−(nπ

l
)2t

≤ 2 max
[0,l]
|g(N)(x)|

N∑
n=1

(nπ
l

)|α|+2|β|
e−(nπ

l
)2τ

≤ C max
[0,l]
|g(N)(x)|,

where C = 2
∑∞

n=1

(
nπ
l

)|α|+2|β|
e−(nπ

l
)2τ <∞ depends only on τ (and l).

Remark 4.3. The above derivative estimate on u(N)(x, t) was done using its explicit

form, but we will later introduce Bernstein’s method, which proves a similar estimate

for any sufficiently smooth solution of (2.1) using the maximum principle only.

Generalization of the maximum principle (and uniqueness) for both the Laplace

equation and heat equation on unbounded (spatial) domains are available, but they

require appropriate growth restrictions on the solutions. For example, u(x) = xn is

harmonic on Rn
+ = {x = (x′, xn) : xn > 0}, and u(x) = 0 when x = (x′, xn) ∈ ∂Rn

+,

yet u(x) is not identically zero on Rn
+.

Here is an example of how to adapt the maximum principle to solutions on un-

bounded domains.

Example 4.1. Let u be a bounded harmonic function on U = {x = (x′, xn) : 0 <

xn < h} such that u(x′, xn) = 0 when xn = 0 or h. We will prove that u(x′, xn) ≡ 0 in

U . The boundedness assumption on u here is needed, as the conclusion does not hold

for the family of unbounded harmonic functions exp(πx1

h
) sin(πxn

h
). For simplicity of

notation, we will assume n = 2.

Let M > 0 be such that |u(x1, x2)| ≤ M for all (x1, x2) ∈ U . We will use the

positive harmonic function cosh(x1/h) cos(x2/h). For any ε > 0, we will apply the

usual maximum principle to v = ±u− ε cosh(x1/h) cos(x2/h) on UR = {x = (x1, x2) :

|x1| < R, 0 < x2 < h} for R > 0 large enough so that ε cosh(x1/h) cos(x2/h) ≥ M

when |x1| = R. Then the harmonic function v ≤ 0 on ∂UR, and therefore v ≤ 0 in

UR. This implies that |u| ≤ ε cosh(x1/h) cos(x2/h) in UR.

The choice for R > 0 depends on ε, but for any x ∈ U and for any ε > 0, x

will be in UR as long as R > |x|, so |u(x)| ≤ ε cosh(x1/h) cos(xn/h) for all ε > 0,
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which leads to u(x) = 0. From the proof one can see that one can modify it so that

the same conclusion continues to hold as long as there exists some h′ > h such that

lim sup|x1|→∞ exp(−π|x1|
h′

)|u(x1, x2)| = 0 uniformly over 0 < x2 < h. This is similar to

the Phragmén-Lindelöf type theorems in complex analysis.

For general dimension, we can modify cosh(x1/h) cos(xn/h) into

cosh(ax1/h) · · · cosh(axn−1/h) cos(xn/h)

with (n− 1)a2 = 1.

Remark 4.4. The Fourier series solution of (2.1) can also be expressed as an integral

involving the initial data g as follows. Using cn = 2
l

∫ l
0
g(x) sin(nπx

l
) dx in u(x, t) =∑∞

n=1 cn sin(nπx
l

)e−(nπ
l

)2t, we obtain for t > 0

u(x, t) =
2

l

∞∑
n=1

∫ l

0

g(y) sin(
nπy

l
) sin(

nπx

l
)e−(nπ

l
)2t dy

=
2

l

∫ l

0

g(y)

[
∞∑
n=1

sin(
nπy

l
) sin(

nπx

l
)e−(nπ

l
)2t

]
dy,

where we have used the uniform convergence of

G(x, y, t) =
2

l

∞∑
n=1

sin(
nπy

l
) sin(

nπx

l
)e−(nπ

l
)2t

over t ≥ τ > 0 for any given τ > 0. Thus the solution u(x, t) to (2.1) can be

represented as

u(x, t) =

∫ l

0

g(y)G(x, y, t) dy.

Using the exponentially fast decay of e−(nπ
l

)2t in n over t ≥ τ > 0, one can see easily

that G(x, y, t) is a smooth function of (x, y, t) over t > 0, and

Gt(x, y, t)−Gxx(x, y, t) = 0, over t > 0;

Gt(x, y, t)−Gyy(x, y, t) = 0, over t > 0;

G(x, y, t) = 0, if t > 0 and either x or y = 0 or l.

This G(x, y, t) is called the Green’s function for (2.1). It turns out that G(x, y, t) >

0 for x, y ∈ (0, l) and t > 0, which is not entirely clear from its series representation.

We would like to apply the Maximum Principle to u(x, t) to obtain information

on G(x, y, t), but our Maximum Principle is established for solutions in the class

C([0, l]×[0, T ]), while the solution constructed here is known to be in C([0, T ], L2[0, l])
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when g ∈ C[0, l]. However, when g further satisfies g(0) = g(l) = 0, the argument

in the Remark 4.2 proves the existence of solution in the class C([0, l] × [0, T ]) ∩
C2([0, l]×(0, T ]), which is obviously in the class C([0, T ], L2[0, l]); since we have proved

the uniqueness of solution to (2.1) in this class via the energy method, we conclude

that these two solutions must be identical, and that the Fourier series solution is in

C([0, l]× [0, T ]). Thus we can apply the the Maximum Principle to u(x, t) to conclude

that

u(x, t) =

∫ l

0

g(y)G(x, y, t) dy ≥ 0 at every (x, t) ∈ [0, l]× (0, T ],

if g(y) ∈ C[0, l], g(0) = g(l) = 0 and g(y) ≥ 0 for y ∈ [0, l].

(4.3)

It follows from this property that

G(x, y, t) =
2

l

∞∑
n=1

sin(
nπy

l
) sin(

nπx

l
)e−(nπ

l
)2t ≥ 0 for all x, y ∈ [0, l] and t > 0;

(4.4)

but it is not clear at all from the summation for G(x, y, t) that this property holds.

If one carries out the computation for (a) of Exercise 2.7.3, one would find that

u(x, t) =
∫
RK(x− y, t)g̃(y) dy, where g̃ is obtained from g by first extending it to an

odd function on [−l, l), then extending this odd function as a 2l-periodic function on

R. Thus

u(x, t) =
∞∑

k=−∞

[∫ 2kl

−l+2kl

K(x− y, t)g̃(y) dy +

∫ l+2kl

2kl

K(x− y, t)g̃(y) dy

]

=
∞∑

k=−∞

[
−
∫ 0

−l
K(x− y − 2kl, t)g(−y) dy +

∫ l

0

K(x− y − 2kl, t)g(y) dy

]

=

∫ l

0

∞∑
k=−∞

[K(x− y − 2kl, t)−K(x+ y − 2kl, t)] g(y) dy

=

∫ l

0

∞∑
k=−∞

e−
|x−y−2kl|2

4t − e−
|x+y−2kl|2

4t

√
4πt

g(y) dy.

(4.5)

It follows now that for t > 0

2

l

∞∑
n=1

sin(
nπy

l
) sin(

nπx

l
)e−(nπ

l
)2t =

∞∑
k=−∞

e−
|x−y−2kl|2

4t − e−
|x+y−2kl|2

4t

√
4πt

. (4.6)
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As a consequence, for any fixed x ∈ (0, l), G(x, y, t) is continuous in (y, t) ∈ ([0, l] ×
[0,∞)) \ {(x, 0)}, and G(x, y, 0) = 0 for y 6= x. In appropriate sense G(x, y, t) →
δ(x− y) as t↘ 0.

(4.6) is related to the Jacobi identify for ϑ-functions. A more familiar form of the

Jacobi identify can be derived from solving the heat equation with periodic boundary

conditions by using the Fourier series method and by using the heat kernel, and by

equating the solution obtained by these two methods, as done above. Taking the

l = 1/2 case, one would arrive at the more familiar Jacobi identify

∑∞
k=−∞ e

− |z−k|
2

4t

√
4πt

= 1 +
∞∑
n=1

[
e2nπzi + e−2nπzi

]
e−4n2π2t = 1 + 2

∞∑
n=1

cos(2nπz)e−4n2π2t.

(4.7)

Exercise 4.1.1. Suppose that U is a bounded domain in Rn, c(x) ≥ 0 in U .

(a). Prove the following extension of Theorem 4.1: suppose that u ∈ C2(U) ∩C(Ū)

satisfies {
∆u(x)− c(x)u(x) ≥ 0 in U ,

u(x) ≤ 0 on ∂U ,

then u(x) ≤ 0 in U .

(b). Suppose that u ∈ C2(U) ∩ C(Ū) satisfies{
∆u(x)− c(x)u(x) ≥ 0 in U ,

u(x) = g(x) on ∂U ,

where g ∈ C(∂U). Prove that maxŪ u ≤ max{0,max∂U g}; and that it’s possible

for maxŪ u > max∂U g (Think of the 1-D case).

(c). Prove that the Dirichlet problem{
∆u(x)− c(x)u(x) = f(x) in U ,

u(x) = g(x) on ∂U ,

has at most one solution in C2(U) ∩ C(Ū).

Exercise 4.1.2. Prove that, for α ≥ 0, the solution Jα(ir) to the modified Bessel

equation, (2.51), has no zero in {r : r > 0}. Prove, in addition, that Jα(ir) → ∞ as

r → ∞. Is the conclusion valid for any solution of (2.51) on R+? (Note that, up to
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multiplication by a constant, Jα(ir) can be made into real valued. When α = k ∈ N,

u = Jα(ir) cos(kθ) is a solution of (2.49) with c = −1, and one can use the maximum

principle to complete a proof. When α is not a positive integer, try to adapt the

argument for the maximum principle to (2.51), or adapt the energy method of the

next section. )

Exercise 4.1.3. Suppose that U is a bounded domain in Rn, c(x) ≥ 0 in U . Prove

that there exists C > 0 depending on U such that for any u ∈ C2(U)∩C(Ū) satisfying{
∆u(x)− c(x)u(x) = f(x) in U ,

u(x) = 0 on ∂U ,

where f(x) is bounded over U , then there holds maxŪ |u(x)| ≤ C supU |f(x)|.

Exercise 4.1.4. Suppose U is a bounded domain in Rn with n ≥ 2, and x0 ∈ ∂U . Let

u ∈ C(U \ {x0}) be a bounded harmonic function in U such that u ≡ 0 on ∂U \ {x0}.
Prove that u ≡ 0 in U .

Exercise 4.1.5. Prove that if u(x′, xn) is a bounded harmonic function on Rn
+ =

{x = (x′, xn) : xn > 0} in the class C(Rn
+), and u(x′, 0) = 0 for all x′ ∈ Rn−1, then

u(x′, xn) ≡ 0 in Rn
+.

Exercise 4.1.6. Suppose U ⊂ Rn is bounded and u ∈ C2,1
x,t (UT ) ∩ C(UT ) satisfies{

∂tu(x, t)−∆u(x, t) = f(x) in UT ,

u(x, t) = g(x, t) on ∂′UT .

Suppose, further, that f(x) ≥ 0 in U . Prove that ut(x, t) ≥ 0 in UT .

Exercise 4.1.7. Using (4.3) to prove (4.4). Also prove that, if g ∈ C[0, l], then for

any 0 < x0 < l,
∫ l

0
g(y)G(x, y, t) dy → g(x0) as (x, t)→ (x0, 0), t > 0. What happens

if x0 = 0 or l?

Exercise 4.1.8. Suppose that one can establish the existence of a constant C > 0

such that for any solution u(x, t) on |x| ≤ 1, 0 ≤ t ≤ 1 of ut(x, t)−∆xu(x, t) = f(x, t),

the following holds

|∇xu(0, 1)| ≤ C
(
max|x|≤1,0≤t≤1|u(x, t)|+ max|x|≤1,0≤t≤1|f(x, t)|

)
.

Deduce that for any solution u(x, t) to ut(x, t)−∆xu(x, t) = f(x, t) on x ∈ Rn, 0 < t,

the following holds

√
t|∇xu(x, t)| ≤ C

(
max|y−x|≤

√
t,0≤s≤t|u(y, s)|+ tmax|y−x|≤

√
t,0≤s≤t|f(y, s)|

)
.
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4.2 The Energy Method and Applications to Unique-

ness and Existence of Solutions

The energy method is related to the variational characterization of solutions. It can

often be used to prove uniqueness of solutions — so far, with the exception of the

maximum principle and the characteristic curves method in finding solutions to the

one-dimensional wave equation, other solution methods (separation of variables and

Fourier expansion) have not provided uniqueness.

4.2.1 The Simplest Cases of the Energy Method

Earlier we proved the uniqueness for (2.1) by using the energy method. We now recall

the derivation and point out further consequences of the estimate.

Multiplying both sides of the first equation in (2.1) by u(x, t) and integrating over

x ∈ [0, l], we find that for t > 0

0 =

∫ l

0

u(x, t) (ut(x, t)− uxx(x, t)) dx =

∫ l

0

[(
u2(x, t)

2

)
t

− u(x, t)uxx(x, t)

]
dx

=
1

2

d

dt

(∫ l

0

u2(x, t) dx

)
+

∫ l

0

u2
x(x, t) dx,

where we have used integration by parts and the homogeneous boundary conditions

u(0, t) = u(l, t) = 0; the computation also assumes that u(x, t), ux(x, t), uxx(x, t) ∈
C[0, l] for t > 0 and ut(x, t) is jointly continuous in (x, t) ∈ [0, l] × (0,∞). It now

follows by integrating in t the above relation

∫ l

0

u2(x, t) dx+ 2

∫ t

0

∫ l

0

u2
x(x, τ) dxdτ =

∫ l

0

u2(x, 0) dx. (4.8)

The derivation here has assumed that t 7→
∫ l

0
u2(x, t) dx is in C[0, T ] and t 7→∫ l

0
u2
x(x, t) dx is in C(0, T ) for some T > t > 0, which is the case for the solution

constructed by the Fourier series.

Remark 4.5. The energy method is another instance, where we work out properties

of the solutions without using any solution representation formula.

This method trivially generalizes to the initial-boundary value problems for the

heat equation in higher spatial dimensions. Let u(x, t) in C2,1
x,t (Ω×(0,∞))∩C([0,∞), L2(Ω))
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or in C2,1
x,t (Ω× (0,∞)) ∩ C(Ω× [0,∞)) be a solution of

ut −∆xu = 0, for (x, t) ∈ Ω× (0,∞)

u(x, t) = 0, for (x, t) ∈ ∂Ω× (0,∞)

u(x, 0) = g(x) for x ∈ Ω.

(4.9)

Then
1

2

∫
Ω

u2(x, t) dx+

∫ t

0

∫
Ω

|∇xu(x, τ)|2 dxdτ =

∫
Ω

u2(x, 0) dx. (4.10)

(4.8) is useful not only for proving uniqueness, but it will also be useful for con-

structing solutions by using the bounds
∫ l

0
u2(x, t) dx and

∫ t
0

∫ l
0
u2
x(x, τ) dxdτ for the

solution u in terms of
∫ l

0
u2(x, 0) dx, and it is also a form of stability estimate for the

solution.

In fact, even if we allow the PDE in (2.1) to include a non-homogenous term

f(x, t): ut(x, t) − uxx(x, t) = f(x, t), we can adapt the method above to obtain a

corresponding energy estimate for u as follows.

Proposition 4.7. Suppose that u ∈ C([0, T ], L2[0, T ])∩C2,1
x,t ([0, l]×(0, T ]) is a solution

of 
ut − uxx = f(x, t), for (x, t) ∈ (0, l)× (0,∞),

u(0, t) = u(l, t) = 0, for t > 0,

u(x, 0) = g(x) for x ∈ [0, l].

Then ∫ l

0

u2(x, t) dx+ 2

∫ t

0

∫ l

0

u2
x(x, τ) dxdτ

≤et
[∫ l

0

u2(x, 0) dx+

∫ t

0

∫ l

0

f 2(x, τ) dxdτ

] (4.11)

Proof. First, we multiply both sides of the first equation above by u(x, t), integrate

in x ∈ [0, l], and integrate by parts as above to obtain

1

2

d

dt

(∫ l

0

u2(x, t) dx

)
+

∫ l

0

u2
x(x, t) dx =

∫ l

0

u(x, t)f(x, t) dx

≤ 1

2

∫ l

0

u2(x, t) dx+
1

2

∫ l

0

f 2(x, t) dx.

(4.12)

Next, we set G(t) =
∫ l

0
u2(x, t) dx, H(t) =

∫ l
0
u2
x(x, t) dx, and F (t) =

∫ l
0
f 2(x, t) dx.

Then G ∈ C1(0, T ) ∩ C[0, T ], and

G′(t) + 2H(t) ≤ G(t) + F (t). (4.13)
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(4.13) is often referred to as a Gronwall type inequality: it relates the growth rate

of G(t) with G(t) in this fashion. It follows now that G(t) + 2
∫ t

0
et−τH(τ)dτ ≤

et
[
G(0) +

∫ t
0
e−τF (τ)dτ

]
, namely∫ l

0

u2(x, t) dx+2

∫ t

0

∫ l

0

et−τu2
x(x, τ) dxdτ ≤ et

[∫ l

0

u2(x, 0) dx+

∫ t

0

∫ l

0

e−τf 2(x, τ) dxdτ

]
,

from which (4.11) follows.

Remark 4.6. A previous variational characterization of solutions to the (homoge-

neous) heat equation (with homogeneous Dirichlet boundary condition) examined

d

dt

∫ l

0

|ux(x, t)|2 dx = 2

∫ l

0

ux(x, t) · uxt(x, t) dx

= −2

∫ l

0

uxx(x, t)ut(x, t) dx

= −2

∫ l

0

|ut(x, t)|2 dx ≤ 0,

which also provides uniqueness to (2.1), albeit with some higher regularity assump-

tions on the solution u to justify the differentiation under the integral sign and inte-

gration by parts above; in particular, this argument would require t→
∫ l

0
|ux(x, t)|2 dx

be continuous in t ∈ [0,∞), which may not be the case even if u(x, 0) is smooth in

(0, l) (need to watch out for the matching, or its failure, of u(0, 0) and u(l, 0) with

the boundary condition u(0 or l, t) = 0; examine the case u(x, 0) ≡ 1).

There are versions of the energy estimates for solutions defined on Ω×(0,∞) where

Ω is unbounded; but some decay assumptions on the solution is needed, as there are

non-trivial smooth solutions to the heat equation ut −∆xu = 0 on Rn × [0,∞) with

u(x, 0) ≡ 0, which were first discovered by Tychonoff.

The energy method can be easily applied to the Poisson equation −∆u(x) = f(x)

to prove the uniqueness for the Dirichlet problem −∆u(x) = f(x) for x ∈ Ω

u(x) = g(x) for x ∈ ∂Ω.
(4.14)

Theorem 4.8. Suppose that Ω is a bounded domain in Rn whose boundary ∂Ω is

piecewise C1. Then there is at most one solution of (4.14) in the class C2(Ω)∩C1(Ω).

The proof boils down to proving that{
−∆u(x) = 0 for x ∈ Ω

u(x) = 0 for x ∈ ∂Ω.
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has u = 0 as the only solution in the class C2(Ω) ∩ C1(Ω). But that follows from

multiplying both sides of the equation and integrating by parts:

0 = −
∫

Ω

u(x)∆u(x) dx =

∫
Ω

|∇u(x)|2 dx−
∫
∂Ω

u(x)
∂u(x)

∂n(x)
dσ(x) =

∫
Ω

|∇u(x)|2 dx,

which implies that
∫

Ω
|∇u(x)|2 dx = 0. This, together with the boundary condition

u(x) = 0 on ∂Ω, implies that u(x) = 0 in Ω. Note that this proof requires slightly

more regularity on the solution: in C2(Ω) ∩ C1(Ω) instead of C2(Ω) ∩ C(Ω).

Next we introduce the energy method for the wave equation. Based on physical

considerations for solutions to (2.11), we define

E[u(·, t)] =
1

2

∫ l

0

(
u2
t (x, t) + c2u2

x(x, t)
)
dx

to be the energy of the solution u at time t. Then for t > 0

dE[u(·, t)]
dt

=

∫ l

0

(
ututt + c2uxuxt

)
dx

=

∫ l

0

(
ututt − c2uxxut

)
dx

= 0, if utt − c2uxx = 0.

The integration by parts can be justified if we consider C2([0, l]× (0,∞))∩C1([0, l]×
[0,∞)) solutions to (2.11).

Theorem 4.9. Let u ∈ C2([0, l]× (0,∞))∩C1([0, l]× [0,∞)) be a solution of (2.11).

Then

E[u(·, t)] =
1

2

∫ l

0

(
u2
t (x, t) + c2u2

x(x, t)
)
dx is a constant in t. (4.15)

In particular, if u(x, 0) = 0 and ut(x, 0) = 0 for x ∈ [0, l], then u(x, t) = 0 for

(x, t) ∈ [0, l]× [0,∞).

Another consequence of the energy estimates is the continuous dependence in L2

norm of the (derivatives of) solution on initial data.

Such energy estimates on the solutions can also be used to prove existence of

solutions. For instance, when the initial data g(x) and h(x) are trigonometric sine

polynomials, the Fourier series method readily provides a genuine solution of (2.11).

For more general initial data, suppose that g(x) and h(x) are such that we can
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use trigonometric sine polynomials gn(x) and hn(x) to approximate g(x) and h(x),

respectively, in the following L2 norm:

||gn − g||L2 =

[∫ l

0

|gn(x)− g(x)|2 dx
]1/2

→ 0 and {g′n(x)} is Cauchy in L2[0, l];

and

||hn − h||L2 =

[∫ l

0

|hn(x)− h(x)|2 dx
]1/2

→ 0,

as n→∞. It follows that there is some ġ ∈ L2[0, l] such that g′n → ġ in L2[0, l]. This

ġ is the L2[0, l] derivative of g; for, each gn satisfies gn(x) =
∫ x

0
g′n(y) dy, and since

g′n → ġ in L2[0, l], {
∫ x

0
g′n(y) dy}n is converging to

∫ x
0
ġ(y) dy uniformly in x ∈ [0, l],

thus gn(x) converges uniformly to g(x) in [0, l] and g(x) =
∫ x

0
ġ(y) dy. This implies

that g(x) is absolutely continuous in [0, l], with g′(x) = ġ(x) almost everywhere in

[0, l].

Let un(x, t) denote the corresponding unique solution of (2.11) with un(x, 0) =

gn(x) and ∂tun(x, 0) = hn(x), then the energy estimate above says {∂tun(x, t)}
and {∂xun(x, t)} are Cauchy sequences in the above L2 norm, more precisely, in

C([0, T ], L2[0, l]), so we expect to find an appropriate limit, which should satisfy the

equation in some form.

To obtain the convergence of {un(x, t)} itself, we make use of the inequalities

(1.30). (1.30) applied to un(·, t)−um(·, t), together with the energy estimates, implies

that {un(x, t)} is also Cauchy in the C([0, l] × [0, T ]) norm. So there exists u ∈
C([0, l]× [0, T ]) such that un → u uniformly in [0, l]× [0, T ].

If g and h are such that we can take the approximating sine polynomials gn and

hn with the further property that {∂xhn} and {∂2
xgn} are also Cauchy in L2[0, l],

then we can apply the energy estimates to ∂tun(x, t), which solves the homogeneous

wave equation, to obtain that {∂2
xun}, {∂2

xtun}, and that {∂2
t un} are also Cauchy in

C([0, T ], L2[0, l]). In such cases, we expect the limit to have some notion of second

derivatives. This approach will lead to the L2 weak derivatives and weak solutions.

The sacrifice is that we may not get a C2 limit as a solution. But many natural

properties for the wave equation suggest that L2 space is a more natural space to

work with for the wave equation. We will explore the ideas here in more detail later

on.

The energy estimates above can be modified to deal with solutions to non-homogeneous

equations by modifying our earlier derivation.
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Theorem 4.10. Let u(x, t) ∈ C2([0, l]× (0,∞)) ∩ C1([0, l]× [0,∞)) be a solution of

utt − c2uxx = f(x, t), on (x, t) ∈ [0, l]× R+,

u(0, t) = u(l, t) = 0, for t > 0,

u(x, 0) = g(x), for x ∈ [0, l],

ut(x, 0) = h(x), for x ∈ [0, l],

(4.16)

then

E[u(·, t)] ≤ et
(
E[u(·, 0)] +

∫ t

0

∫ l

0

|f(x, τ)|2

2
dxdτ

)
. (4.17)

Proof. We have

dE[u(·, t)]
dt

=

∫ l

0

[
ut(x, t)utt(x, t) + c2ux(x, t)uxt(x, t)

]
dx

=

∫ l

0

ut(x, t)
[
utt(x, t)− c2uxx(x, t)

]
dx

=

∫ l

0

ut(x, t)f(x, t) dx

≤ E[u(·, t)] +
1

2

∫ l

0

|f(x, t)|2 dx,

from which it follows that

E[u(·, t)] ≤ et
(
E[u(·, 0)] +

∫ t

0

∫ l

0

e−τ

2
|f(x, τ)|2 dxdτ

)
≤ et

(
E[u(·, 0)] +

∫ t

0

∫ l

0

|f(x, τ)|2

2
dxdτ

)
.

4.2.2 Some Improvements and Modifications of the Energy

Method

In both (4.11) and (4.17), the exponential factor et is an undesirable feature. It came

about from simple algebraic manipulation such as in (4.12). Both (4.11) and (4.17)

are good enough for proving uniqueness and finite time stability of solutions; if we

desire better estimates than those provided for by (4.11) or (4.17), there are ways to

exploit the algebra more carefully.
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First modification to (4.11). Our earlier derivation didn’t exploit the term
∫ l

0
u2
x(x, t) dx

on the left hand side of (4.13). Making use of (1.30), we can estimate∫ l

0

u(x, t)f(x, t) dx ≤ 1

2l2

∫ l

0

|u(x, t)|2 dx+
l2

2

∫ l

0

f 2(x, t) dx

≤ 1

2

∫ l

0

|ux(x, t)|2 dx+
l2

2

∫ l

0

f 2(x, t) dx.

Then (4.12) can be modified into

G′(t) +H(t) ≤ l2F (t),

so it follows that∫ l

0

|u(x, t)|2 dx+

∫ t

0

∫ l

0

u2
x(x, τ) dxdτ ≤

∫ l

0

|u(x, 0)|2 dx+ l2
∫ t

0

∫ l

0

f 2(x, τ) dxdτ.

(4.18)

Below is a further modification if we use G(t) ≤ l2H(t), which is a consequence

of (1.30). (4.12) can be modified into

1

2
G′(t) +

1

l2
G(t) ≤

√
G(t)

√
F (t),

from which it follows that√
G(t) ≤ e−

t
l2

(√
G(0) +

∫ t

0

e
τ
l2

√
F (τ)dτ

)
,

namely,(∫ l

0

|u(x, t)|2 dx
) 1

2

≤ e−
t
l2

[(∫ l

0

|u(x, 0)|2 dx
) 1

2

+

∫ t

0

e
τ
l2

(∫ l

0

|f(x, τ)|2 dx
) 1

2

dτ

]
.

This approach would not work for a problem on an unbounded domain, as we

would not have an estimate as given in (1.30); but we can still estimate∫ l

0

u(x, t)f(x, t) dx ≤ λ

2

∫ l

0

|u(x, t)|2 dx+
1

2λ

∫ l

0

f 2(x, t) dx

for appropriately chosen λ > 0 (it can even depend on t; allowing l = ∞). If we

choose to work with a constant λ > 0, we would get∫ l

0

|u(x, t)|2 dx+ 2

∫ t

0

∫ l

0

eλ(t−τ)u2
x(x, τ) dxdτ

≤eλt
[∫ l

0

|u(x, 0)|2 dx+

∫ t

0

∫ l

0

e−λτ

λ
f 2(x, τ) dxdτ

]
.
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We try to choose a λ > 0 which would give a more favorable estimate: for a given

t > 0, if we choose λ = t−1, then we would get∫ l

0

|u(x, t)|2 dx+ 2

∫ t

0

∫ l

0

e1−τ/tu2
x(x, τ) dxdτ

≤e
[∫ l

0

|u(x, 0)|2 dx+

∫ t

0

∫ l

0

te−τ/tf 2(x, τ) dxdτ

]
,

which would imply the cleaner estimate, which is also valid for l =∞ case.∫ l

0

|u(x, t)|2 dx+ 2

∫ t

0

∫ l

0

u2
x(x, τ) dxdτ

≤e
[∫ l

0

|u(x, 0)|2 dx+ t

∫ t

0

∫ l

0

f 2(x, τ) dxdτ

]
.

(4.19)

Below is another variant of the energy method.

If we exploit |
∫ l

0
u(x, t)f(x, t) dx| ≤

√
G(t)

√
F (t), in the absence of G(t) ≤ l2H(t)

(when l =∞ for example), we still have

1

2
G′(t) ≤

√
G(t)

√
F (t),

from which it follows that
√
G(t) ≤

√
G(0) +

∫ t
0

√
F (τ)dτ , and∫ l

0

u2(x, t) dx+ 2

∫ t

0

∫ l

0

u2
x(x, τ) dxdτ

=

∫ l

0

u2(x, 0) dx+ 2

∫ t

0

∫ l

0

u(x, τ)f(x, τ) dxdτ

≤
∫ l

0

u2(x, 0) dx+ 2

∫ t

0

√
G(τ)

√
F (τ)dτ

≤
∫ l

0

u2(x, 0) dx+ 2

∫ t

0

(√
G(0) +

∫ τ

0

√
F (s)ds

)√
F (τ)dτ

≤
∫ l

0

u2(x, 0) dx+ 2
√
G(0)

∫ t

0

√
F (τ)dτ +

(∫ t

0

√
F (τ)dτ

)2

≤2

∫ l

0

u2(x, 0) dx+

(∫ t

0

{∫ l

0

f 2(x, τ) dx

} 1
2

dτ

)2
 .

The technique for getting these estimates seems somewhat ad hoc; below we introduce

a more systematic approach: scaling.

Second modification to (4.11). To obtain an estimate for
∫ l

0
|u(x, T )|2 dx, we in-

troduce the normalizing scaling t = Ts for 0 ≤ s ≤ 1 and consider v(x, s) = u(x, Ts).
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Then

vs(x, s) = Tut(x, Ts) = T [uxx(x, Ts) + f(x, Ts)] = Tvxx(x, s) + Tf(x, Ts).

(4.11) applied to v(x, s) at s = 1 gives

∫ l

0

|v(x, 1)|2 dx+ 2T

∫ 1

0

∫ l

0

v2
x(x, τ) dxdτ

≤e
[∫ l

0

|v(x, 0)|2 dx+

∫ 1

0

∫ l

0

T 2f 2(x, Tτ) dxdτ

]
.

But ∫ l

0

|v(x, 1)|2 dx =

∫ l

0

|u(x, T )|2 dx,

T

∫ 1

0

∫ l

0

v2
x(x, τ) dxdτ =

∫ T

0

∫ l

0

u2
x(x, τ) dxdτ,

and∫ 1

0

∫ l

0

T 2f 2(x, Tτ) dxdτ = T

∫ T

0

∫ l

0

f 2(x, τ) dxdτ,

so we arrive at (4.19) for t = T .

4.2.3 Using the Energy Estimates to Construct Solutions of

the Wave Equation

We now apply the above energy estimates (4.17) to complete the construction of a

solution of 
∂2
t u− c2∂2

xu = f(x, t), on (x, t) ∈ [0, l]× R+,

u(0, t) = u(l, t) = 0, for t > 0,

u(x, 0) = g(x), for x ∈ [0, l],

∂tu(x, 0) = h(x), for x ∈ [0, l].
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using eigenfunction expansion. Recall that

u(N)(x, t) =
N∑
j=1

un(t) sin(
nπx

l
),

f(N)(x, t) =
N∑
j=1

fn(t) sin(
nπx

l
),

g(N)(x, t) =
N∑
j=1

gn sin(
nπx

l
),

h(N)(x, t) =
N∑
j=1

hn sin(
nπx

l
),

solve 
∂2
t u(N) − c2∂2

xu(N) = f(N)(x, t), on (x, t) ∈ [0, l]× R+,

u(N)(0, t) = u(N)(l, t) = 0, for t > 0,

u(N)(x, 0) = g(N)(x), for x ∈ [0, l],

∂tu(N)(x, 0) = h(N)(x), for x ∈ [0, l].

Then (4.17) applied to u(N) − u(N ′) implies that {∂tu(N)(x, t)} and {∂xu(N)(x, t)} are

Cauchy in C([0, T ], L2[0, l]) for any T > 0, as∫ T

0

∫ l

0

|f(x, s)|2 dxds =

∫ T

0

∞∑
j=1

l

2
f 2
n(s)ds =

l

2

∞∑
j=1

∫ T

0

f 2
n(s)ds <∞,

so for N > N ′,∫ T

0

∫ l

0

|f(N)(x, s)− f(N ′)(x, s)|2 dxds =

∫ T

0

N∑
j=N ′+1

l

2
f 2
n(s)ds→ 0 as N ′ →∞.

Therefore {∂tu(N)(x, t)} and {∂xu(N)(x, t)} have limits in C([0, T ], L2[0, l]).

{u(N)(x, t)} is also Cauchy in the space C([0, l]× [0, T ]) based on the elementary

inequality (1.30) and the energy estimate (4.17) applied to u(N) − u(N ′).

Let u(x, t) = limN→∞ u(N)(x, t), v(x, t) = limN→∞ ∂tu(N)(x, t) (in C([0, T ], L2[0, l])),

and w(x, t) = limN→∞ ∂xu(N)(x, t) (in C([0, T ], L2[0, l]). Then v(x, t) will be the gen-

eralized ∂t derivative of u(x, t), w(x, t) will be the generalized ∂x derivative of u(x, t),

and u(x, t) will be a generalized solution of (4.16) — we will elaborate on this later.

We used the notion of L2 derivatives above and now provide more details of that

notion in the one dimensional setting.
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Definition. A function g(x) defined on (a, b) is said to have Lp derivative for some

p ≥ 1 over (a, b), if g(x) is absolutely continuous over any compact subinterval

[a′, b′] in (a, b) (so g′(x) is defined almost everywhere over (a, b) and is Lebesgue inte-

grable over any compact subinterval) and g′(x) ∈ Lp(a, b). We will use the notation

g′ ∈ Lp(a, b) to mean that g has an Lp derivative over (a, b).

Remark 4.7. A function that is absolutely continuous over any compact subinterval

[a′, b′] in (a, b) may fail to be continuous over [a, b], or fail to be extended as a contin-

uous function over [a, b]; but a function having an Lp derivative for some p ≥ 1 over

(a, b) can be extended to [a, b] as an absolutely continuous function on [a, b], as the

integral representation g(x) = g(c) +
∫ x
c
g′(y) dy can be extended to include x = a or

b, when g′ ∈ Lp(a, b).

Note that the condition that g(x) having an Lp(a, b) derivative is not quite the

same as the existence of g′(x) in (a, b), with the exception of a finite number of

points, and that |g′(x)|p is integrable on (a, b). For example, for any step function

sc(x) defined to be = 1 for a ≤ x < c, and = 0 for c ≤ x ≤ b, s′c(x) is not considered

to be in Lp(a, b), although s′c(x) fails to exist only at x = c.

An equivalent way to define g′(x) ∈ Lp(a, b) is that there exists a sequence of

{gk(x)} ⊂ C1[a, b] such that ||gk(x)− g(x)||Lp(a,b) + ||g′k(x)− g′(x)||Lp(a,b) → 0 as k →
∞. This follows from passing to the limit in the relation gk(x) = gk(x0) +

∫ x
x0
g′k(y) dy

for any x0, x ∈ [a, b] to obtain g(x) = g(x0) +
∫ x
x0
g′(y) dy, from which it follows that

g(x) is absolutely continuous over [a, b], and that g′ ∈ Lp(a, b). The latter way of

defining a function having Lp derivative will be used in higher dimensional settings.

When g′(x) exists with the exception of a finite number of points and is piecewise

continuous in [a, b], and in addition, g(x) is continuous everywhere in [a, b], then

g′(x) ∈ Lp[a, b] for any 1 ≤ p <∞ in the sense just defined.

4.2.4 Energy Estimates for Solutions to the Cauchy Problem

of the Wave Equation

We next extend the above energy estimates to solutions to the Cauchy problem (3.3).

The standard approach so far relies on carrying out integration by parts on finite

intervals, which can be justified if the solution satisfies appropriate boundary condi-

tions, or has compact support in x for each t. We will prove below that the solution

will remain compactly in x if we assume u(x, 0) and ut(x, 0) to have compact support.
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We modify the energy estimate in the following way to prove this. Notice that

ut(utt − c2uxx) = (
1

2
u2
t +

c2

2
u2
x)t − (c2uxut)x.

So for a solution u to the homogeneous wave equation, the vector-field

(P,Q) = (−c2uxut,
1

2
u2
t +

c2

2
u2
x)

is divergence free. For any given (X,T ), we form the triangle with vertices (X,T ),

(X − cT, 0), and (X + cT, 0), and also consider the trapezoid

Dτ
0(X,T ) = {(x, t) : 0 ≤ t ≤ τ, |x−X| ≤ c(T − t)}

for any 0 < τ < T . Integrating the above divergence free vector-field (P,Q) on

Dτ
0(X,T ), we obtain

0 =

∫
∂Dτ0 (X,T )

(P,Q) · (nx, nt)ds.

On the t = τ portion of ∂Dτ
0(X,T ), X − c(T − τ) ≤ x ≤ X + c(T − τ), and

(P,Q) · (nx, nt) =
1

2
u2
t (x, τ) +

c2

2
u2
x(x, τ),

while on the t = 0 portion of ∂Dτ
0(X,T ), X − cT ≤ x ≤ X + cT ,

(P,Q) · (nx, nt) = −
[

1

2
u2
t (x, 0) +

c2

2
u2
x(x, 0)

]
.

On the lateral portion of ∂Dτ
0(X,T ), (x, t) = (X ± c(T − t), t), so ds =

√
1 + c2dt,

(nx, nt) = (±1,c)√
1+c2

, and

(P,Q) · (nx, nt) =
c

2
√
c2 + 1

[ut(X ± c(T − t), t)∓ cux(X ± c(T − t), t)]2 .

The key feature is that (P,Q) · (nx, nt) ≥ 0 along ∂Dτ
0(X,T ), as long as we take

nt ≥ 0, so ∫ X+c(T−τ)

X−c(T−τ)

[
1

2
u2
t (x, τ) +

c2

2
u2
x(x, τ)

]
dx

+

∫ τ

0

c

2
[ut(X + c(T − t), t)− cux(X + c(T − t), t)]2 dt

+

∫ τ

0

c

2
[ut(X − c(T − t), t) + cux(X − c(T − t), t)]2 dt

=

∫ X+cT

X−cT

[
1

2
u2
t (x, 0) +

c2

2
u2
x(x, 0)

]
dx.
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Thus we have the local version of the energy estimate∫ X+c(T−τ)

X−c(T−τ)

[
1

2
u2
t (x, τ) +

c2

2
u2
x(x, τ)

]
dx ≤

∫ X+cT

X−cT

[
1

2
u2
t (x, 0) +

c2

2
u2
x(x, 0)

]
dx.

As a consequence, if ∫ X+cT

X−cT

[
1

2
u2
t (x, 0) +

c2

2
u2
x(x, 0)

]
dx = 0,

then ∫ X+c(T−τ)

X−c(T−τ)

[
1

2
u2
t (x, τ) +

c2

2
u2
x(x, τ)

]
dx = 0,

for all 0 < τ < T , which then implies that u(x, t) = 0 for (x, t) ∈ DT
0 (X,T ). A

direct consequence of the energy estimate is the uniqueness property: if u(x, 0) ≡
ut(x, 0) ≡ 0, then u(x, t) ≡ 0—one simply applies the above energy estimate on any

finite trapezoid as in the proof above.

Exercises

Exercise 4.2.1. Let u(x, t) be a solution of (2.10) such that u(x, 0) = 0 and ut(x, 0) =

0 for x ≤ a or x ≥ b. Prove that u(x, t) = 0 for x ≥ b + ct or x ≤ a − ct. This is

a statement that the speed of propagation is not faster than c. (Hint: modify the

above local energy estimate in appropriately chosen triangles/trapezoids. While the

conclusion can be read off from the solution formula given in Theorem 3.1, the energy

estimate approach can be extended to higher dimensions.)

Exercise 4.2.2. Suppose that g(x) is continuous and piecewise differentiable over

[0, π]. Let
∑∞

n=1 gn sin(nx) be the Fourier sine series of g(x) over (0, π) and u(x, t) =∑∞
n=1 gne

−n2t sin(nx) be the Fourier series solution of (2.1) for (x, t) ∈ (0, π)× (0,∞).

Prove that

(a). t 7→
∫ π

0
|∂xu(x, t)|2 dx is non-decreasing in t ∈ (0,∞); and

(b). limt→0

∫ π
0
|∂xu(x, t)|2 dx <∞ iff g(0) = g(π) = 0.

Exercise 4.2.3. Here is a version of the energy estimates for solutions to the non-

homogeneous heat equation with homogeneous Dirichlet boundary condition: Let

U ⊂ Rn be a bounded domain with piecewise C1 boundary and v(x, t) ∈ C1(U ×
[0, T ]) ∩ C2,1

x,t (U × (0, T ]) be a solution of
vt(x, t)−∆v(x, t) = f(x, t) for (x, t) ∈ U × R+,

v(x, t) = 0 for (x, t) ∈ ∂U × R+,

v(x, 0) = g(x) for x ∈ U .
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Then there exists a constant C > 0 depending on U, T such that

max
0≤t≤T

(∫
U

v2(x, t) dx

)
+

∫ T

0

∫
U

|∇v(x, t)|2 dxdt ≤ C

(∫ T

0

∫
U

|f(x, t)|2 dxdt+

∫
U

g2(x) dx

)
.

Exercise 4.2.4. Here is a version of the energy estimates for solutions to the wave

equation (3.3) on R × R+ with non-homogeneous right hand side. Let u ∈ C2(R ×
(0, T )∩C1(R× [0, T ]) be a solution of (3.3) such that g(x) = u(x, 0), h(x) = ut(x, 0),

and f(x, t) satisfy
∫
R (|g′(x)|2 + |h(x)|2) dx < ∞, and

∫ ∫
R×[0,T ]

f 2(x, τ) dxdτ < ∞.

Prove that there exists M = M(T ) > 0 such that for any 0 < t ≤ T ,∫
R

[
u2
t (x, t) + c2u2

x(x, t)
]
dx ≤M

{∫
R

[
c2|g′(x)|2 + h2(x)

]
dx+

∫∫
R×[0,t]

f 2(x, τ) dxdτ

}
,

and ∫∫
R×[0,T ]

[
u2
t (x, t) + c2u2

x(x, t)
]
dx dt

≤MT

{∫
R

[
c2|g′(x)|2 + h2(x)

]
dx+

∫∫
R×[0,T ]

f 2(x, τ) dxdτ

}
.

(Hint: carry out the energy estimate on the trapezoid DT
0 (0, τ) for

τ →∞.)

Exercise 4.2.5. Let {gk(x)} ⊂ C1[a, b] be a sequence such that both {gk(x)} and

{g′k(x)} are Cauchy in Lp(a, b). Prove that {gk(x)} is Cauchy in C[a, b], and that there

exists an absolutely continuous function g over [a, b] such that ||gk(x)− g(x)||Lp(a,b) +

||g′k(x) − g′(x)||Lp(a,b) → 0 as k → ∞; furthermore, g(x) = g(a) +
∫ x
a
g′(y) dy for

all x ∈ [a, b]. Hint: First prove that {
∫ b
a
gk(x) dx} is Cauchy, then use gk(x) =

(b− a)−1
[∫ b

a
gk(z) dz +

∫ b
a

∫ x
z
g′k(y) dydz

]
.

4.3 Variational Method

Recall that the Dirichlet principle says that a solution u(x) to −∆u = 0 in Ω,

u = g on ∂Ω.
(4.20)

can be found as a minimizer to the variational problem

E[u] = min
w∈Mg

E[w], (4.21)
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where E[w] =
∫

Ω
1
2
|∇w(x)|2 dx and Mg =

{
w ∈ C2(Ω) ∩ C1(Ω) : w = g on ∂Ω

}
.

To find a minimizer of E[w] overMg, note thatE[w] is non-negative, so infw∈Mg E[w]

is well defined. A minimizing sequence for E[w] on Mg, namely, {uj(x)} ⊂ Mg such

that E[uj]→ infw∈Mg E[w], is bounded in
∫

Ω
|∇uj(x)|2 dx. However, Mg is not finite

dimensional; and there is no clear mechanism that would prove that such a minimiz-

ing sequence {uj} is convergent (in C2 norm), or at least has a subsequence which is

convergent.

We note that E[w] is (strictly) convex over Mg. More specifically, note that
uj+uk

2
∈Mg and

E[uj] + E[uk] = 2E[
uj + uk

2
] +

1

4
||∇(uj − uk)||2L2(Ω),

so we have

1

8
||∇(uj − uk)||2L2(Ω) =

E[uj] + E[uk]

2
− E[

uj + uk
2

]

≤E[uj] + E[uk]

2
− inf

u∈M0

E[u]→ 0,

when j, k → ∞, as E[uj], E[uk] → infu∈M0 E[u] when j, k → ∞. This proves that a

minimizing sequence is Cauchy in the semi-norm ||∇w||L2(Ω) (||∇w −∇v||L2(Ω) is in

fact a metric on Mg)! What remains is to identify this limit and its properties.

The early difficulties of the variational approach lie mostly with trying to work di-

rectly with convergence in Mg in the traditional C2 norm or its minor variations. The

computations above suggest strongly that it’s much more natural and advantageous

to work with convergence in the semi-norm ||∇w||L2(Ω).

Definition. For a bounded domain Ω in Rn, define H1
0 (Ω) to be the completion∗ in

the norm ||∇u||L2(Ω) of the space C1
c (Ω). For a domain Ω in Rn with piecewise C1

boundary, define H1(Ω) to be the completion in the norm ||∇u||L2(Ω) + ||u||L2(Ω) of

the space C1(Ω).

Remark 4.8. It is possible to define H1(Ω) for domains without requiring its bound-

ary being piecewise C1; however, in order to get approximations by functions in

C1(Ω), certain regularity assumptions on ∂Ω are needed. There are complications

∗We are using a basic fact that ||∇u||L2(Ω) is a norm on C1
c (Ω), and that Lp(Ω) is complete

in the sense that any Cauchy sequence {uk} of Lp(Ω) has a limit function u ∈ Lp(Ω) such that

‖uk − u‖Lp(Ω) → 0 as k → ∞. In this context, a sequence {uk} in C1
c (Ω) such that each {∂αuk},

α = 1, · · · , n, is Cauchy in L2(Ω) has a limit function u[α] in L2(Ω) such that ‖∂αuk−u[α]‖L2(Ω) → 0

as k →∞. These u[α]’s will be the partial derivatives of u in an integral sense.
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when ∂Ω has pieces which have codimension higher than 1, or have codimension 1

pieces with both sides lying in Ω; such boundary components create difficulties for

approximations by functions in C1(Ω).

One could use ||∇w − ∇v||L2(Ω) as a metric on Mg and discuss its completion.

The main technical issue is to discuss the sense in which the functions in the com-

pletion take on the boundary value g. Discussion later in this section gives a sense

of the boundary value of functions in the completion on codimension one boundary

components, but see Exercise 4.3.3 for an example where the boundary value on a

codimension two component of the boundary is not preserved in the completion.

The definition for H1
0 (Ω) only includes the norm ||∇u||L2(Ω). The fact that a

sequence which is complete in this norm is also complete in the norm ||u||L2(Ω) follows

from the following Poincaré inequality.

Poincaré inequality: For any bounded domain Ω in Rn, there is a con-

stant C > 0 depending on Ω, such that for any function u in C1
c (Ω), we

have ∫
Ω

|u(x)|2 dx ≤ C

∫
Ω

|∇u(x)|2 dx. (4.22)

Remark 4.9. H1
0 (Ω) and H1(Ω) are defined in terms of completion of the space of

appropriate C1 functions in the L2 norms of their derivatives. When inequalities such

as (1.30) or (4.22) are valid for the C1(Ω) functions, for which the completion is to be

taken, these inequalities continue to hold for functions in the completion. Let’s take

Ω = (0, l) to carry out the analysis. A sequence of functions {uj} ⊂ C1
c (0, l) which

is Cauchy in the norm ||u′j(x)||L2(0,l) is also Cauchy in ||uj(x)||C[0,l] due to (1.30), so

it has a limit u ∈ C[0, l] and {u′j} has a limit v in L2[0, l], and this v is the L2 weak

derivative of u. Furthermore, based on the following stronger inequality for functions

in C1[0, l],

|u(x1)− u(x2)| ≤
(∫ x2

x1

|u′(x)|2 dx
)1/2

|x1 − x2|1/2 , (4.23)

(4.23) continues to hold for functions in H1(0, l), where u′(x) represents the weak L2

derivative of u. This kind of argument identifies elements in H1(Ω) with functions

having some traditional regularity. When Ω is a higher dimensional domain, we may

no longer have (1.30) or (4.23), but there will be variations of this kind of argument.

By definition for H1
0 (Ω), (4.22) is valid for functions in H1

0 (Ω) as well.

Proof of Poincaré inequality. We may suppose that Ω ⊂ {x ∈ Rn : 0 < x1 < L}.
Then for any function u in C1

c (Ω), we may treat it as in C1
c ({x ∈ Rn : 0 < x1 < L}),
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and it follows from u(x) =
∫ x1

0
ux1(y, x2, · · · , xn) dy that |u(x)| ≤

∫ L
0
|ux1(y, x2, · · · , xn)| dy.

Squaring both sides and applying the Cauchy-Schwarz inequality on the right hand

side, we obtain

|u(x)|2 ≤
(∫ L

0

|ux1(y, x2, · · · , xn)|2 dy
)(∫ L

0

1 dy

)
.

Integrating both sides over x ∈ Ω, we obtain∫
Ω

|u(x)|2 dx ≤ L2

(∫
Ω

|ux1(x)|2 dx
)
≤ L2

(∫
Ω

|∇u(x)|2 dx
)
.

Remark 4.10. Note that if C(h) = {x ∈ Rn : a < x1 < a+ h, (x2, · · · , xn) ∈ D} is a

cylinder with D as base, then for any a ≤ a1 < a2 ≤ a+ h, similar to (4.23), for any

u ∈ C1(C(h)), we have∫
D

|u(a1, x2, · · · , xn)− u(a2, x2, · · · , xn)|2 dx2 · · · dxn

≤(a2 − a1)

(∫
D

∫ a2

a1

|ux1(x)|2 dx
)
≤ (a2 − a1)

(∫
D

∫ a2

a1

|∇u(x)|2 dx
)
.

This inequality also holds for H1(C(h)) functions and shows that x1 7→ u(x1, ·) ∈
L2(D) is Hölder continuous for an H1(C(h)) function, and implies that H1 functions

have well defined restrictions as L2 functions to hypersurfaces in its domain; in partic-

ular, they have well defined boundary values as functions in L2(∂Ω) when the domain

has piecewise C1 boundary.

An element u in H1
0 (Ω) or H1(Ω) has weak L2 derivatives in the following sense:

there exist u[α] ∈ L2(Ω) for each α = 1, · · · , n, such that for any η ∈ C1
c (Ω)∫

Ω

u(x)∂αη(x) dx = −
∫

Ω

u[α](x)η(x) dx.

This is true because there exists {vj} ⊂ C1
c (Ω) (or C1(Ω) in the case u ∈ H1(Ω)) such

that vj → u in L2(Ω) and {∇vj} is Cauchy in L2(Ω), so there exists u[α] ∈ L2(Ω) for

each α = 1, · · · , n, such that ∂αvj → u[α] in L2(Ω) as j →∞. Since, for each j,∫
Ω

vj(x)∂αη(x) dx = −
∫

Ω

∂αvj(x)η(x) dx,

using∣∣∣∣∫
Ω

[vj(x)− u(x)] ∂αη(x) dx

∣∣∣∣ ≤ (∫
Ω

|vj(x)− u(x)|2 dx
)1/2(∫

Ω

|∂αη(x)|2 dx
)1/2

,
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and a similar estimate for
∣∣∫

Ω
∂α
[
vj(x)− u[α](x)

]
η(x) dx

∣∣, we see that∫
Ω

u(x)∂αη(x) dx = lim
j→∞

∫
Ω

vj(x)∂αη(x) dx

= − lim
j→∞

∫
Ω

∂αvj(x)η(x) dx

= −
∫

Ω

u[α](x)η(x) dx.

We return to our discussion of finding a minimizer for E[u] in Mg. Since Mg ⊂
C1(Ω), we should consider the closure Mg of Mg in H1(Ω). Because H1(Ω) is the

completion in the norm ||∇u||L2(Ω) + ||u||L2(Ω), E[u] extends to Mg and is a continuous

functional on Mg. Our earlier argument on finding a minimizer for E[u] now works

on Mg; the only difference is that the minimizer u ∈ Mg is only known to have

weak L2 derivatives in Ω, and takes on the prescribed boundary value g only on

codimension-one boundary component and in the generalized L2 sense as discussed

in Remark 4.10.

Below is an alternative approach that also works for the Poisson equation (4.24)

below. Assume that g is the restriction to ∂Ω of a C2(Ω) function g̃. (Although

we already discussed that an H1 function on a domain with piecewise C1 boundary

has well defined boundary value as an L2 function, it is not easy at this stage to

characterize those functions on the boundary which are boundary values of an H1

function in the domain (not every L2(∂Ω) or C(∂Ω) function can be the boundary

value of an H1 function; some fractional order differentiability is needed.) We look

for a solution of (4.20) in the form of u = g̃ + v for some v ∈ H1
0 (Ω), then −∆v = f(x)

def
= ∆g̃ in Ω,

v = 0 on ∂Ω.
(4.24)

(4.24) has a variational structure too. A solution v to (4.24) is a minimizer to the

variational problem

I[v] = min
w∈H1

0 (Ω)
I[w], (4.25)

where I[w] =
∫

Ω

{
1
2
|∇w(x)|2 − f(x)w(x)

}
dx; and we can look for a minimizer to

I[w] as a mechanism to find a solution of (4.24).

First we need to show that infw∈H1
0 (Ω) I[w] is well defined, namely, I[w] is bounded

from below on H1
0 (Ω). This can be verified with the help of Poincaré’s inequality.
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It follows from (4.22) that

I[w] ≥1

2
||∇w||2 −

√
C||f ||L2(Ω)||∇w||L2(Ω)

≥1

2
||∇w||2L2(Ω) −

1

4
||∇w||2L2(Ω) − C||f ||2L2(Ω)

=
1

4
||∇w||2L2(Ω) − C||f ||2L2(Ω).

(4.26)

I[w] differs from E[w] only by a linear term, so I[w] carries the same convexity

property as E[w]. In particular, a minimizing sequence {wj} ⊂ H1
0 (Ω) for I[w] is

Cauchy in the H1
0 (Ω) norm, therefore there exists v ∈ H1

0 (Ω) such that wj → v

in H1
0 (Ω). Furthermore, I[v] ≤ limj→∞ I[wj] = infw∈H1

0 (Ω) I[w]; and is the unique

minimizer due to the strict convexity of I[w].

Since v attains infw∈H1
0 (Ω) I[w], we have, for any w ∈ H1

0 (Ω), that

d

dt

∣∣∣∣
t=0

I[v + tw] =

∫
Ω

[∇v(x) · ∇w(x)− f(x)w(x)] dx = 0,

which is the weak form of the equation to −∆v(x) = f(x). It remains to prove that

v, satisfying the weak form of the equation above, is in fact sufficiently regular to

satisfy −∆v(x) = f(x) in the classical sense.

The same approach works if we change I[w] into

I[w] =

∫
Ω

[
1

2

(
n∑

i,j=1

aij(x)wxi(x)wxj(x) + c(x)w2(x)

)
− f(x)w(x)

]
dx,

where the aij(x)’s satisfy

m|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤M |ξ|2 ∀ξ ∈ Rn,∀x ∈ Ω, (4.27)

for some 0 < m < M , and we may assume for now 0 ≤ c(x) ≤M for x ∈ Ω. Such kind

of aij(x)’s arise naturally in dealing with a medium which is anisotropic (the energy

density may vary depending on the orientation of ∇w) or non-homogeneous (the

energy density may vary depending on the location x), or both. Simplest examples

include

(aij(x)) =

[
λ1 0

0 λ2

]
or

[
λ(x) 0

0 λ(x)

]
or

[
λ1(x) 0

0 λ2(x)

]
,

where m ≤ λj, λ(x), and λj(x) ≤M (they need not be continuous in x).
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Under these assumptions, I[w] is still well defined on H1(Ω), is continuous with

respect to the H1(Ω) metric and strictly convex, and I[w] has a unique minimizer v

in H1
0 (Ω). This v satisfies

d

dt

∣∣∣∣
t=0

I[v + tw] =

∫
Ω

[
n∑

i,j=1

1

2
(aij(x) + aji(x)) vxi(x)wxj(x) + (c(x)v(x)− f(x))w(x)

]
dx

= 0,

for any w ∈ H1
0 (Ω). We may as well assume aij(x) = aji(x) for all x ∈ Ω—this will

not affect I[w]. Thus v satisfies

∫
Ω

[
n∑

i,j=1

aij(x)vxi(x)wxj(x) + (c(x)v(x)− f(x))w(x)

]
dx = 0, (4.28)

for any w ∈ H1
0 (Ω). If the terms aij(x)vxi(x) are in C1(Ω), or have L2(Ω) derivatives,

we would have∫
Ω

{
−

n∑
i,j=1

(aij(x)vxi(x))xj + c(x)v(x)− f(x)

}
w(x) dx = 0,

for any w ∈ H1
0 (Ω). We say that v is an H1

0 (Ω) weak solution of

−
n∑

i,j=1

(aij(x)vxi(x))xj + c(x)v(x)− f(x) = 0, (4.29)

when it satisfies the integral form (4.28).

(4.27) is called ellipticity condition for (4.29), and in such a case (4.29) is called

a second order elliptic equation. Thus the variational approach has provided a mech-

anism to produce a weak solution of (4.29); what remains is to prove that, when the

aij(x), c(x), and f(x) have additional regularity, the weak solution v(x) has improved

regularity than being in H1
0 (Ω); in particular, when the aij(x), c(x), and f(x) are

sufficiently regular, the v(x) becomes a classical C2(Ω) ∩ C(Ω) solution.

Remark 4.11. Although the variational method is quite robust, there are some subtle

issues which are not revealed in a conspicuous way by this approach. For instance,

for certain domains Ω and certain boundary value g ∈ C(∂Ω), (4.20) does not have a

solution. Ω = B1(0)\{0} with g(x) = 0 for |x| = 1 and g(0) = 1 is one such example.

How is this reflected in the variational approach? In seeking a minimizer in Mg, or

its appropriate completion, of E[w] = 1
2

∫
Ω
|∇w(x)|2dx, a minimizing sequence {uj}
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in Mg is still a Cauchy sequence under the metric ||∇uj −∇uk||L2(Ω). Why isn’t the

limit a solution to (4.20) here? It turns out that completion of Mg under this metric

can maintain the property of w(x) = 0 for |x| = 1 in appropriate sense∗, but can’t

maintain the property that w(0) = 1 in the case here. In other words, boundary

properties of functions in Mg may not be all preserved in the completion when the

boundary of the domain has a component that is not a hypersurface. In order for

the completion to maintain the boundary value at x = 0, there must be a constant

C > 0 such that for a minimizing sequence wj(x),
∫
Sn−1 |wj(rωωω) − wj(0)| dσ(ωωω) ≤

C||∇wj||L2(Ω)—this would be an analogue of (1.30) in the one dimensional case. But

such an inequality is impossible, even for radially symmetric functions.

Exercises

Exercise 4.3.1. Define I[w] as on the previous page and assume (4.27). In addition,

assume that c(x) ≥ m for all x ∈ Ω. Prove that inf{I[w] : w ∈ H1(Ω)} is attained by

a unique v ∈ H1(Ω), and that v satisfies (4.29). Assume further that ∂Ω ∈ C1 and

that v ∈ C1(Ω), prove that
∑n

i,j=1 aij(x)vxi(x)νj(x) = 0 at each x ∈ ∂Ω, where ν(x)

stands for the unit exterior normal to ∂Ω at x ∈ ∂Ω.

Exercise 4.3.2. Verify that the infimum of I[u]
def
=
∫ 1

−1
x2|u′(x)|2dx over X = {u ∈

H1(−1, 1) : u(−1) = −1, u(1) = 1} is equal to 0 and is not attained by any u ∈ X.

This example is based on Weierstrass’ example pointing out a defect in Riemann’s

application of the Dirichlet principle. The same conclusion holds if the condition

u ∈ H1(−1, 1) in X above is replaced by either u ∈ C1[−1, 1] or u ∈ AC[−1, 1].

Let Y denote the completion of AC[−1, 1] under the norm |u(−1)| + |u(1)| +(∫ 1

−1
x2|u′(x)|2dx

)1/2

and Y1 = {u ∈ Y : u(−1) = −1, u(1) = 1} (Note that if u ∈ Y ,

then for any 0 < c < 1, u ∈ AC[−1,−c] ∩AC[c, 1], so u(x) is point-wise well defined

over [−1, 0) ∪ (0, 1]). Verify that the function

u1(x) =

−1 if x ∈ [−1, 0),

1 if x ∈ (0, 1],

is in Y1 and that the infimum of the same I[u] over Y1 is attained by u1. Note that,

unlike H1(−1, 1), which is also obtained by a completion procedure, and whose mem-

bers are in AC[−1, 1], Y and Y1 admit functions which are not absolutely continuous

(not even continuous) over [−1, 1].
∗E.g., one can easily establish

∫
|x|=r |w(x)|2dσ(x) ≤ C(1 − r)

∫
|x|≥r |∇w(x)|2 dx for 0 < r < 1

and w ∈ Mg, and use this in the completion process to describe the sense in which w(x) = 0 on

|x| = 1 for any limit function w(x) in the completion.
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Exercise 4.3.3. Define X to be the completion of the space Mg of C1[0, 1] functions

with u(0) = g(0) = 1 and u(1) = g(1) = 0 with respect to the metric induced by

the semi-norm ||u|| :=
(∫ 1

0
|u′(r)|2r dr

)1/2

(This is actually an H1 norm of radial

functions in the two dimensional unit disc with boundary value 0). Verify that the

infimum of I[u] :=
∫ 1

0
|u′(r)|2r dr over X is equal to 0 by constructing a sequence

uk in C1[0, 1] functions with uk(0) = 1 and uk(1) = 0 such that I[uk] → 0 and

||u||Lp[0,1] → 0 as k → ∞, where 1 ≤ p < ∞ is arbitrary. This example shows

that the completion may not keep the boundary value of functions in Mg. Note,

however, that the boundary value u(1) = 0 is preserved in X in the sense that, for

u ∈ X, |u(s)| ≤
√

ln s−1
(∫ 1

s
|u′(r)|2r dr

)1/2

holds for 0 < s < 1. Hint: Since two-

dimensional harmonic functions are related to making I[u] the least possible, one

should make use of two-dimensional radial harmonic functions (perhaps on appropri-

ate annulus region) in the construction of uk.

Exercise 4.3.4. Prove that if u ∈ H1
0 (0, 1), then

u(x)√
x
→ 0 as x→ 0+.

Exercise 4.3.5. Note that (4.23) shows that any function in H1(0, 1) is Hölder con-

tinuous with exponent 1
2
, and in particular, is in C[0, 1]. Prove that if u ∈ H1(0, 1)

and u(0) = u(1) = 0, then u ∈ H1
0 (0, 1).

Exercise 4.3.6. Suppose that u ∈ H1(0, 1) satisfies∫ 1

0

a(x)u′(x)η′(x) dx = 0

for all η ∈ H1
0 (0, 1), where M ≥ a(x) ≥ m > 0 for x ∈ (0, 1).

(a). Show that u′(x) needs not be continuous. (Study the case where a(x) is piece-

wise constant.)

(b). Show that, if, in addition, a(x) ∈ C1(0, 1), then u(x) ∈ C2(0, 1).

Exercise 4.3.7. For any c ∈ (0, 1), prove that v ∈ H1
0 (0, 1) 7→ v(c) is a continuous

linear functional on H1
0 (0, 1): this is clearly linear in v; to prove that it is a continuous

linear functional, it remains to prove the existence of some C > 0 such that |v(c)| ≤
C||v′||L2(0,l) for any v ∈ H1

0 (0, 1). In addition, prove that

I[v] :=
1

2

∫ 1

0

|v′(x)|2dx− v(c)

has a unique minimizer u ∈ H1
0 (0, 1), that u(x) is piecewise C1 on (0, 1), and u′(c+)−

u′(c−) = −1, where u′(c±) are the right and left limits of u′(x) at c. Finally determine

u(x) explicitly.
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Exercise 4.3.8. This exercise provides a mechanism to prove the existence of a weak

solution to a modified (4.29) which includes first derivative terms of vxj(x):

−
n∑

i,j=1

(aij(x)vxi(x))xj +
n∑
j=1

bj(x)vxj(x) + c(x)v(x)− f(x) = 0, (4.30)

where we may assume bj(x) to be bounded measurable, say, |bj(x)| ≤M for all x ∈ Ω,

and f ∈ L2(Ω). First, we set up a bilinear form B[v, w] on H1
0 (Ω) as

B[v, w] =

∫
Ω

(
n∑

i,j=1

aij(x)vxi(x)wxj(x) +

[
n∑
j=1

bj(x)vxj(x) + c(x)v(x)

]
w(x)

)
dx.

If v ∈ H1
0 (Ω) is such that B[v, w] =

∫
Ω
f(x)w(x)dx for all w ∈ H1

0 (Ω), then we say v

is a weak solution of (4.30).

(a) Prove that there exists C > 0 such that |B[v, w]| ≤ C||v||H1
0 (Ω)||w||H1

0 (Ω) for any

v, w ∈ H1
0 (Ω).

(b) B[v, w] is said to be coercive if there exists α > 0 such that B[v, v] ≥ α||v||2
H1

0 (Ω)

for all v ∈ H1
0 (Ω). Prove that if c(x) ≥ nM2/(2m) for all x ∈ Ω, then B[v, w]

defined above is coercive. Note that B[v, w] is in general not symmetric in v

and w; otherwise, one could have used the variational method of this section to

prove the existence of a weak solution of (4.30), namely, some u ∈ H1
0 (Ω) such

that B[u,w] =
∫

Ω
f(x)w(x)dx for all w ∈ H1

0 (Ω).

(c) The following abstract formulation, due to Lax and Milgram, will be used to

prove the existence of a weak solution of (4.30), under appropriate conditions.

Suppose that H is a Hilbert space and B[v, w] is a bilinear form on H

satisfying (i). there exists some C > 0 such that |B[v, w]| ≤ C||v||||w||
for all v, w ∈ H, and (ii). there exists some α > 0 such that B[v, v] ≥
α||v||2 for all v ∈ H. Then for any bounded linear functional l of H,

there is a unique u ∈ H such that B[u,w] = 〈l, w〉 for all w ∈ H.

Follow the instruction to prove this Lax-Milgram theorem. First, prove that

for any v ∈ H, there is a unique T (v) ∈ H such that B[v, w] = (T (v), w) for

all w ∈ H. Here (T (v), w) is the inner product of H. Second, prove that T

is a linear operator and α||v|| ≤ ||T (v)|| ≤ C||v|| for all v ∈ H. Third, prove

that T : H 7→ H is onto by showing that T (H) is closed in H, and that if

w is such that (T (v), w) = 0 for all v ∈ H, then w = 0. Lastly, prove that
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for any bounded linear functional l of H, there is a unique u ∈ H such that

B[u,w] = (T (u), w) = 〈l, w〉 for all w ∈ H.

(d) Prove that under our assumptions, including those made in (b), there exists a

unique weak solution to (4.30).
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Chapter 5

Laplace and Poisson Equations

Overview. In this chapter, we aim to develop methods to solve boundary value

problem of the kind  ∆u = f in U ,

u = g on ∂U .
(5.1)

In the first chapter, we discussed the separation of variables method to solve (5.1)

in the case U is a round disk in R2 and f ≡ 0 in U . The same method can also be

made to work on higher dimensional round balls. Eigenfunction expansion method

can be used to solve (5.1) on such domains when f is not identically 0. However these

methods leave us no clue as for how to approach (5.1) on general domains.

We will first do some reductions and try to understand the solvability of the

reduced problems. The first is to try to construct solutions to

∆u = f in U , (5.2)

for reasonably behaved f without worrying whether the boundary values of u equals

g, or to construct solutions to  ∆u = 0 in U ,

u = g on ∂U .
(5.3)

for reasonably behaved g; we will first carry this out for a round ball or a half space

© 2023, by Zheng-Chao Han. Please do not distribute these notes at this point, as they have

not been thoroughly revised.
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in general dimensions. Next we will try to construct solutions to ∆u = f(x) in U ,

u = 0 on ∂U ,
(5.4)

for well behaved f .

Once we understand how to solve (5.3) and (5.4), a solution of (5.1) can be

constructed as u1(x)+u2(x), where u1(x) is a solution of (5.3) and u2(x) is a solution

of (5.4). If we also know how to construct solutions to (5.2), then (5.3) and (5.4) are

essentially equivalent. For example, let v(x) be a solution of (5.2) such that v ∈ C(U),

then a solution of (5.4) can be constructed as v(x) + w(x), where w is a solution of

(5.3) with boundary value g(x)− v(x).

After we have some understanding for solving (5.2), (5.3) and (5.4) for a class

of data (source term or boundary value) and domain, we move on to tackle their

solvability in general cases. One main focus will be to develop tools to understand

how solutions converge when the data or domains converge. We should also keep an

eye on properties and methods which may hold for solutions to equations that are

modifications of (5.2), such as the Helmholtz equation ∆u(x) + c(x)u(x) = 0, or its

variable coefficients variants.

We already saw several applications of the maximum principle for solutions to

(5.1). An immediate consequence of the maximum principle is the uniqueness of

solution of (5.1) in the class C2(U) ∩ C0(Ū): suppose that U is a bounded domain

and that u, v ∈ C2(U) ∩C0(Ū) are solutions to (5.1), then u− v ∈ C2(U) ∩C0(Ū) is

harmonic in U with (u − v)|∂U = 0, therefore u − v ≡ 0 in U . A consequence of the

uniqueness of solution of (5.1) is that one can’t prescribe both the boundary value

u(x) on ∂U and its normal derivative ∂u
∂ν

on ∂U .

Another consequence of the maximum principle is the estimate on the size of

|u|C0(Ū) in terms of |u|C0(∂U) and |∆u|C0(Ū): for a bounded domain U , there exists a

constant C > 0 depending only on the domain U such that

|u|C0(Ū) ≤ |u|C0(∂U) + C|∆u|C0(Ū). (5.5)

A further consequence of the maximum principle is the following convergence

property: suppose that uk ∈ C2(U)∩C0(Ū) is the unique solution to (5.1) with fk, gk

replacing f, g, respectively, and suppose that there exist f ∈ C0(Ū) and g ∈ C0(∂U)

such that fk → f in C0(Ū) and gk → g in C0(∂U), then we see through (5.5) applied

to uk − ul that {uk} is Cauchy in C0(Ū), therefore, there exists a limit u ∈ C0(Ū)

with u = g on ∂U .
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In order for u to solve (5.1) in the classical sense, we need to find conditions

which guarantee that uk → u not only in C0(Ū), but also in C2
local(U), at least after

extracting a subsequence. This can be achieved if we could obtain versions of (5.5)

where the left hand side is replaced by appropriate norms of derivatives of order two

or higher of the solution; then we could prove that derivatives up to order two of the

solutions uk is Cauchy in appropriate space, or argue via Arzela-Ascoli theorem that

derivatives of uk up to second order are equicontinuous on any compact subset of U .

Finding and proving such appropriate derivative estimates will be a main focus.

Such estimates can be proved relatively easily for solutions to (5.1) when f ≡ 0 in

U , namely, for harmonic functions. See Theorem 5.8 below. The precise statements

on the convergence of solutions to (5.1) are given in Theorems 5.10 and 5.20 below.

The equicontinuity of the second derivatives of solutions of (5.1) for general f

requires some control on the modulus of continuity of f and can be developed using

potential representation. There is a theory, called the Schauder theory, that general-

izes such estimates to solutions of elliptic equations with Hölder continuous variable

coefficients. We may only have time to touch on some rudimentary aspect of this

theory and leave the full development of this theory to a subsequent course.

Our main immediate focus in this course will be to find conditions on U and g such

that we have a reasonably complete result on the solvability of (5.1) for the case f ≡ 0.

Although the convergence result in Theorem 5.20 looks like a plausible approach, a

complete result would require the solvability of (5.1) for a dense set of data. This

can be provided by Poincaré’s method of balayage. An alternative approach is to use

Perron’s method which involves the concept of subharmonic functions.

In order to develop the derivatives estimates for harmonic functions in Theo-

rem 5.8, we first discuss Green’s representation and some of its consequences, includ-

ing the regularity properties of harmonic functions, the concept of Green’s functions,

and the construction of Green’s function on round balls and half spaces in any di-

mension.

5.1 Elementary Examples of Harmonic Functions

First let’s work out some sample solutions to ∆u = 0.

(i) The real and imaginary parts of complex analytic functions on domains in C
are harmonic functions.
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(ii) Polynomial solutions of degree 2 or less:
∑n

i,j=1 aijxixj +
∑n

i=1 bixi + c satisfies

∆u = 0 iff
∑n

i=1 aii = 0. This is a vector space of dimension n(n+1)
2

+ n. In

fact, using an essentially linear algebra argument, one can see that the linear

map ∆ : Pk 7→ Pk−2 is onto and has non-trivial kernel whose dimension is

dim Pk−dim Pk−2 =
(
n+k−1
n−1

)
−
(
n+k−3
n−1

)
. Here Pk is the space of homogeneous

polynomials of degree k in Rn. Polynomials p(x) in Pk satisfying ∆p(x) = 0

are called homogeneous harmonic polynomials of degree k.

(iii) Separable solutions of the form Φ(x)Ψ(y) on R2, where x, y ∈ R and for some

constant λ, Φ′′(x) + λΦ(x) = 0 and Ψ′′(y) − λΨ(y) = 0. When λ = ξ2, we

find solutions of the form eixξ±|ξ|y. This also works in higher dimensions, with

x ∈ Rk, ξ = (ξ1, · · · , ξk) replacing x and ξ above, and x · ξ replacing xξ.

(iv) Superpositions of known solutions. In the case of (iii) above, we can form∑(
A(ξ)eix·ξ+|ξ|y +B(ξ)eix·ξ−|ξ|y

)
.

When we would like to form superposition with infinitely many terms, in par-

ticular when allowing the parameter ξ → ∞, we should be concerned about

the exponential growth in |ξ| of e|ξ|y for y > 0 (and that of e−|ξ|y for y < 0).

If we consider constructing solutions to (5.3) on Rn
+ = {(x, y) ∈ Rn : y > 0},

then it’s reasonable to work with
∫
Rn−1 B(ξ)eix·ξ−|ξ|ydξ, and hope to use B(ξ)

to achieve the desired boundary value. Formally B(ξ) should be chosen so that∫
Rn−1 B(ξ)eix·ξdξ = g(x) for x ∈ Rn−1. Based on knowledge of Fourier trans-

forms, B(ξ) = (2π)1−n ∫
Rn−1 g(z)e−iz·ξ dz. Thus we can formally represent the

solution in terms of g as

(2π)1−n
∫
Rn−1

(∫
Rn−1

g(z)e−iz·ξ dz

)
eix·ξ−|ξ|ydξ

=(2π)1−n
∫
Rn−1

g(z)

(∫
Rn−1

ei(x−z)·ξ−|ξ|ydξ

)
dz

=

∫
Rn−1

g(z)P (x− z, y) dz

where P (x− z, y) = (2π)1−n ∫
Rn−1 e

i(x−z)·ξ−|ξ|ydξ.

When n = 2, we find easily P (x − z, y) = y
π(y2+|x−z|2)

; while for n > 2, it

would take some effort by Fourier transform to find an explicit expression for

P (x−z, y); but we will encounter and find P (x−z, y) by another method below.
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(v) Separable solutions of the form Φ(r)Ψ(θ) in the sector Σθ0 = {z ∈ C : 0 <

arg(z) < θ0} of C, where, for some constant λ, Ψ′′(θ) + λΨ(θ) = 0, 0 < θ < θ0

Ψ(0) = Ψ(θ0) = 0,
(5.6)

and

r2Φ′′(r) + rΦ′(r)− λΦ(r) = 0 for r > 0. (5.7)

Here we have used the fact that the Laplace operator ∆ = ∂2
r + r−1∂r + r−2∂2

θ

in polar coordinates in dimension 2 and have also imposed the homogeneous

Dirichlet boundary condition on ∂Σθ0 . We know that (5.6) has non-trivial so-

lutions only when λ =
(
kπ
θ0

)2

for k ∈ N, with solutions being scalar multiples of

Ψk(θ) = sin
(
kπθ
θ0

)
. Setting λ1 =

(
π
θ0

)2

, we see that the corresponding solutions

to (5.7) are Φk(r) = r±k
√
λ1 . Thus both rk

√
λ1 sin

(
kπθ
θ0

)
and r−k

√
λ1 sin

(
kπθ
θ0

)
are harmonic functions in Σθ0 with vanishing boundary value on ∂Σθ0 , which

are non-trivial and exhibit some growth either at ∞ or near 0

This approach generalizes to higher dimensions as well. When θ runs over

the entire Sn−1, there will be no boundary condition in the generalization

to (5.6), the corresponding solutions Ψ(θ) to ∆θΨ(θ) + λΨ(θ) = 0 on Sn−1

will be called (surface) spherical harmonics. Harmonic polynomials in (ii)

appear in this approach, for, if p(x) ∈ Pk is a degree k harmonic poly-

nomial, then p(x) = |x|kΨ(θ), with θ = x
|x| , for some Ψ(θ) on Sn−1, and

∆p(x) = |x|k−2 [k(k + n− 2)Ψ(θ) + ∆θΨ(θ)], which implies that k(k + n −
2)Ψ(θ) + ∆θΨ(θ) = 0; the converse direction also holds.

Next we state the solvability of (5.2) and (5.4) when f is a polynomial, and U

is a round ball in the case of (5.4). This is based on (ii) above. Consider the map

P≤k 7→ P≤k: p(x) 7→ ∆ [(|x|2 − 1)p(x)], where P≤k is the space of polynomials of

degree ≤ k. We claim that this map is an isomorphism. First, it has a trivial kernel,

for, if ∆ [(|x|2 − 1)p(x)] = 0, then u(x) := (|x|2−1)p(x) is a harmonic function on Rn

with u(x) = 0 on |x| = 1, and by the maximum principle, u(x) ≡ 0 for all x ∈ B1(0),

so p(x) ≡ 0 for all x ∈ B1(0); but p(x) is homogeneous of degree k, so p(x) ≡ 0 on

Rn. Since P≤k is finite dimensional, it follows that the above map is an isomorphism,

and (5.4) has a (polynomial) solution when f is a polynomial and U is a round ball

in the case of (5.4)
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It further follows from the above that |x|2Pk−2 is a subspace of Pk and ∆ :

|x|2Pk−2 7→Pk−2 is an isomorphism. Take any q ∈Pk−2, it follows from the solution

of (5.4) described above that there is some p(x) ∈P≤k−2 such that ∆ [(|x|2 − 1)p(x)] =

q(x). Writing out p(x) =
∑k−2

j=0 pj(x), where pj(x) ∈Pj, we see that

∆
[
(|x|2 − 1)p(x)

]
=

k−2∑
j=0

{
∆
[
|x|2pj(x)

]
−∆pj(x)

}
= q(x).

∆ [|x|2pj(x)] ∈Pj and ∆pj(x) ∈Pj−2 for j = 0, · · · , k− 2, so ∆ [|x|2pk−2(x)] = q(x)

and

∆
[
|x|2pk−2−l(x)

]
= 0 for all odd 1 ≤ l ≤ k − 2, and

∆
[
|x|2pk−2−l(x)

]
−∆ [pk−l(x)] = 0 for all even 2 ≤ l ≤ k − 2.

The solvability of ∆ [|x|2pk−2(x)] = q(x) shows that ∆ : |x|2Pk−2 7→ Pk−2 is onto.

Since Pk−2 is finite dimensional, this map must be injective as well, thus it is an

isomorphism. Furthermore, we also have from the above that pk−2−l(x) = 0 for all

odd 1 ≤ l ≤ k − 2, and that hk−l := pk−l(x) − |x|2pk−2−l(x) ∈ Pk−l is harmonic

on Rn, for all even 2 ≤ l ≤ k − 2. This establishes the direct sum decomposition

Pk = |x|2Pk−2 ⊕Hk, where Hk = Ker(∆) is the space of homogeneous harmonic

polynomials of degree k. An iteration of this decomposition further gives Pk =

Hk ⊕ |x|2Hk−2 ⊕ |x|4Hk−4 + · · · .

Exercises

Exercise 5.1.1. Suppose that u ∈ Ck(BR(0)) is harmonic in BR(0). Let Tl(u)(x)

be the degree l Taylor expansion of u at x = 0, for l = 0, 1, · · · , k. Show that

Tl(u)(x) ∈Hl.

Exercise 5.1.2. Verify that if h ∈Hk and l ∈ N, then

∆
[
|x|2lh(x)

]
= 2l(2l + 2k + n− 2)|x|2l−2h(x).

Use this and the decomposition Pk = Hk ⊕ |x|2Hk−2 ⊕ |x|4Hk−4 + · · · to produce

an algorithm to compute p(x) ∈Pk+2 solving ∆p(x) = q(x) ∈Pk.

Exercise 5.1.3. Note that ∆ : Pk 7→ Pk−2 is nilpotent; in fact, ∆m = 0 for

m > k/2. Use the information in the precious exercise to produce a basis in Hk with

respect to which the representation of ∆ is a Jordan canonical form. Also prove that

|x|2∆ : Pk 7→Pk is diagonalized.
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5.2. MAXIMUM PRINCIPLE FOR SUBHARMONIC FUNCTIONS AND APPLICATIONS

5.2 Maximum Principle for subharmonic functions

and Applications

To further develop properties of solutions to (5.2), (5.3) and (5.4), we will use the

Green’s identities for the Laplace operator. We first state the Green’s identity.

Proposition 5.1. Suppose that U is a bounded domain with piecewise C1 boundary,

and u, v ∈ C2(Ū). Then∫
U

[u(x)∆v(x)] dx = −
∫
U

∇u(x) · ∇v(x) dx+

∫
∂U

[
u(x)

∂v(x)

∂n(x)

]
dσ(x), (5.8)

and∫
U

[u(x)∆v(x)− v(x)∆u(x)] dx =

∫
∂U

[
u(x)

∂v(x)

∂n(x)
− v(x)

∂u(x)

∂n(x)

]
dσ(x), (5.9)

here n(x) denotes the unit exterior normal to ∂U at x ∈ ∂U .

(5.8) follows from the divergence theorem by noting that

u(x)∆v(x) +∇u(x) · ∇v(x) = ∇ [u(x)∇v(x)] ;

while (5.9) from taking the difference between (5.8) and a corresponding version by

interchanging u and v.

Remark 5.1. (5.9) continues to hold when u and v satisfy the weaker condition that

u, v ∈ C1(Ū) ∩ C2(U) as long as ∆u and ∆v are in L1(U). Also, we often only need

to apply (5.9) on subdomains V ⊂⊂ U with piecewise C1 boundary, such as balls

Br(x0) ⊂⊂ U .

We now proceed to prove the maximum principle and strong maximum principle

for the so called subharmonic (superhamonic) functions, using (5.9).

Definition. A C2(U) function is called subharmonic (superhamonic) in U , if ∆u ≥
(≤)0 in U .

Proposition 5.2. (i). If U is a bounded domain and u ∈ C2(U)∩C(U) is subhar-

monic (superhamonic) in U , then

max
U

u = max
∂U

u

(
min
U
u = min

∂U
u for the superharmoinc case

)
.

Furthermore, if U is connected, u can not attain maxŪ u (minU u for the super-

harmonic case) in U unless u is a constant in U .
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(ii). Given u ∈ C2(U) ∩ C(U), then

max
U
|u| ≤ max

∂U
|u|+ C sup

U
|∆u|,

where C is a constant depending only on the diameter of U .

We proved the maximum principle for harmonic functions earlier by more ele-

mentary means. This is a stronger form of the maximum principle, called the strong

maximum principle, and has important applications. A first application is

Corollary 5.3. Suppose that U is connected and u ∈ C2(U)∩C(U) satisfies ∆u ≤ 0

in U and u ≥ 0 but not ≡ 0 on ∂U , then u(x) > 0 in U .

We first prove the mean value property of (sub/super) harmonic functions using

(5.9).

Proposition 5.4. Suppose that u ∈ C2(U) is subharmonic in BR(x0) ⊂ U . Then for

any 0 < r < R,

u(x0) ≤ 1

|∂B1(0)|

∫
∂B1(0)

u(x0 + rωωω)dωωω =
1

|∂Br(x0)|

∫
∂Br(x0)

u(x) dσ(x),

and

u(x0) ≤ 1

|Br(x0)|

∫
Br(x0)

u(x) dx.

If u ∈ C2(U) is harmonic in BR(x0) ⊂ U , then the above two inequalities are equali-

ties.

Proof. Suppose that u ∈ C2(U) is subharmonic in BR(x0) ⊂ U , then applying (5.9)

to u and v ≡ 1 on Br(x0) for any 0 < r < R, we obtain

0 ≤
∫
∂Br(x0)

∂u(x)

∂n(x)
dσ(x)

= rn−1

∫
∂B1(0)

∂u(x0 + rωωω)

∂r
dωωω using dσ(x) = rn−1dωωω in x = x0 + rωωω

= rn−1 ∂

∂r

(∫
∂B1(0)

u(x0 + rωωω)dωωω

)
,

from which it follows that
∫
∂B1(0)

u(x0 + rωωω)dωωω is a non-decreasing function of r for

0 < r < R. Since
∫
∂B1(0)

u(x0 + rωωω)dωωω → |∂B1(0)|u(x0) as r → 0, we conclude that∫
∂B1(0)

u(x0 + rωωω)dωωω ≥ |∂B1(0)|u(x0) for all 0 < r < R, where |∂B1(0)| stands for the

volume of ∂B1(0). This proves the first equality.
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Next, for any 0 < r < R, we apply the first inequality for 0 < s ≤ r, multiply

both sides by sn−1, and integrate in s from 0 to r, to get∫
Br(x0)

u(x) dx

=

∫ r

0

∫
∂B1(0)

u(x0 + sωωω)sn−1 dωωωds

≥
∫ r

0

|∂B1(0)|u(x0)sn−1 ds

=
|∂B1(0)|

n
rnu(x0)

=|Br(x0)|u(x0) using |Br(x0)| = |∂B1(0)|
n

rn.

This concludes the proof.

Proof of Proposition 5.2. For (i), it suffices to prove that if there exists x0 ∈ U such

that u(x0) = maxŪ u, then the set {x ∈ U : u(x) = maxŪ u} is open in U . For any

x ∈ U with u(x) = maxŪ u = M , let Br(x) ⊂⊂ U , then the mean value property of

u in Br(x) implies that

M = u(x) ≤ 1

|Br(x)|

∫
Br(x)

u(y) dy ≤ 1

|Br(x)|

∫
Br(x)

M dy = M,

from which it follows that u(y) = M for all y ∈ Br(x).

For (ii) set v = max∂U |u| + 1
2
(d2 − x2

1) supU |∆u|, where we may assume that

U ⊂ {x : 0 ≤ x1 ≤ d}, then ∆(v ± u) ≤ 0 in U and (v ± u) ≥ 0 on ∂U , then apply

(i).

An immediate corollary of the maximum principle is the uniqueness of the Dirichlet

problem.

Corollary 5.5. Suppose that U is a bounded domain and that u1, u2 ∈ C2(U)∩C(Ū)

are both solutions to {
∆u = f in U ,

u = g on ∂U .

Then u1 ≡ u2 in U .

Remark 5.2. A corollary of the uniqueness of the Dirichlet problem is that the
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following Cauchy problem in U 
∆u = f in U ,

u = g on ∂U ,

∂u

∂n
= h on ∂U .

(5.10)

is not well-posed, as a solution would be determined by f and g alone and one can

not prescribe h arbitrarily.

Exercises

Exercise 5.2.1. Suppose that U is a bounded domain in Rn such that −x ∈ U

whenever x ∈ U , and that g ∈ C(∂U) satisfies g(−x) = g(x). Prove that any solution

u ∈ C2(U) ∩ C(U) to (5.3) satisfies u(−x) = u(x).

Exercise 5.2.2. Let Σθ0 = {z ∈ C : 0 < arg(z) < θ0} of C. Suppose that u ∈
C(Σθ0)∩C2(Σθ0) is harmonic in Σθ0 and satisfies, for 0 < γ < π

θ0
and some M,C > 0,

u(x) ≤M on ∂Σθ0 , and u(x) ≤ |x|γ for x ∈ Σθ0 .

Then u(x) ≤ M for x ∈ Σθ0 . (Hint: For sufficiently small ε > 0 and γ < γ′ < π−ε
θ0

,

apply the maximum principle to the harmonic function u(x) − ε|x|γ′ sin(γ′θ + ε) in

Σθ0 on the intersection of Σθ0 with a sufficiently large disc, where θ is the polar angle

of x.)

Exercise 5.2.3. Suppose that u ∈ C(Σθ0)∩C2(Σθ0) is harmonic in Σθ0 and satisfies

for some M

u(x) ≤M on ∂Σθ0 , and lim sup
|x|→∞

u(x)

|x|
π
θ0

≤ 0 uniformly for 0 ≤ θ ≤ θ0.

Then u(x) ≤M for x ∈ Σθ0 . (Hint: For sufficiently small ε > 0, show that

Mε := sup
θ=θ0/2,r≥0

{
u(r cos θ, r sin θ)− εr

π
θ0 sin

(
πθ

θ0

)}
is attained at some rε ≥ 0, and use the method of the previous problem to show that

u(x) ≤ max{M,Mε} in Σθ0 ; then show that Mε ≤ M using the strong maximum

principle.)

Exercise 5.2.4. Let Sh = {x = (x1, . . . , xn) : 0 < xn < h, (x1, . . . , xn−1) ∈ Rn−1}.
Suppose that u ∈ C(Sh) ∩ C2(Sh) is harmonic in Sh and satisfies for some M

u(x) ≤M on ∂Sh, and lim sup
|x|→∞

u(x)

exp{π
h
|x|}
≤ 0 uniformly for 0 ≤ xn ≤ h.

Then u(x) ≤M for x ∈ Sh.
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5.3 Fundamental Solution of the Laplace Operator

A function Φ(x) is called a fundamental solution of the Laplace operator if it satisfies

−∆Φ(x) = δ(x), (5.11)

where δ(x) refers to the Dirac delta distribution at 0.

A more formal way to define (5.11) is to make sense of it in the distributional

sense: Φ(x) is integrable on any compact subset of Rn, and

η(0) = −
∫
Rn

Φ(x)∆η(x) dx, for any test function η ∈ C2
c (Rn). (5.12)

Here is a heuristic discussion on why we are interested in a fundamental solution.

When discussing Duhamel’s principle, we already saw that in order to solve a non-

homogeneous linear PDE, it is helpful to regard the source term as a superposition

of locally constant functions which equal 0 except on (vanishingly) small boxes, and

construct a solution to the PDE with this localized source term. Namely, for any

xa and a family of functions fε(x) whose support is shrinking to xa as ε → 0+, say,

supported in the ball B(xa, ε), and with
∫
fε(x) dx = 1, we look for a solution to

−∆xEε(x;xa) = fε(x)

and examine its limit E(x;xa) = limε→0+ Eε(x;xa). Since ∆Eε(x;xa) = 0 outside

B(xa, ε), so we expect ∆xE(x;xa) = 0 for x 6= xa. The family fε(x) in the limit of

ε → 0+ is the unit source at xa, namely, δ(x− xa), in the following sense: integrate

against a test function η ∈ C∞c (Rn):

η(xa) = lim
ε→0

∫
Rn
η(x)fε(x) dx =

∫
Rn
η(x)δ(x− xa) dx (definition).

Suppose that we can apply (5.9) to η(x) and Eε(x;xa),∫
Rn
η(x)fε(x) dx

=−
∫
Rn
η(x)∆xEε(x;xa) dx

=−
∫
Rn

[∆xη(x)]Eε(x;xa) dx,

and that Eε(x;xa) has a limit E(x;xa) as ε→ 0+ in the sense that

lim
ε→0+

∫
Rn

[∆xη(x)]Eε(x;xa) dx =

∫
Rn

[∆xη(x)]E(x;xa) dx,
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then

η(xa) = −
∫
Rn

[∆xη(x)]E(x;xa) dx.

We are choosing Φ(x) to be a fundamental solution of −∆, instead of ∆, because

it turns out that such a Φ(x) would have a limiting behavior of Φ(x)→ +∞ as x→ 0.

Because ∆ is a constant coefficient differential operator, Φ(x− y) would satisfy

−∆xΦ(x− y) = δ(x− y),

so we expect E(x; ξ) = Φ(x − ξ) in such a case, and for a function f(x) under

appropriate conditions,

−∆x

(∫
f(y)Φ(x− y) dy

)
=

∫
f(y)δ(x− y) dy = f(x), (5.13)

at least formally at this point. In other words, integration against Φ(x− y) provides

a right inverse operator for −∆. Of course the validity of this needs some regularity

assumptions on f and needs to be carefully justified.

One way to make sense of (5.13) is to take f ∈ C2
c (Rn), then

∫
Rn f(y)Φ(x−y) dy =∫

Rn f(x− y)Φ(y) dy, so

−∆x

(∫
Rn
f(y)Φ(x− y) dy

)
=−∆x

(∫
Rn
f(x− y)Φ(y) dy

)
=−

∫
Rn

∆xf(x− y)Φ(y) dy

=−
∫
Rn

∆yf(x− y)Φ(y) dy = f(x),

as derived above.

Note that if Φ(x) is a fundamental solution and h(x) is a smooth solution on Rn

to ∆h(x) = 0, then Φ(x) + h(x) is also a fundamental solution. So some kind of

normalizing condition would be picked to narrow down the choice for a fundamental

solution. Also, Φ can’t be a smooth harmonic function across 0 itself, as (5.11) implies

that

∆Φ(x) = 0 for x 6= 0, (5.14)

and

1 = −
∫
∂Br(0)

∂Φ(x)

∂n(x)
dσ(x) (5.15)
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for all r > 0, and a smooth harmonic function across 0 can’t satisfy (5.15). (5.15)

follows from (5.9), with u(x) = Φ(x) and v ∈ C2
c (Rn) such that v(x) ≡ 1 over Br(0),

1 = −
∫
Rn

∆xv(x)Φ(x) dx

= −
∫
|x|≥r

∆xv(x)Φ(x) dx

= −
∫
∂Br(0)

∂Φ(x)

∂n(x)
dσ(x).

Here we assumed that Φ(x) ∈ C2(Br(0)c) so that the Green’s identity (5.9) can be

applied—this can be justified once we have developed some properties, but we are

doing only a heuristic derivation to under properties which characterize a fundamental

solution. Changing variable of integration x = rωωω, ωωω ∈ ∂B1(0), the integral can be

simplified as

1 = −
∫
∂Br(0)

∂Φ(x)

∂n(x)
dσ(x)

= −rn−1

∫
∂B1(0)

∂Φ(rωωω)

∂r
dωωω = −rn−1∂r

(∫
∂B1(0)

Φ(rωωω)dωωω

)
,

(5.16)

for all r > 0. In particular, this implies that ∂r

(∫
∂B1(0)

Φ(rωωω)dωωω
)

= −r1−n for all

r > 0, therefore

∫
∂B1(0)

Φ(rωωω)dωωω =

 r2−n

n−2
+ c when n ≥ 3,

ln 1
r

+ c when n = 2
(5.17)

for some constant c.

Since both ∆ and δ(x) are rotationally invariant, it is reasonable to look for a

Φ(x) which is rotationally invariant, namely Φ(x) = Φ(|x|). Such a Φ would then

satisfy

Φ(x) =

 r2−n

(n−2)|Sn−1| + c when n ≥ 3,

1
2π

ln 1
r

+ c when n = 2
(5.18)

for some constant c. Of course, one needs to verify directly that the Φ as given indeed

satisfies both (5.14) and (5.15).

Remark 5.3. The characterization (5.11) of a fundamental solution in fact includes

some growth control of the form |Φ(x)| ≤ C|x|2−n near x = 0, in addition to (5.14)
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and (5.15), as there are functions Φ(x), such as |x|2−n/[(n−2)|Sn−1|] +xi/|x|n, which

satisfy (5.14) and (5.15), but not (5.12) or (5.13).

A function Φ satisfying (5.14), (5.15), and the growth bounds |Φ(x)| ≤ C|x|2−n

and |∇Φ(x)| ≤ C|x|1−n would satisfy (5.12)—We will soon show that the latter bound

follows from (5.14) and the first bound. This follows from∫
Rn

Φ(x)∆η(x) dx

= lim
ε→0

∫
Rn\Bε(0)

Φ(x)∆η(x) dx

=− lim
ε→0

∫
∂Bε(0)

(
Φ(x)

∂η(x)

∂r
− η(x)

∂Φ(x)

∂r

)
dσ(x)

=− lim
ε→0

∫
Sn−1

εn−1

(
Φ(εωωω)

∂η(εωωω)

∂r
− η(εωωω)

∂Φ(εωωω)

∂r

)
dωωω.

Using |Φ(x)| ≤ C|x|2−n and the boundedness of |∂η(εωωω)
∂r
| for (ε,ωωω) ∈ (0, 1] × Sn−1, we

see that

lim
ε→0

∫
Sn−1

εn−1Φ(εωωω)
∂η(εωωω)

∂r
dωωω = 0.

Using (5.15), the bound |∇Φ(x)| ≤ C|x|1−n, and the continuity of η(x) at x = 0, we

see that

lim
ε→0

∫
Sn−1

εn−1η(εωωω)
∂Φ(εωωω)

∂r
dωωω = −η(0).

In the case here we can also use a scaling argument to get some scaling property

of a fundamental solution. Replacing η(x) in (5.12) by η(λx), where λ > 0 is a

parameter, we find that

η(0) = −
∫
Rn
λ2Φ(x)∆η(λx) dx = −

∫
Rn
λ2−nΦ(

y

λ
)∆η(y) dy.

This argument is essentially a reflection of the property that “λnδ(λx) = δ(x)”. So

λ2−nΦ(x
λ
) would also be a fundamental solution for any λ > 0 and we could try

to find a fundamental solution which is invariant under this transformation, namely

λ2−nΦ(x
λ
) = Φ(x) for any λ > 0. Such a Φ would satisfy Φ(x) = |x|2−nΦ(ωωω), where

ωωω = x/|x| ∈ Sn−1. This is possible when n ≥ 3 as seen above. In general what we

can say is that∫
Rn

[
λ2−nΦ(

y

λ
)− Φ(y)

]
∆η(y) dy = 0 for any test function η ∈ C2

c (Rn),

from which we see that λ2−nΦ( y
λ
) − Φ(y) is a harmonic function in Rn in the distri-

butional sense.
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We will see later that a harmonic function in the distributional sense is in fact

smooth. So λ2−nΦ( y
λ
)− Φ(y) would be an entire harmonic function in Rn, and if we

impose some normalizing condition as x → ∞, we would see that λ2−nΦ( y
λ
) − Φ(y)

would be a constant, which may depend on λ, by the Liouville theorem for entire

harmonic function in Rn, soon to be discussed. We can try to see whether we can find

a solution for which this constant is 0 independent of λ. It works out when n ≥ 3, as

seen above; when n = 2, the fundamental solution we have found Φ(x) = (2π)−1 ln 1
|x|

satisfies Φ(x
λ
)− Φ(x) = (2π)−1 lnλ.

Choosing test functions η in (5.12) such that support of η∩{0} = ∅, we see that Φ

is a harmonic function in the distributional sense in Rn \ {0}, so should be a smooth

harmonic function there. This relates (5.12) to (5.14).

Remark 5.4. Another way to find a fundamental solution is to find general solutions

to (5.14) and then choose the one(s) that also satisfies (5.15) and the growth control

|Φ(x)| ≤ C|x|2−n near x = 0.

We can find separable solutions to ∆Φ(x) = 0 for x 6= 0 by setting Φ(rωωω) =

φ(r)ψ(ωωω), then

r2φ′′(r) + (n− 1)rφ′(r)− λφ(r) = 0 for some constant λ and all r > 0, (5.19)

and

∆ωωωψ(ωωω) + λψ(ωωω) = 0 for all ωωω ∈ Sn−1. (5.20)

Solutions to (5.19) are spanned by solutions of the form φ(r) = rβ, where β(β + n−
2)−λ = 0—when this indicial equation has only simple zeros; otherwise, a ln r factor

needs to be put in.

Although we know very little at this stage about the existence of non-trivial so-

lutions to (5.20), we can see the following two facts easily:

(5.20) has non-trivial solution only when λ ≥ 0; (5.21)

For λ 6= 0, any solution of (5.20) satisfies

∫
Sn−1

ψ(ωωω)dωωω = 0. (5.22)

(5.21) follows by multiplying both sides of (5.19) by ψ(ωωω) and integrating over Sn−1,

while (5.22) follows by simply integrating both sides of (5.19) over Sn−1 and using

that ∆ωωωψ(ωωω) is the divergence of ∇ωωωψ(ωωω), so its integral over the closed manifold

Sn−1 is zero. Note that if pk(x) is a harmonic homogeneous polynomial of degree

k, then if we define φ(ωωω) = pk(ωωω), we will have pk(x) = |x|kφ(ωωω) and ∆xpk(x) =

|x|k−2[k(k + n− 2)φ(ωωω) + ∆ωωωφ(ωωω)], so pk(x) gives rise to a non-trivial solution φ(ωωω)

to k(k + n− 2)φ(ωωω) + ∆ωωωφ(ωωω) = 0.
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Note that for λ > 0, Φ(rωωω) = φ(r)ψ(ωωω) wouldn’t be able to satisfy ∆Φ(x) = 0 for

x 6= 0 and
∫
∂Br(0)

∂Φ(x)
∂n(x)

dσ(x) = −1 for r > 0, as
∫
∂Br(0)

∂Φ(x)
∂n(x)

dσ(x) = rn−1φ′(r)
∫
Sn−1 ψ(ωωω)dωωω =

0 for such cases. Thus Φ must include a term corresponding to λ = 0, in which case

ψ(ωωω) would be a constant over Sn−1 and we can set it to be 1. Now β satisfies

β(β + n − 2) = 0. When n > 2, we have to take β = 2 − n, and when n = 2, we

need to re-examine the solutions to r2φ′′(r) + rφ′(r) = 0 and find that we should take

φ(r) = ln r.

One may want to examine whether one can add to the fundamental solution in

(5.18) additional terms of the form φ(r)ψ(ωωω), where ψ solves (5.20) for some λ > 0.

If one chooses the positive root β from β(β + n− 2)− λ = 0, then it turns out that

φ(r)ψ(ωωω) would be a harmonic polynomial, so adding such a term would be admissible.

If, however, one chooses the negative root from the above equation, it turns out that

β < 2−n, so one wouldn’t be able to satisfy the bound |Φ(x)| ≤ C|x|2−n near x = 0.

Exercises

Exercise 5.3.1. Construct a fundamental solution Φ(x) to −Φ′′(x) = δ(x) in R.

Exercise 5.3.2. Adapt the methods of this section to construct a fundamental solu-

tion E(x) to (−∆ + c)E(x) = δ(x), where c is a constant. (Hint: Try to construct

E(x) as a function depending only on |x|, so as to reduce the construction to an

appropriate solution of a (singular) linear ODE related to Bessel’s equation; use an

analog of (5.15) to establish an asymptotic boundary condition for E ′(|x|) as |x| → 0.)

5.4 Initial Applications of the Fundamental solu-

tion of −∆

We will use Φ(x) to denote the (radial) fundamental solution of −∆ as determined

from the previous section. We can now use Φ(x) to write down a Green’s representa-

tion for the Laplace operator and discuss some initial applications.

Proposition 5.6. Suppose that U is a bounded domain in Rn with piecewise C1

boundary and u ∈ C2(U), then for any x ∈ U ,

u(x) =

∫∫
U

−∆u(y) Φ(x− y) dy +

∫
∂U

[
Φ(x− y)

∂u(y)

∂n(y)
− u(y)

∂Φ(x− y)

∂n(y)

]
dσ(y).

(5.23)

If u is harmonic in U , then (5.23) holds for ∈ C1(U) ∩ C2(U).
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This is obtained from applying (5.9) to u(y) and Φ(x − y) on U \ {Bε(x)} for

small ε > 0 and sending ε → 0, noting that ∆yΦ(x − y) = 0 in U \ {Bε(x)} and

|Φ(r)|rn−1 → 0,
∫
∂Br(0)

∂Φ(r)
∂r

= −1 as r → 0. As a consequence (5.23), we have

Corollary 5.7. If u ∈ C2(U) is harmonic, then it is smooth in U .

Proof. For any proper subdomain V of U with C1 boundary, we can use the Green’s

representation (5.23) on V to express u(x), x ∈ V as∫
∂V

(
Φ(x− y)

∂u(y)

∂n(y)
− u(y)

∂Φ(x− y)

∂n(y)

)
dσ(y).

Since the integrand is a smooth function of x ∈ V for y ∈ ∂V , with any of its

derivatives uniformly bounded for y ∈ ∂V as long as x ∈ V stays away from ∂V , this

shows that u is smooth in V .

Theorem 5.8. If u ∈ C2(BR(x0)) ∩ C(BR(x0)) is harmonic in BR(x0), then, for

some C = C(n) > 0,

|∇u(x0)| ≤ C

R
max
BR(x0)

|u|, and for k > 1, |∇αu(x0)| ≤ (Ck)k

Rk
max
BR(x0)

|u|,

for all α = (α1, α2, · · · , αn) with |α| = α1 + α2 + · · ·+ αn = k.

Remark 5.5. The higher derivative estimates imply the analyticity of u(x). There

are also versions of the gradient estimates where the factor maxBR(x0) |u| on the right

hand side is replaced by R−n||u||L1(BR(x0)). Our proof below will give this version.

Proof. First it suffices to reduce the proof to that for a harmonic function on a unit

ball. For, if we set v(y) = u(x0 +Ry), then v(y) is harmonic on B1(0), ||v||L1(B1(0)) =

R−n||u||L1(BR(x0)), and ∇α
y v(y)|y=0 = R|α|∇α

xu(x)|x=x0 .

Next we will derive a variant of the Green’s representation without involving ∇v
in the boundary integral. Choose a smooth cut-off function η such that η(y) ≡ 1 for

|y| ≤ 1/2 and is supported in B1(0). For any z with |z| < 1/4 and 0 < ε < 1/4, we

apply the Green’s identity to v(y) and Φ(y − z)η(y) over B1(0) \Bε(z) to obtain∫
B1(0)\Bε(z)

v(y)∆y (Φ(y − z)η(y)) dy

=−
∫
Sn−1

εn−1

(
v(z + εωωω)

∂ [Φ(rωωω)η(z + rωωω)]

∂r

∣∣∣
r=ε
− Φ(εωωω)η(z + εωωω)

∂v(z + εωωω)

∂r

∣∣∣
r=ε

)
dωωω,

here we have used that η(y) = 0 in a neighborhood of ∂B1(0) and expressed the

integrals on ∂Bε(z) using spherical polar coordinates y = z + εωωω with ωωω ∈ Sn−1.
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Since

∆y [Φ(y − z)η(y)] = 2∇yΦ(y − z) · ∇yη(y) + Φ(y − z)∆yη(y),

and∇yη(y) = 0, ∆yη(y) = 0 for |y| < 1/2, as well as η(z+εωωω) = 1 and∇η(z+εωωω) = 0

for |z|, ε < 1/4, we can send ε to 0 to obtain

v(z) =

∫
B1(0)

v(y) [2∇yΦ(y − z) · ∇yη(y) + Φ(y − z)∆yη(y)] dy

=

∫
B1(0)\B 1

2
(0)

v(y) [2∇yΦ(y − z) · ∇yη(y) + Φ(y − z)∆yη(y)] dy ,

using

−
∫
Sn−1

εn−1v(z + εωωω)
∂ [Φ(rωωω)η(z + rωωω)]

∂r

∣∣
r=ε
dωωω → v(z),

and

Φ(εωωω)η(z + εωωω)
∂v(z + εωωω)

∂r

∣∣
r=ε
dωωω → 0

as ε→ 0.

Let Φ̂(y, z) = 2∇yΦ(y− z) · ∇yη(y) + Φ(y− z)∆yη(y), then Φ̂(y, z) ∈ C∞(B1(0) \
B 1

2
(0)×B 1

4
(0)), so for z ∈ B 1

4
(0),

∇αv(z) =

∫
B1(0)\B 1

2
(0)

v(y)∇α
z Φ̂(y, z) dy.

It’s easy to see that, with m = (n− 2)/2, α = (α1, α2, · · · , αn), and k = |α|, we have

∇α
zΦ(z − y) = (−1)k|Sn−1|−1(m+ 1)(m+ 2) · · · (m+ k − 1)|z − y|2−n−2kpk(z − y),

where pk is a homogeneous polynomial of degree k. Using induction, it is easy to see

that each of the coefficients of pk is bounded in absolute values by 3k−1. Using this

and the observation that pk has at most
(
n−1+k

k

)
terms , we see that for z ∈ B 1

4
(0)

and y ∈ B1(0) \B 1
2
(0),

|z − y|2−n−2k|pk(z − y)| ≤
(
n− 1 + k

k

)
3k−14n−2+k,

|∇α
zΦ(z − y)| ≤ [c(n)k]k,

and

|∇α
z Φ̂(y, z)| ≤ [c(n)k]k
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with k = |α| and some c(n). It now follows that |∇αv(0)| ≤ [c(n)k]k||v||L1(B1(0)).

In fact one can directly work with (5.23) for v(y) and Φ(y−z) over B 1
2
(0) to obtain

estimates of |∇αv(0)| in terms of max∂B 1
2

(0) |v| and max∂B 1
2

(0) |∇v|; then use the first

derivative estimate on |∇v| to estimate max∂B 1
2

(0) |∇v| in terms of ||v||L1(B1(0)). The

technique of working with the fundamental solution multiplied by a smooth cut-off

function (to avoid boundary integral terms) will be useful in other contexts.

Corollary 5.9 (Liouville). A bounded harmonic function on Rn must be a constant.

This is proved by the gradient estimate: R|∇u(x0)| ≤ C maxBR(x0) |u| holds for

all R > 0; sending R→∞ implies that |∇u(x0)| = 0 at any x0, which proves that u

must be a constant.

Remark 5.6. Liouville type theorems do not necessarily hold for bounded entire

solutions to certain modifications of the Laplace equation, such as the Helmholtz

equation: ∆u(x) + λu(x) on Rn, as u(x) = sin(kx) and its higher dimensional ana-

logues are bounded entire solutions to such equations. There are still gradient esti-

mates for solutions to equations such as the Helmholtz equation, but those estimates

have a different scaling from that for harmonic functions and do not lead to a version

which would imply the conclusion in the Liouville Theorem here. We will explore in

the exercises which properties of harmonic functions can be generalized to solutions

of the Helmholtz equation.

The more powerful consequences of the gradient estimates are the convergence

theorems.

Theorem 5.10. (i). Uniform limit of a sequence of harmonic functions is harmonic.

(ii). A bounded sequence of harmonic functions on U must have a subsequence that

converges on any compact subset of U to a harmonic function.

Proof. The proof follows from the derivative estimates in Theorem (5.8) and Arzela-

Ascoli theorem. It suffices to prove the conclusions for any ball BR such that B2R ⊂ U .

Suppose that {uk(x)} is a sequence of harmonic functions in U converging uniformly

to u(x) over B2R as k → ∞. Then uk(x) − ul(x) is a Cauchy sequence in C(B2R).

The higher derivatives estimates, applied to uk(x)− ul(x) on B2R, implies that up to

two derivatives of uk(x) − ul(x) is a Cauchy sequence in C(BR), as a consequence,

∆uk(x) converges to ∆u(x) uniformly over BR, which implies that u(x) is harmonic

in BR.

215



CHAPTER 5. LAPLACE AND POISSON EQUATIONS

Another approach is to use the information that maxB2R
|uk(x)| remains bounded

independent of k. Then the higher derivatives estimates for {uk(x)} implies that up to

three derivatives of uk(x) are uniformly bounded in BR. So by Arzela-Ascoli theorem

a subsequence of {uk(x)} has the property that it, together with sequences consisting

of the derivatives of up to second order, converges uniformly in BR, which shows that

the limit function u(x) is harmonic in BR. (ii) is proved in a similar fashion.

Corollary 5.11. If u ∈ C2(U) is harmonic, then it is real analytic in U .

Proof. This follows from the same representation formula, using the analytic expan-

sion of Φ(x− y) at any x0 ∈ U for y ∈ ∂U : fix any x0 ∈ U , then there exists r0 > 0

such that

Φ(x− y) =
∑
α

aα(x0 − y)(x− x0)α,

with uniform convergence for |x − x0| ≤ r0 and y ∈ ∂U (we should have chosen a

subdomain V with C1 boundary such that x0 ∈ V ⊂⊂ U , as done in the proof of the

previous corollary, to apply the Green’s representation on V so as to avoid the need

for u ∈ C2(Ū), but will assume that this reduction has been done and will write U for

V ). In the above, the notation zα stands for zα1
1 zα2

2 · · · zαnn if z = (z1, z2, · · · , zn) and

α = (α1, α2, · · · , αn), with αj ∈ Z≥0. We will also denote α1 + α2 + · · · + αn = |α|.
The above expansion can be obtained by noting that

|x− y|2−n =
[
|x− x0 + x0 − y|2

](2−n)/2

=
[
|x− x0|2 + 2(x− x0) · (x0 − y) + |x0 − y|2

](2−n)/2

=|x0 − y|2−n
[
1 +
|x− x0|2 + 2(x− x0) · (x0 − y)

|x0 − y|2

](2−n)/2

,

and using that d > |x0 − y| > δ > 0 for some d > δ > 0 and for all y ∈ ∂U , so for

|x− x0| sufficiently small, we can do a binomial expansion of the above power to get

a power series in terms of x− x0, with coefficients in terms of x0 − y.

Thus for any ε > 0, there is N such that

|Φ(x− y)−
∑
|α|≤N

aα(x0 − y)(x− x0)α| ≤ ε,

uniformly for |x − x0| ≤ r0 and y ∈ ∂U . Multiplying by ∂u(y)
∂n(y)

and integrating over

y ∈ ∂U , we obtain

|
∫
∂U

Φ(x− y)
∂u(y)

∂n(y)
dσ(y)−

∑
|α|≤N

Aα(x0)(x− x0)α| ≤ ε

∫
∂U

|∂u(y)

∂n(y)
| dσ(y),
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with Aα(x0) =
∫
∂U
aα(x0− y)∂u(y)

∂n(y)
dσ(y). Similarly, the other integral is also analytic

in x ∈ U , showing that u is analytic in U .

Remark 5.7. Since for each fixed y, |x − y|2−n is a harmonic function for x ∈
Rn(n ≥ 3), x 6= y, we may try to use the superposition principle to construct harmonic

functions by an integral ∫
E

|x− y|2−nf(y) dy

over some set E. The proofs of the above two corollaries already use this idea and

indicate that it works when E is taken to be ∂U , which is assumed to be a piecewise

C1 hyper-surface∗. When E is taken to be an open domain U , however,
∫
U
|x −

y|2−nf(y) dy is in general not a harmonic function of x ∈ U . This is because ∂xixj |x−
y|2−n is no longer an integrable function of y ∈ U when x ∈ U , so we can’t differentiate

twice in x on the integral and pass the differentiation inside the integral to conclude

that
∫
U
|x− y|2−nf(y) dy is harmonic for x ∈ U .

This is also a good place to insert a comment on (5.23). It was derived under

the assumption that u ∈ C2(U). However, we will see that, for f ∈ C(U),
∫
U

Φ(x −
y)f(y) dy may not be a C2 function of x ∈ U ; and with given g, h ∈ C(∂U), the

function

u(x) =

∫
U

−f(y) Φ(x− y) dy +

∫
∂U

[
Φ(x− y)h(y)− g(y)

∂Φ(x− y)

∂n(y)

]
dσ(y),

may not be a C2(U) solution of (5.10), as already commented earlier. We do have

Proposition 5.12. Suppose that U is a bounded domain. If f ∈ C1(U), then
∫
U

Φ(x−
y)f(y) dy is a C2 function of x ∈ U and

−∆x

∫
U

Φ(x− y)f(y) dy = f(x), for x ∈ U.

Remark 5.8. A proof for Proposition 5.12 will be provided below. With mere

continuity of f in U (in fact just with f ∈ L∞(U)), the Newton potential of f ,∫
U

Φ(x − y)f(y) dy, is in C1(U), but may not be C2 function of x ∈ U . However, in

order for the Newton potential of f to be a C2 function of x, the regularity require-

ment of f can be weakened to the following: for some 0 < α ≤ 1 and C > 0,

|f(y1)− f(y2)| ≤ C|y1 − y1|α for all y1, y2 ∈ U . (5.24)

∗When E has a component Γ with codimension > 1, then
∫
E
|x− y|2−nf(y) dy may tend to ∞

as x→ x∗ ∈ Γ, as demonstrated when Γ is an isolated point of E.
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Functions satisfying (5.24) in U (therefore in U) with 0 < α < 1 are said to be

Hölder continuous in U with exponent α, and the set of such functions is denoted as

Cα(U); those functions satisfying (5.24) in U (therefore in U) with α = 1 are said

to be Lipschitz continuous in U , and the set of such functions is denoted as Lip(U).

Cα(U) (respectively Lip(U)) usually denotes the set of functions satisfying (5.24) on

any compact subsets of U (the constant C may depend on the compact subset).

Proof. ∗ We will prove that, if f ∈ L∞(U), then

∂u(x)

∂xi
=

∫
U

∂[Φ(x− y)]

∂xi
f(y) dy, for any x ∈ U , (5.25)

and if f ∈ C1(U), then

∂αu(x)

∂xα
= −

∫
U

∂[Φ(x− y)]

∂yi

∂f(y)

∂yj
dy +

∫
∂U

nj(y)∂yiΦ(x− y)f(y) dσ(y) (5.26)

for any x ∈ U and α = (i, j) with |α| = 2, where nj(y) are the coordinate components

of the exterior unit normal vector n(y) to ∂U at y ∈ ∂U . It then follows that

∆xu(x) =−
∫
U

n∑
i=1

∂[Φ(x− y)]

∂yi

∂f(y)

∂yi
dy +

∫
∂U

n∑
j=1

nj(y)∂yjΦ(x− y)f(y) dσ(y)

=− lim
ε→0

∫
U\Bε(x)

n∑
i=1

∂[Φ(x− y)]

∂yi

∂f(y)

∂yi
dy +

∫
∂U

n∑
j=1

nj(y)∂yjΦ(x− y)f(y) dσ(y)

= lim
ε→0

{∫
U\Bε(x)

n∑
i=1

∂2[Φ(x− y)]

∂y2
i

f(y) dy +

∫
∂Bε(x)

∂[Φ(x− y)]

∂n(y)
f(y) dσ(y)

}
=− f(x),

using
∫
∂Bε(x)

∂[Φ(x−y)]
∂n(y)

dσ(y) = −1.

The key difficulty in proving (5.25) and (5.26) is that the Φ(x−y) in the integrand

is singular at y = x; more precisely, ∂xΦ(x − y)f(y) is still integrable in y ∈ U , but

∂2
xΦ(x − y)f(y) is not integrable for y ∈ U due to the strength of the singularity in

∂2
xΦ(x− y) ∼ |x− y|−n.

First assume f ∈ C1
c (U), then∫
U

Φ(x− y)f(y) dy =

∫
Rn

Φ(z)f(x− z) dz,

∗May be omitted on a first reading.
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and

∂xi

∫
U

Φ(x− y)f(y) dy

=

∫
Rn

Φ(z)∂xif(x− z) dz

=− lim
ε→0

∫
|z|≥ε

Φ(z)∂zif(x− z) dz

= lim
ε→0

{∫
|z|≥ε

∂ziΦ(z)f(x− z) dz +

∫
|z|=ε

νi(z)Φ(z)f(x− z) dσ(z)

}
=

∫
Rn
∂ziΦ(z)f(x− z) dz

=

∫
Rn
∂xiΦ(x− y)f(y) dy.

Furthermore

∂xixj

∫
U

Φ(x− y)f(y) dy

=∂xj

∫
Rn
∂ziΦ(z)f(x− z) dz

=

∫
Rn
∂ziΦ(z)∂xjf(x− z) dz

=

∫
U

∂xiΦ(x− y)∂yjf(y) dy

=−
∫
U

∂yi [Φ(x− y)]∂yjf(y) dy.

Next, for any f ∈ C1(U) and x0 ∈ U , we can split f(x) = f1(x) + f2(x), where

fi ∈ C1(U), but f1(x) = f(x) in a neighborhood of x0 and has compact support in

U . Thus f2(x) = 0 in a neighborhood of x0, but f2(x) = f(x) for x near ∂U . Then∫
U

Φ(x− y)f(y) dy =

∫
U

Φ(x− y)f1(y) dy +

∫
U

Φ(x− y)f2(y) dy,

where
∫
U

Φ(x−y)f2(y) dy is smooth in x near x0, therefore ∂2
xixj

∫
U

Φ(x−y)f2(y) dy =∫
U
∂2
xixj

Φ(x−y)f2(y) dy holds for any α. We can apply the above argument to
∫
U

Φ(x−
y)f1(y) dy to conclude that it is a C2 function of x near x0 and

∂xixj

∫
U

Φ(x− y)f1(y) dy

=−
∫
U

∂yi [Φ(x− y)]∂yjf1(y) dy.
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Since f2(x) = 0 in a neighborhood of x0, we also have, for x near x0,∫
U

∂2
xixj

Φ(x− y)f2(y) dy

=−
∫
U

∂yi [Φ(x− y)]∂yjf2(y) dy +

∫
∂U

∂yi [Φ(x− y)]nj(y)f2(y) dy

=−
∫
U

∂yi [Φ(x− y)]∂yjf2(y) dy +

∫
∂U

∂yi [Φ(x− y)]nj(y)f(y) dy

Putting these together we have proved (5.26)

Remark 5.9. If we note that in (5.26)∫
U

∂yi [Φ(x− y)]∂yjf(y) dy

=

∫
U

∂yi [Φ(x− y)]∂yj [f(y)− f(x)] dy

=−
∫
U

∂2
yiyj

Φ(x− y)[f(y)− f(x)] dy +

∫
∂U

∂yi [Φ(x− y)]nj(y)[f(y)− f(x)] dσ(y),

we can rewrite (5.26) as

∂2
xixj

∫
U

Φ(x−y)f(y) dy =

∫
U

∂2
yiyj

Φ(x−y)[f(y)−f(x)] dy+f(x)

∫
∂U

∂yi [Φ(x−y)]nj(y) dσ(y).

The right hand side is defined as long as f ∈ Cα(U) for some 0 < α ≤ 1, and as a

function of x, it converges uniformly if fk(x) → f(x) in Cα(U), so this equality also

holds for f ∈ Cα(U).

Remark 5.10. To solve the Dirichlet problem (5.3) on U , one can still try to take

some E disjoint from U and use
∫
E

Φ(x− y)g(y) dy to construct harmonic functions

in U . The question becomes:

(i) whether such harmonic functions extends continuously to U?

(ii) whether one can achieve all (continuous) boundary value functions on ∂U by

choosing g ∈ C(E)?

Such harmonic functions indeed extend continuously to U when E = ∂U , ∂U is a

piecewise C1 hypersurface, and g ∈ C(∂U). However, even in this case, for x̄ ∈ ∂U ,

in general,

lim
x∈U, x→x̄

∫
∂U

Φ(x− y)g(y) dσ(y) 6= g(x̄).

So even though we can construct a harmonic function x 7→
∫
∂U

Φ(x − y)g(y) dy for

x ∈ U , this harmonic function may not solve (5.1) with a prescribed boundary value
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for the case f ≡ 0. In fact the map g ∈ C(∂U) 7→
∫
∂U

Φ(x−y)g(y) dσ(y) ∈ C(∂U) is a

compact linear map∗, so
∫
∂U

Φ(x−y)g(y) dσ(y) can not possibly take on all continuous

boundary value functions when g runs through C(∂U). It turns out a modification

of this idea, using the so called double layer potential,
∫
∂U

∂Φ(x−y)
∂n(y)

g(y) dσ(y), one can

solve the Dirichlet problem (5.1) this way.

Exercises

Exercise 5.4.1. Provide detailed proofs for Theorem 5.10.

Exercise 5.4.2. Use (5.23) and (5.26) to prove that if ∆u(x) = λu(x) in U , where λ

is a constant. Then

(i). u ∈ C∞(U). (Hint: This involves a bootstrap process: first prove u ∈ C3(U)

by an extension of (5.26), using u ∈ C2(U); then prove u ∈ C4(U), using the

knowledge that u ∈ C3(U)—one technique is to use ∆uxi(x) = λuxi(x); repeat

this process.)

(ii). Suppose that BR(x0) ⊂ U . Prove that there exists c = c(n) > 0 such that

R max
BR/2(x0)

|∇u| ≤ c(1 +R2|λ|) max
BR(x0)

|u|

R2 max
BR/2(x0)

|∇2u| ≤ c(1 +R2|λ|)2 max
BR(x0)

|u|

R3 max
BR/2(x0)

|∇3u| ≤ c(1 +R2|λ|)3 max
BR(x0)

|u|

(iii). Suppose that {uk} is a sequence of solutions to ∆u(x) = λu(x) in U and con-

verges uniformly to u(x) on compact subset of U . Prove that u(x) satisfies the

same equation in U .

5.5 Green’s Function and Poisson’s Formula

We continue to explore the consequences of (5.23). Let φ(y) be a C2(U) ∩ C1(U)

harmonic function in U , then applying the Green’s theorem to φ and u on U , we have

0 =

∫
U

−∆u(y)φ(y) dy +

∫
∂U

(
φ(y)

∂u(y)

∂n(y)
− u(y)

∂φ(y)

∂n(y)

)
dσ(y).

∗This means that for any bounded sequence gj ∈ C(∂U),
∫
∂U

Φ(x − y)gj(y) dσ(y) has a subse-

quence converging in C(∂U).
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Combining this with (5.23), we have

u(x) =

∫
U

−∆u(y) [Φ(x− y)− φ(y)] dy

+

∫
∂U

{
[Φ(x− y)− φ(y)]

∂u(y)

∂n(y)
− u(y)

∂ [Φ(x− y)− φ(y)])

∂n(y)

}
dσ(y).

If, for each x ∈ U , we can choose a harmonic function φ(y) = φx(y) ∈ C1(U), which

depends on x, such that Φ(x− y)− φx(y) ≡ 0 for all y ∈ ∂U , then we have

u(x) =

∫
U

−∆u(y) [Φ(x− y)− φx(y)] dy −
∫
∂U

u(y)
∂ [Φ(x− y)− φx(y)]

∂n(y)
dσ(y).

That is, we can represent u in U by its Dirichlet data. When this is possible, we call

G(x, y) = Φ(x − y) − φx(y) the Green’s function (for the Laplace operator with

Dirichlet boundary condition) for the region U . We summarize the above discussion

as

Proposition 5.13. Suppose that, for each x ∈ U , there exists φx(y) ∈ C2(U)∩C1(U)

such that {
∆yφ

x(y) = 0, for y ∈ U ,

φx(y) = Φ(x− y), for y ∈ ∂U .

Let G(x, y) = Φ(x− y)− φx(y). Then, for n ≥ 3,

∆yG(x, y) = 0, for y ∈ U \ {x},
G(x, y) = 0, for y ∈ ∂U ,

lim
y→x
|x− y|n−2G(x, y) =

1

(n− 2)|Sn−1|
,

lim
y→x
|x− y|n−2(x− y) · ∇yG(x, y) =

1

|Sn−1|
,

and for any u ∈ C2(U), there holds

u(x) =

∫
U

−∆u(y)G(x, y) dy −
∫
∂U

u(y)
∂G(x, y)

∂n(y)
dσ(y). (5.27)

For the n = 2 case, the last two conditions on G(x, y) as y → x need to be modified

appropriately.

For some special domains, we can write outG(x, y) explicitly. First, when U = Rn
+,

for each x ∈ Rn
+, we define φx(y) = Φ(x∗ − y), where x∗ is the mirror image of x in

∂Rn
+. Then

Φ(x− y)− Φ(x∗ − y) ≡ 0 for y ∈ ∂Rn
+,
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and we identify G(x, y) = Φ(x− y)− Φ(x∗ − y); furthermore, we define

−∂G(x, y)

∂n(y)
=
∂G(x, y)

∂yn
=

2xn
|Sn−1||x− y|n

:= K(x, y),

for x ∈ Rn
+ and y ∈ ∂Rn

+. K(x, y) is called the Poisson kernel for Rn
+. Even though

our earlier discussion was for a compact domain, and the argument may not directly

carry over to a non-compact domain such as Rn
+, we still have

Theorem 5.14. Assume g ∈ C(∂Rn
+) ∩ L∞(∂Rn

+). Define u(x) for x ∈ Rn
+ by

u(x) =

∫
∂Rn+

K(x, y)g(y) dy =
1

|Sn−1|

∫
∂Rn+

2xn
|x− y|n

g(y) dσ(y). (5.28)

Then

(i). u ∈ C∞(Rn
+) ∩ L∞(Rn

+),

(ii). ∆xu(x) = 0, in x ∈ Rn
+,

(iii). limx→x̄∈∂Rn+, x∈Rn+ u(x) = g(x̄).

And there is only one solution u satisfying (i)–(iii) above.

The last part of the above theorem is proved by maximum principle and is left

as an exercise. Notice that, although the Green’s representation was derived under

stricter requirement on u: u ∈ C2(U), we can apply the representation (5.28) for any

continuous boundary data, which produces a solution which may not be C2 up to

the boundary but is C2 in the interior of the domain and is continuous up to the

boundary. It’s also true that any bounded harmonic function on Rn
+ (and continuous

on Rn
+) has a representation in the form of (5.28). The key properties used in proving

(iii) above are that the family {K(x, y)} when x ∈ Rn
+ and y ∈ ∂Rn

+ satisfies

(a).
∫
∂Rn+

K(x, y) dy = 1 for all x ∈ Rn
+;

(b). K(x, y) ≥ 0;

(c). For any δ > 0,
∫
y∈∂Rn+,|y|≥δ

K(x, y) dy → 0 as x→ 0 in Rn
+.

Next, when U = BR(0) in Rn. It turns out that for each x 6= 0 ∈ BR(0), if we

define x∗ = R2

|x|2x, then φx(y) = Φ( |x|
R

(x∗ − y)) would work, because |y− x|/|y− x∗| is

independent of y ∈ ∂BR(0), and equals |x|/R, so Φ(x− y)−Φ( |x|
R

(x∗− y)) = 0 for all
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y ∈ ∂BR(0). It works out that for any y 6= 0 in BR(0), φx(y) = Φ( |x|
R

(x∗−y))→ Φ(R)

as x→ 0, so the construction of φx(y) continues to work in the case x = 0 and

−∂ [Φ(x− y)− φx(y)])

∂n(y)
=

R2 − |x|2

R|Sn−1||x− y|n
:= K(x, y), for x ∈ BR(0) and y ∈ ∂BR(0).

K(x, y) is called the Poisson kernel for BR(0). This generalizes our Poisson kernel on

two dimensional discs, which was found based on separation of variables.

Theorem 5.15. Assume g ∈ C(∂BR(0)). Define u(x) for x ∈ BR(0) by

u(x) =

∫
∂BR(0)

R2 − |x|2

R|Sn−1||x− y|n
g(y) dσ(y). (5.29)

Then

(i). u ∈ C∞(BR(0)),

(ii). ∆xu(x) = 0, in x ∈ BR(0),

(iii). limx→x̄∈∂BR(0),x∈BR(0) u(x) = g(x̄).

And there is only one solution u satisfying (i)–(iii) above.

Remark 5.11. Although the Poisson kernel

K(x, y) = −∂G(x, y)

∂n(y)

is defined asymmetrically: x in the interior of the domain, and y on the boundary,

the Green’s function G(x, y) is defined for both x and y inside the domain, x 6= y and

is a harmonic function in y.

A useful property for G(x, y) is

Proposition 5.16. For all x, y ∈ U , x 6= y, we have

G(x, y) = G(y, x).

Thus G(x, y) is also a smooth function in U × U \ {(z, z) : z ∈ U}, extends to a

continuous function in U ×U \{(z, z) : z ∈ Ū}, and is harmonic in x ∈ U , for x 6= y.
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Proof. For any x 6= y in U , choose ε > 0 such that Bε(x), Bε(y) are non-overlapping

proper subdomains of U , and apply the Green’s identity to u(z) = G(x, z) and v(z) =

G(y, z) on the domain U \ {Bε(x) ∪Bε(y)}. Since ∆zG(x, z) = ∆zG(y, z) = 0 in this

domain and G(x, z) = G(y, z) = 0 for z on ∂U , we obtain∫
∂Bε(x)

[
G(x, z)

∂G(y, z)

∂n(z)
−G(y, z)

∂G(x, z)

∂n(z)

]
dσ(z)

=

∫
∂Bε(y)

[
G(y, z)

∂G(x, z)

∂n(z)
−G(x, z)

∂G(y, z)

∂n(z)

]
dσ(z).

We note that ∫
∂Bε(x)

∂G(x, z)

∂n(z)
dσ(z)

=

∫
∂Bε(x)

∂Φ(x− z)

∂n(z)
dσ(z)−

∫
∂Bε(x)

∂φx(z)

∂n(z)
dσ(z)

=− 1 +

∫
Bε(x)

∆zφ
x(z) dz

=− 1

and similarly,
∫
∂Bε(y)

∂G(y,z)
∂n(z)

dσ(z) = −1. Using these and that fact that |∂G(y,z)
∂n(z)

| and

εn−2G(x, z) are bounded on ∂Bε(x), independent of ε > 0 when it is small, and

|∂G(y,z)
∂n(z)

| and εn−2G(y, z) are bounded on ∂Bε(y), it follows by sending ε → 0 that

G(x, y) = G(y, x).

Proposition 5.17. A C0 function u in U which satisfies the mean value property for

any balls B ⊂ U is a smooth harmonic function.

Proof. Let u be such a C0 function. For any ball B ⊂⊂ U , by Theorem 5.15, there is

a harmonic function v ∈ C(B) ∩ C2(B) such that v = u on ∂B. Since both u and v

satisfy the maximum principle, we conclude now that v = u in B, i.e., u is harmonic

in B. Since this holds for any ball B ⊂⊂ U , we conclude that u is harmonic in U .

Exercises

Exercise 5.5.1. (Schwarz reflection principle) Suppose that u ∈ C(B+
R) ∩

C2(B+
R) is harmonic in B+

R , where B+
R = {x ∈ BR(0) : xn > 0}, and that u(x′, 0) = 0

for (x′, 0) ∈ B+
R . Extend u to B−R = {x ∈ BR(0) : xn < 0} by u(x′, xn) = −u(x′,−xn)

when (x′, xn) ∈ B−R . Prove that this extension is a harmonic function on BR(0).

Exercise 5.5.2. (Kelvin transform) The transformation y = I(x) = x
|x|2 is called

the inversion with respect to the unit sphere Sn−1.
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(i). Prove that I ◦ I(x) = x for all x, and that I maps {(x′, xn) : xn ≥ h > 0} onto

the ball B 1
2h

( en
2h

).

(ii). Set v(x) = |x|2−nu( x
|x|2 ). Prove that ∆xv(x) = |x|−2−n∆u( x

|x|2 ). (Hint: Com-

puting in polar coordinates may be easier.)

Note that this transformation allows us to transform a question of boundary value

problem for the Laplace equation on a ball into a question of the boundary value

problem for the same equation on a half space, and vice versa. Can one say the same

thing on the Helmholtz equation?

Exercise 5.5.3. This exercise works out the justification that any bounded harmonic

function u on Rn
+ (and continuous on Rn

+) has a representation in the form of (5.28).

Fix any x ∈ Rn
+, one would like to apply Green’s identity to u(X) and G(x,X) on

the sequence of compact regions BR(0) ∩ Rn
+ exhausting Rn

+ and establish a Green’s

representation for u(x) in terms of data on the boundary of this sequence of regions.

However, the Green’s identify would involve boundary integrals of u(X)∂νG(x,X)−
G(x,X)∂νu(X), and we don’t have good enough estimates on |∂νu(X)|, especially

when X is near ∂Rn
+, which would demonstrate that the portion of the boundary

integral approaching ∞ is tending to 0. We bypass this difficulty in one of two ways.

(i). Use g = u|∂Rn+ and the right hand side of (5.28) to construct a solution, and use

the maximum principle to prove that u is identical to this solution.

(ii). Fix a standard cut-off function η such that it is supported in |x| ≤ 2 and

η = 1 in B1(0). Then for R >> 1 large, use the Green’s identity to u(X)

and G(x,X)η(X/R) over B2R(0)∩Rn
+ to establish a Green’s representation for

u(x) on such domains and sending R → ∞ to justify (5.28). Here one needs

to use the improved decay rate of G(x,X) when |X| is large: for any x ∈ Rn
+,

there exist C > 0 and R > 0 depending on x such that |G(x,X)| ≤ C|X|1−n

and |∇XG(x,X)| ≤ C|X|−n when |X| > R. Note that this second approach

involves considerably more technical arguments.

Exercise 5.5.4. Consider the Helmholtz equation uxx + uyy −m2u = 0 on R2
+ with

the Dirichlet condition on ∂R2
+, where m > 0 is a real parameter.

(i). Use the method of image as above for the Laplace operator on the upper

half plane to construct the Green’s function for the above Helmholtz equation,

namely, G(ξ, η;x, y) such that Gxx(ξ, η;x, y)+Gyy(ξ, η;x, y)−m2G(ξ, η;x, y) =

−δ(x− ξ, y − η) for (x, y), (ξ, η) ∈ R2
+, and G(ξ, η;x, 0) = 0.
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(ii). Then use the Green’s function to establish a Green’s representation for a solu-

tion in terms of its boundary value (assuming necessary decay condition for the

solution; identify the decay conditions needed).

(iii). Compare the result with that obtained by Fourier’s method. Is the Green’s

function positive for (x, y) ∈ R2
+? Is there uniqueness in the class of bounded

solutions?

(iv). Does this approach work when the domain is a round disk?

(v). Also carry out the analysis for solutions of uxx + uyy +m2u = 0.

Hint: Review the relevant exercises in section 5.3 and some basic properties of

Bessel’s functions; try separable solutions in studying the uniqueness of uxx + uyy +

m2u = 0.

5.6 Harnack Estimates for Harmonic Functions

Another consequence of the Poisson representation formula on BR(0) is the Harnack

estimates.

Theorem 5.18 (Harnack inequality). (Local Version) If u is a nonnegative harmonic

function in BR(0), then

Rn−2(R− |x|)
(R + |x|)n−1

u(0) ≤ u(x) ≤ Rn−2(R + |x|)
(R− |x|)n−1

u(0), for all x ∈ BR(x0).

In particular, for any x ∈ BR
2
(0),

2n−2

3n−1
u(0) ≤ u(x) ≤ 2n−23u(0).

(Global Version) For each connected open set V ⊂⊂ U , there exists a positive constant

C depending on V and U , such that

sup
V
u ≤ C inf

V
u

for all nonnegative harmonic function u in U .

Proof. The local version follows from (5.15) as follows. The Poisson kernel K(x, y)

for the ball BR(0) has the property

R2 − |x|2

R|Sn−1|(R + |x|)|n
≤ K(x, y) ≤ R2 − |x|2

R|Sn−1|(R− |x|)|n
for all y ∈ ∂BR(0).
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It then follows that

u(x) =

∫
∂BR(0)

K(x, y)u(y) dσ(y)

≤
∫
∂BR(0)

R2 − |x|2

R|Sn−1|(R− |x|)|n
u(y) dσ(y) (using u(y) ≥ 0)

=
Rn−2(R2 − |x|2)

(R− |x|)n
u(0),

where we used the mean value property for u; and

u(x) =

∫
∂BR(0)

K(x, y)u(y) dσ(y)

≥
∫
∂BR(0)

R2 − |x|2

R|Sn−1|(R + |x|)|n
u(y) dσ(y)

=
Rn−2(R2 − |x|2)

(R + |x|)n
u(0).

The global version follows from a covering argument. There exists a finite cover of

V by balls {Br(xi)}Ni=1 such that each B3r(xi) ⊂ U . Further, the connectedness of

V implies that we can choose these balls such that for each i, 1 ≤ i ≤ N , there

exist y1, · · · , ym ∈ {x1, · · · , xN}, such that m ≤ N , y1 = x1, ym = xi, and Br(yj) ∩
Br(yj+1) 6= ∅, for 1 ≤ j ≤ m − 1. In other words, each Br(xi) is on a string of balls

from this finite number of covering balls such that the consecutive ones have non-

empty overlap, and the first one is Br(x1). This guarantees that one can apply the

local version of the Harnack estimate on each B3r(yj) to get a fixed upper and lower

bound, depending only on the dimension n, for the ratio u(yj)/u(yj+1) for any non-

negative harmonic function on B3r(yj). Now for any non-negative harmonic function

in U and any P1, P2 ∈ V , each Pk ∈ Br(xik) for some ik, k = 1, 2, then we can compare

u(Pk) with u(xik), and compare u(xi1) with u(xi2) via the connected path of segments

between the centers of the balls {Br(xi)}Ni=1 and apply the local Harnack estimates

to u at any two consecutive vertices to conclude the global Harnack estimate.

With Harnack estimate, we obtain a strengthened version of Liouville Theorem.

Corollary 5.19. A harmonic function on Rn bounded from below (or above) must be

a constant.

Proof. The Harnack estimate implies that a harmonic function u(x) on Rn bounded

from below, say u(x) ≥ −c, gives rise to a non-negative harmonic function u(x) + c.

For any x ∈ Rn, one can then apply the Harnack inequality on BR(0) with R > |x|,
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to imply that u(x) + c ≤ C(u(0) + c), where C = C(n) > 0 is the constant in the

local Harnack estimate. We can now apply the usual Liouville Theorem to conclude

that u(x) + c is a constant.

Exercises

Exercise 5.6.1. Suppose that {uk} is a sequence of harmonic functions in a connected

domain U such that uk(x) ≤ uk+1(x) for any x ∈ U . Suppose also that for some

x0 ∈ U , uk(x0) converges. Prove that there exists a harmonic function u(x) on U

such that {uk} converges to u uniformly on any compact subdomain of U .

Exercise 5.6.2. Suppose that u ∈ C2(B+
R(0)) is harmonic in B+

R(0), where B+
R(0) =

{x ∈ BR(0) : xn > 0}, and that u(x′, 0) = 0 for (x′, 0) ∈ B+
R(0). Establish the Poisson

representation

u(x) =
R2 − |x|2

R|Sn−1|

∫
∂′BR(0)

{
u(y)

(|x′ − y′|2 + |xn − yn|2)n/2
− u(y)

(|x′ − y′|2 + |xn + yn|2)n/2

}
dσ(y),

for x = (x′, xn) ∈ B+
R(0), where ∂′BR(0) = {x = (x′, xn) ∈ ∂BR(0) : xn ≥ 0} and

y = (y′, yn).

Assume, in addition, that u(x′, xn) ≥ 0 in B+
R(0). Use the above representation

to prove that there exists c(n) > 0 such that

c(n)−1u(0, R/2)xn/R ≤ u(x′, xn) ≤ c(n)u(0, R/2)xn/R for all x ∈ B+
R/2(0).

Exercise 5.6.3. Suppose that u ∈ C(Rn
+) is a non-negative harmonic function on

Rn
+, and that u(x′, 0) = 0 for all (x′, 0) ∈ ∂Rn

+. Prove that there exists c ≥ 0 such

that u(x′, xn) = cxn for all (x′, xn) ∈ Rn
+. Does the same conclusion necessarily hold

if the non-negativity of u is dropped?

5.7 Limit Theorems for Harmonic Functions and

Applications

We now discuss applications of the convergence theorems of harmonic functions.

Theorem 5.20. If, for a sequence gk ∈ C(∂U), there exists a (unique) solution uk

to {
∆uk = 0, in U,

uk = gk, on ∂U,
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and gk → g uniformly on ∂U , then the Dirichlet problem with g as boundary value

has a unique solution.

Next we discuss how to use the convergence theorems above to solve the Dirichlet

problem on a ball without using the Poisson kernel. This consists of three steps. Let

P≤k denote polynomials of degree ≤ k.

Step 1. For any polynomial p ∈ P≤k−2, there exists a unique solution v ∈ P≤k satisfying{
∆v = p, in BR(0),

v = 0, on ∂BR(0),

This follows from considering the linear map T : P≤k−2 7→ P≤k−2 by T (u) =

∆ [(R2 − |x|2)u(x)]. The maximum principle implies that T has trivial kernel,

so must be an isomorphism from P≤k−2 to P≤k−2.

Step 2. For any p ∈ P≤k−2 and g ∈ P≤k, there exists u ∈ P≤k such that ∆u = p, in BR(0),

u = g, on ∂BR(0),
(5.30)

This follows from Step 1. Since ∆g ∈ P≤k−2, by Step 1, there exists v ∈ P≤k
solving {

∆v = p−∆g, in BR(0),

v = 0, on ∂BR(0),

The u = v + g is the solution.

Step 3. For any g ∈ C(∂BR(0)), take a sequence of polynomials gk such that gk → g

uniformly over ∂BR(0) as k →∞, and let uk be the unique harmonic function

in BR(0) whose boundary value on ∂BR(0) equals gk. Then the maximum

principle and convergence theorems provide a limit in C(BR(0)) ∩ C2(BR(0))

which is a harmonic function with g as boundary value.

We can attempt to solve (5.30) for more general right hand side, as we can already

solve it for polynomials. Take f to be continuous on BR(0) for instance. We can take

polynomials pk and gk such that pk → f uniformly in BR(0), and gk → g uniformly

on ∂BR(0) as k → ∞. Let uk denote the corresponding (polynomial) solution. By

Proposition 5.2, we have uniform bound on ||uk||C(BR(0)). In fact, {uk} is Cauchy in

C(BR(0)). But to prove the convergence of {uk} to a solution of (5.30), we need higher

derivative estimates for {uk}. This can be done using the Green’s representations,

under appropriate smoothness assumptions on f .
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Remark 5.12. For any p > n, there exist a constant C(p, n) > 0 such that for any

u ∈ C2(BR(x0)),

R|∇u(x0)| ≤ C(p, n)
(
R−n||u(x)||L1(BR(x0) +R2−n

p ||∆xu||Lp(BR(x0))

)
,

R||∇u||C(BR
2

(x0)) ≤ C(p, n)
(
R−n||u(x)||L1(BR(x0) +R2−n

p ||∆xu||Lp(BR(x0))

)
.

(5.31)

For any v ∈ C2(B1(0)), we already established the following variant of Green’s

representation on v(z), z ∈ B1/2(0):

v(z) =

∫
B1(0)

[v(y)∆y (Φ(y − z)η(y))− (∆yv(y)) Φ(y − z)η(y)] dy.

Here η(y) is a smooth cut-off function such that η(y) ≡ 1 in B1/2(0) and z ∈ B1/2(0).

This can be further used to establish

∇zv(z) =

∫
B1(0)

[v(y)∇z∆y (Φ(y − z)η(y))− (∆yv(y))∇zΦ(y − z)η(y)] dy,

for z ∈ B1/2(0), which can be used to establish gradient estimate on v(z) (either point-

wise or integral), using ∆y (Φ(y − z)η(y)) = 2∇yΦ(y− z) · ∇yη(y) + Φ(y− z)∆yη(y).

For example, using |∇y| = ∆yη(y) = 0 for |y| ≤ 1/2, we see that |∇2
yΦ(y)||∇yη(y)|+

+|∇yΦ(y)||∆yη(y)| ≤ C(n) for all |y| ≤ 1, so it follows that

|∇zv(0)| ≤
∫
B1(0)

[
|v(y)|

(
|∇2

yΦ(y)||∇yη(y)|+ |∇yΦ(y)||∆yη(y)|
)

+|∆yv(y)||∇yΦ(y)||η(y)|] dy

≤C(n)

∫
B1(0)

[
|v(y)|+ |∆yv(y)||y|1−n

]
dy.

We can estimate
∫
B1(0)
|∆yv(y)||y|1−n dy under various conditions on ∆yv(y). For

example,

|
∫
B1(0)

|∆yv(y)||y|1−n dy| ≤ max
B1(0)
|∆yv(y)|

∫
B1(0)

|y|1−n dy ≤ |Sn−1|max
B1(0)
|∆yv(y)|;

while if we assume a bound on ||∆yv(y)||Lp(B1(0)) for p > n, then using Hölder’s

inequality, with 1
p

+ 1
p′

= 1,

|
∫
B1(0)

|∆yv(y)||y|1−n dy| ≤ ||∆yv(y)||Lp(B1(0))

(∫
B1(0)

|y|(1−n)p′ dy

) 1
p′

≤ C(p, n)||∆yv(y)||Lp(B1(0)),
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since
∫
B1(0)
|y|(1−n)p′ dy = |Sn−1|

∫ 1

0
r(1−n)p′+n−1dr = |Sn−1|

∫ 1

0
r

1−n
p−1 dr < ∞ when p >

n.

Finally note that ∆yv(y) = R2∆xu(x0 + Ry), the gradient estimate above turns

into the dimensionless form (5.31).

We could obtain second derivative estimates of v(z) in B1/2 in terms of ||∆v||C1(B1)

using the Green’s representation, but we take this opportunity to introduce Bern-

stein’s Gradient Estimates.

Theorem 5.21. Let u ∈ C4(B1) and denote ∆u by f . Then for any r ∈ (0, 1), there

is a constant N = N(n, r) such that in Br

|u|+ |∇u|+ |∇2u| ≤ N

(
max
B1

|f |+ max
B1

|∇f |+ max
B1

|∇2f |+ max
∂B1

|u|
)

The idea of Bernstein is to verify that some auxiliary function involving u and its

derivatives satisfies an appropriate differential inequality (subharmonic, for instance)

thus satisfies the maximum principle. The advantage of this method is that it is very

flexible and applies even to some nonlinear equations; the drawback is the requirement

on the higher derivatives of f .

We will illustrate the method by verifying that for any smooth cut-off function ζ

supported in B1 and identically equal to 1 on Br, the function w = ζ2|∇u|2 + Cu2

satisfies in B1, for C large depending on r,

∆w ≥ −ζ2|∇f |2 − Cf 2 − Cu2 ≥ −Ñ
(

max
B1

|f |2 + max
B1

|∇f |2 + max
B1

|u|2
)

(5.32)

for some Ñ depending on C. A generalization of Proposition 5.2 applied to (5.32)

then implies that

max
B1

w ≤ N

(
max
B1

|f |2 + max
B1

|∇f |2 + max
B1

|u|2
)

+ max
∂B1

w (5.33)

for some N > 0. Note that max∂B1 w = C (max∂B1 |u|)
2. Then using Proposition 5.2

again to estimate maxB1 |u|2 in terms of maxB1 |f |2 and max∂B1 |u|2, it follows from

(5.33) by estimating the left hand side on Br that

max
Br
|∇u|2 ≤ max

B1

w ≤ N

(
max
B1

|f |2 + max
B1

|∇f |2 + max
∂B1

|u|2
)
.

(5.32) follows by noting that

∆|∇u|2 = 2
n∑

i,j=1

u2
ij + 2

∑
i

ui(∆u)i,
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and

∆u2 = 2|∇u|2 + 2u∆u.

In order to obtain estimates for |∇u|2 not dependent on the boundary behavior of u,

we work with

∆(ζ2|∇u|2) =2ζ2(
n∑

i,j=1

u2
ij +

∑
i

ui(∆u)i)

+ (∆ζ2)|∇u|2 − 8ζ
n∑

i,j=1

∇iζ∇ju∇iju

Using

−8ζ
n∑

i,j=1

∇iζ∇ju∇iju ≥ −ζ2(
n∑

i,j=1

u2
ij)− 16|∇ζ|2|∇u|2,

and 2
∑

i ui(∆u)i) ≥ −|∇u|2 − |∇f |2, we have

∆(ζ2|∇u|2) ≥ ζ2(
n∑

i,j=1

u2
ij)− (2ζ2 −∆ζ2 + 16|∇ζ|2)|∇u|2 − ζ2|∇f |2.

Thus we can choose C > 0 depending on r and n to satisfy (5.32)—note that the

bound on the right hand side now does not involve ∇u or ∇iju.

A similar construction proves the second derivative estimate.

As a consequence of the derivative estimates obtained through Bernstein’s method,

we have

Corollary 5.22. Suppose that f ∈ C(BR) ∩ C2(BR) and g ∈ C(∂BR). Then there

exists a unique u ∈ C(BR) ∩ C2(BR) solving ∆u(x) = f(x) in BR,

u(x) = g(x) on ∂BR.
(5.34)

Remark 5.13. The corollary above can be obtained under the weaker assumption of

f ∈ L∞(BR)∩C1(BR) with the help of Proposition 5.12. The advantage of Bernstein’s

method is its flexibility and robustness.

The idea of constructing solution through an approximation procedure can be

applied in many other different contexts. The key is to obtain appropriate estimates

for sufficiently smooth solutions, the so called a priori estimates. For instance, we

already obtained the following estimate for any u ∈ C2(BR):

Rmax
BR/2

|∇u| ≤ C(n)

(
max
BR

|u|+R2 max
BR

|∆u|
)
. (5.35)
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(5.35) and (ii) of Proposition 5.2 imply that if {∆uj} is Cauchy in C(U) and {uj|∂U}
is Cauchy in C(∂U), then {uj} is Cauchy in C(U) and {∇uj} is Cauchy in C(V ) in

any subdomain V ⊂⊂ U . So if U is a bounded domain such that (5.34) has a (unique)

solution for any sufficiently smooth f and g, then for any f ∈ C(U) and g ∈ C(∂U),

we can use smooth fj and gj to approximate f and g in C(U) and C(∂U), respectively.

Let uj be the corresponding solution, then there is a limit u∞ ∈ C(U) ∩ C1(U) such

that uj → u∞ uniformly on U . u∞ = g on ∂U obviously. u∞ satisfies ∆u∞ = f in U

in the following sense:

∫
U

u(x)∆η(x) dx = −
∫
U

∇u(x) · ∇η(x) dx =

∫
U

f(x)η(x) dx, for all η ∈ C2
c (U).

One question to be addressed is the issue of regularity: whether a function satisfy-

ing the above integral relation has appropriate improved regularity (higher differentia-

bility) if f has some appropriate regularity assumptions. Another issue is the unique-

ness. It is equivalent to the following: suppose u ∈ C(U) satisfies
∫
U
u(x)∆η(x) dx = 0

for all η ∈ C2
c (U), and u = 0 on ∂U , then u = 0 in U .

This can be settled with the help of the following Weyl Lemma.

Lemma 5.23 (Weyl). Suppose that u ∈ C(U) satisfies
∫
U
u(x)∆η(x) dx = 0 for all

η ∈ C2
c (U), then u ∈ C∞(U) and ∆u(x) = 0 in U .

Proof. Let ρ(x) be a smooth, non-negative, even, cut-off function on Rn such that

supp(ρ) ⊂ B2 and
∫
B2
ρ(x) dx = 1. Define ρε(x) = ε−nρ(x/ε). For any compact

subdomain V ⊂⊂ U , there exists another compact subdomain W such that V ⊂⊂
W ⊂⊂ U . Define

ũ(x) =

u(x) for x ∈ W

0 otherwise

and ũε = ũ ∗ ρε, where ∗ is the convolution operation. Then ũε is smooth in W , and

ũε → u uniformly in V as ε→ 0.

Next, we show that, in fact, ũε is harmonic in V , thus it follows from the conver-

gence theorems that u is harmonic in V . Since V is an arbitrary compact subdomain

of U , this will prove that u is harmonic in U .
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For any η ∈ C2
c (V ) and ε > 0 small, ρε ∗ η ∈ C∞c (W ), we have∫

U

ũε(x)∆η(x) dx

=

∫
U

(∫
U

ũ(y)ρε(x− y) dy

)
∆η(x) dx

=

∫
U

ũ(y)

(∫
U

ρε(x− y)∆η(x) dx

)
dy

=

∫
U

ũ(y)

(∫
U

∆xρε(x− y)η(x) dx

)
dy

=

∫
U

ũ(y)

(∫
U

∆yρε(x− y)η(x) dx

)
dy

=

∫
U

ũ(y)∆y

(∫
U

ρε(x− y)η(x) dx

)
dy

=

∫
U

ũ(y)∆y (ρε ∗ η(y)) dy.

Since ρε ∗ η ∈ C∞c (W ), the last integral above is equal to
∫
U
u(y)∆y (ρε ∗ η(y)) dy,

which is 0 by the assumption on u. Thus∫
U

∆xũε(x)η(x) dx =

∫
U

ũε(x)∆xη(x) dx = 0

for all η ∈ C2
c (V ), which implies that ũε(x) is a smooth harmonic function in V .

This argument will also work if one replaces the assumption that u ∈ C(U) by

u ∈ L1
local(U). Instead of getting ũε → u uniformly in V as ε → 0, we will first

get ũε → u in L1(V ), which, together with the mean value property for harmonic

functions, as applied to ũε, will imply the C0(V ) bound of ũε; in fact it implies that

ũε is Cauchy in C0(V ), thus implying C0(V ) convergence of ũε → u, which then

implies that u ∈ C∞(V ).

Remark 5.14. Another possible way to define a generalized solution of (5.34) is to

formulate an integral equation using the Green’s representation (5.27) in terms of the

Green’s function G(x, y) of the corresponding homogeneous problem: a C2(U)∩C(Ū)

solution u(x) of (5.34) would satisfy

u(x) = −
∫
U

G(x, y)f(y) dy +

∫
∂U

g(y)
∂G(x, y)

∂ν(y)
dσ(y),

and we may simply use this representation as a generalized solution of (5.34). Recall

that if f ∈ C(Ū) or simply L∞(U), we know that the right hand side is at least in
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C1(Ū); we just don’t know that it is in C2(U). We can even use such a formulation to

set up a possible scheme to construction a solution which is a perturbation of (5.34):
∆u(x) +

n∑
i=1

bi(x)uxi(x) + c(x)u(x) = f(x) x ∈ U,

u(x) = g(x) x ∈ ∂U.
(5.36)

We can try to set up an iteration scheme uk(x) 7→ uk+1(x), where

uk+1(x) =

∫
U

G(x, y)

[
n∑
i=1

bi(y)(uk)xi(y) + c(y)uk(y)− f(y)

]
dy+

∫
∂U

g(y)
∂G(x, y)

∂ν(y)
dσ(y),

and try to show that it has a fixed point. Based on our discussion, if bi(x), c(x) ∈
L∞(U), then any uk ∈ C1(Ū) would certainly give uk+1 ∈ C1(Ū). When ||bi||L∞(U)

and ||c||L∞(U) are small, we can easily prove that the map defined by the right hand

side is a contraction in C1(Ū), thus has a fixed point. We will discuss later situations

where the smallness condition can be removed.

If one tries to extend this perturbative approach to allow perturbation to the

highest order derivatives terms, say, replacing ∆u(x) by
∑n

i,j=1 aij(x)uxixj(x), where

(aij(x)) is close to (δij) in appropriate sense, then one encounters the difficulty

that for u ∈ C2(Ū), it is not known that
∫
U
G(x, y) (δij − aij(y))uxixj(y) dy is in

C2(Ū), so we can’t set up an appropriate map in C2(Ū). As mentioned earlier, if

(δij − aij(y))uxixj(y) has some Hölder continuity, then the integral operator would

return a function whose second derivatives have the same Hölder continuity. This

discussion indicates that to solve a similar BVP for a more general equation of the

kind
∑n

i,j=1 aij(x)uxixj(x) +
∑n

i=1 bi(x)uxi(x) + c(x)u(x) = f(x), there is a need to

work in the class where the solutions uxixj(x) and the coefficients aij(x), bi(x), c(x),

have some Hölder continuity.

Exercises

Exercise 5.7.1. Provide details for a proof of the upper bound for |∇2u| in Theorem

5.21.

Exercise 5.7.2. Prove that if λ is an eigenvalue of ∆ωωω on the round unit sphere Sn−1,

namely, there exists φ(ωωω), not identically 0 on Sn−1, such that ∆ωωωφ(ωωω) + λφ(ωωω) = 0

on Sn−1, then λ = k(k + n− 2) for some k ∈ Z≥0. (Hint: Using λ ≥ 0, one can find

a k ∈ R≥0 such that λ = k(k + n − 2). Then prove |x|kφ(x/|x|) is harmonic on Rn

appealing to Weyl’s Lemma, and use this to prove that k ∈ Z≥0.)
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5.8 Poincaré’s Balayage Method

Next we will use the maximum principle and the convergence theorems to find a har-

monic function with prescribed (continuous) Dirichlet data on fairly general domains.

I will describe Poincaré’s balayage method, which can be considered as a precursor

of the Perron method. The latter is presented in most modern treatment.

Poincaré’s method, as well as Perron’s, depends on the maximum principle, the

convergence theorems, and the solvability of Dirichlet problem on balls. The last we

obtained by Poisson’s kernel or the approximation method. We need to extend the

notion of subharmonic functions to C0 class.

Definition. A C0(U) function u is called subharmonic (superharmonic ) in U , if for

every ball B ⊂⊂ U and every harmonic function h in B satisfying u ≤ (≥)h on ∂B,

we also have u ≤ (≥)h inside B.

The maximum principle extends to these functions in the following way:

(i). Suppose U is a bounded domain. If u is subharmonic in U and is continuous up

to the boundary of U , then maxU u ≤ max∂U u. In fact, the strong maximum

principle also holds. If v is superharmonic in U , and u ≤ v on ∂U , then in any

connected component of U either u < v, or u ≡ v.

(ii). If u is subharmonic in U and B is a ball strictly contained in U , then the

harmonic lifting hB(u) of u in B is subharmonic in U , where hB(u) is defined

as

hB(u) =

u(x), for x ∈ B ,

u(x), for x ∈ U \B,

with u(x) being the harmonic function in B satisfying u(x) = u(x) on ∂B.

(iii). If u and v are subharmonic in U , then so is u + v; if u is superharmonic in U

and v is subharmonic in U , then v − u is subharmonic in U .

(iv) If u and v are subharmonic in U , then so is max{u, v}.

Poincaré’s method consists of several steps. Given a domain U and a continuous

boundary function g.

Step 1. Assume first that there exists a subharmonic u0 ∈ C(U) such that u0|∂U = g.
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Step 2. Cover U by a countable number of balls {B1, B2, · · · } such that each Bi ⊂⊂ U .

Starting from u0, we will replace each with its harmonic lifting on successive

balls to obtain a sequence of monotone increasing subharmonic functions that

are bounded from above. Thus a limiting function u exists. We will prove that

this u is harmonic in U and will study its boundary behavior.

First let B(1) = B1 and define u1 = hB(1)(u0). Then

(a) u1(x) ≥ u0(x), for all x ∈ U .

(b) u1 is harmonic in B(1).

(c) u1(x) ≤ max∂U g, and u1(x) = g(x) on ∂U .

(d) u1 is still subharmonic in U .

Order the balls in the following way

B1 → B2 ←↩
↪→ B1 → B2 → B3 ←↩
↪→ B1 → B2 → B3 → B4 ←↩
↪→ · · ·

Define inductively, for each i ≥ 2, ui(x) on U by ui = hB(i)(ui−1). Then

(a) ui(x) ≥ ui−1(x), for all x ∈ U .

(b) ui is harmonic in B(i).

(c) ui(x) ≤ max∂U g, and ui(x) = g(x) on ∂U .

(d) ui is still subharmonic in U .

Therefore {ui} is a sequence of monotone increasing, subharmonic, continuous

functions in U , and is bounded from above. Thus u(x) = limi→∞ ui(x) is well

defined for all x ∈ U . To prove u is harmonic in U , notice that for each x ∈ U ,

there is a ball Bi(x) such that x ∈ Bi(x). Notice also that because of the ordering

of the balls, a subsequence of {ui}, called {hj(x)}, is actually harmonic in Bi(x),

and monotone in j. u(x) is defined as a point-wise limit. But at this stage, one

can prove, using Harnack estimate, that on any smaller B ⊂⊂ Bi(x), hj =⇒ u

uniformly on B; one could also use the convergence theorem to prove that a

subsequence of {hj(x)} converges uniformly on B. Thus u is harmonic in Bi(x).

Step 3. The continuity in U of the solution u in the above step is handled by the concept

of barriers.
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5.8. POINCARÉ’S BALAYAGE METHOD

Definition. w ∈ C(U) is called a barrier function at ξ ∈ ∂U for the Dirichlet

problem on U if

a). w is superharmonic in U .

b). w(ξ) = 0, and w(x) > 0 for x ∈ U \ {ξ}.

Suppose a barrier function w at ξ ∈ ∂U exists. For any given ε > 0, by the

continuity of g at ξ, we can find r0 > 0 such that g(x) ≤ g(ξ) + ε for all x ∈ ∂U
with |x− ξ| ≤ r0. There also exists M > 0 depending on r0, w and g such that

g(x)− g(ξ) ≤Mw(x) for all x ∈ ∂U with |x− ξ| ≥ r0. Thus

g(x) ≤ g(ξ) + ε+Mw(x), for all x ∈ ∂U .

Note that g(ξ) + ε+Mw(x) is a superharmonic function on U . So in the steps

above, we also have u0 ≤ ui ≤ g(ξ)+ ε+Mw on U by (iii). By the continuity of

w and u0 at ξ, we can find 0 < r1 < r0 such that when x ∈ U and |x− ξ| ≤ r1,

Mw(x) ≤ ε and u0(x) ≥ g(ξ)− ε. Thus

g(ξ)− ε ≤ u0(x) ≤ u(x) ≤ g(ξ) + 2ε, for all x ∈ U with |x− ξ| ≤ r1,

proving the continuity of u at ξ.

Step 4. To remove that assumption in Step 1, we first argue that for any polynomial g

given, g1 = g + Ax2
1 and g2 = Ax2

1 are subharmonic in U for A > 0 sufficiently

large. Thus the first three steps can be applied to show that the Dirichlet

problem has solutions with g1 and g2 as boundary values, thus it also has one

with g1 − g2 = g as boundary value. Finally the convergence theorems can be

used to prove the existence of solution of the Dirichlet problem with any given

continuous boundary value, provided the barrier argument in Step 3 can be

carried out. That turns out to depend only on the geometry of the domain U .

An easily verified criterion for the existence of a barrier at ξ ∈ ∂U is the existence

of some exterior ball, i.e., there exists a ball B such that B ∩ U = {ξ}. Let x0

be the center of this ball and r be its radius, then w(x) = r2−n − |x − x0|2−n

defines a barrier at ξ.

Definition. A boundary point ξ is called regular with respect to the Laplacian if

there exists a barrier at that point.

We can now summarize our discussion as
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Theorem 5.24. The classical Dirichlet problem for the Laplacian in a bounded do-

main is solvable for arbitrary continuous boundary values if and only if the boundary

points are all regular.

Points on components of the boundary with codimension 2 or higher are not

regular. For instance, we can’t solve the Dirichlet boundary value on the domain

B \ {0} with prescribed value everywhere on ∂{B \ {0}} = ∂B ∪{0}, as the following

theorem shows

Theorem 5.25. Suppose u is harmonic in B \ {0}, and satisfies |u(x)| = o(|x|2−n)

as x→ 0 (assume n ≥ 3). Then u extends to a smooth harmonic function over B.

Proof. We may assume that u is continuous up to ∂B. Let v be the unique solution

in B to {
∆v = 0, in B,

v = u, on ∂B.

Then w = u − v is still harmonic in B \ {0}, and satisfies w(x)| = o(|x|2−n) as

x → 0. Furthermore w(x) ≡ 0 on ∂B. We prove w ≡ 0 in B in the following

way: for any ε > 0, we can find r > 0 such that Br ⊂⊂ B, and on ∂Br, |w(x)| ≤
ε(|x|2−n− r2−n

0 ) (r0 is the radius of B). Then ±w(x) + ε(|x|2−n− r2−n
0 ) is a harmonic

function on B \Br, and is nonnegative on ∂(B \Br). Thus by the maximum principle

±w(x)+ε(|x|2−n−r2−n
0 ) ≥ 0 in B\Br, i.e., |w(x)| ≤ ε(|x|2−n−r2−n

0 ) for all x ∈ B\Br.

For any fixed x̄ ∈ B \ {0}, x̄ is in B \ Br for all sufficiently small ε > 0. Thus

|w(x̄)| ≤ ε(|x̄|2−n − r2−n
0 ), and by sending ε → 0, we conclude that w(x̄) = 0. In

conclusion, w ≡ 0 in B, and so u ≡ v, a smooth harmonic function in B.

Remark 5.15. If one examines Poincarè’s method, one finds that it would work in

a setting where the following can be verified: maximum principle in the form of (i)–

(iii) above; solvability of the Dirichlet problem on small domains; the convergence

properties in Theorem 6 (part (ii) depends on Harnack estimates while the other

parts depend only on gradient estimates); and regularity of the boundary. Perron

made a modification of Poincarè’ method so that one does not have to start with

Step 1 above and needs not to have Harnack estimate; instead, the argument relies

on the strong maximum principle to the difference of two solutions. The method

gives a prospective solution for a boundary function that needs not be continuous

and isolates the continuity of the constructed solution near a continuity point of

the boundary function as a local problem. Gilbarg and Trudinger give a complete
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presentation of Perron’s method in their monograph [7]. Below is a sketch of the main

steps in Perron’s method. Let

Sg = {v ∈ C(Ū) : v subharmonic in U and v ≤ g on ∂U},

and define u(x) = supv∈Sg v(x).

(i). Prove that u(x) is well defined and is harmonic in U . This is done by picking any

y ∈ U and a ball Br(y) such that Br(y) ⊂ U , picking a sequence vj ∈ Sg such

that vj(y)→ u(y) as j →∞, then replacing vj by hBr(y)(vj) and showing that

hBr(y)(vj) ∈ Sg, hBr(y)(vj)(x)→ h(x) in Br(y), with ∆h(x) = 0, h(x) ≤ u(x), in

Br(y) and h(y) = u(y), and finally proving that u(x) = h(x) in Br(y), therefore

harmonic in Br(y). The last step is proved by showing that if h(z) < u(z)

for some z ∈ Br(y), then a similar argument centered at z would produce a

harmonic function h′(x) in Br(y) such that h′(x) ≥ h(x) in Br(y), h′(y) = h(y),

but h′(z) = u(z) > h(z), which would be a contradiction to the strong maximum

principle.

(ii). If g is continuous at y ∈ ∂U and there exists a barrier function w(x) at y, then

for any ε > 0 one can choose k such that

g(y)− ε− kw(x) ≤ g(x) ≤ g(y) + ε+ kw(y) for x ∈ ∂U,

and the u(x) constructed in the previous step would satisfy

g(y)− ε− kw(x) ≤ u(x) ≤ g(y) + ε+ kw(y) for x ∈ U.

Now sending x→ y and using the continuity of w at y shows the continuity of

u(x) at y.

The notion of local barrier is sometimes useful.

Definition. w is called a local barrier function at ξ ∈ ∂U for the Dirichlet problem

on U if there is a ball B centered at ξ such that w ∈ C(U ∩B) and

a). w is superharmonic in U ∩B.

b). w(ξ) = 0, and w(x) > 0 for x ∈
(
U ∩B

)
\ {ξ}.

If a local barrier w at ξ ∈ ∂U exists on U∩B, it is easy to see that we can apply the

barrier argument in Step 3 on U ∩ B; or alternatively we can define m = min∂B∩U w

and

w̃(x) =

min(w(x),m), for x ∈ U ∩B,

m, for x ∈ U \B,
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then w̃ is a (global) barrier function at ξ ∈ ∂U .

We now describe briefly how a variant idea involving subsolutions applies to a

subclass of (5.36).

Definition. A function v ∈ C2(U) ∩ C(Ū) is called a subsolution of (5.36), if
∆v(x) +

n∑
i=1

bi(x)vxi(x) + c(x)v(x) ≥ f(x) x ∈ U,

v(x) ≤ g(x) x ∈ ∂U.

Likewise, a function w ∈ C2(U) ∩ C(Ū) is called a supersolution of (5.36), if
∆w(x) +

n∑
i=1

bi(x)wxi(x) + c(x)w(x) ≤ f(x) x ∈ U,

w(x) ≥ g(x) x ∈ ∂U.

The method we discuss now deals with (5.36) in the case bi(x) = 0, and is called

the method of sub-and-super solutions. We will first discuss the case of bi(x) = 0 and

c(x) ≥ 0, and assume that there exists a subsolution v to (5.36) in this case, then we

examine the iteration scheme with u1 = v, and{
∆uk+1(x) = −c(x)uk(x) + f(x) x ∈ U,
uk+1(x) = g(x) x ∈ ∂U.

Note that the right hand side is a decreasing function of uk under our assumption.

Assuming appropriate regularity of f(x) and c(x), and boundary regularity of ∂U ,

uk+1 can be constructed from correcting the Newton potential of −c(x)uk(x) + f(x)

in U by an appropriate harmonic function. Other possible approaches include using

the framework of the variational method to construct a generalized solution, or using

(5.27) to construct a generalized solution.

What is crucial here is that the maximum principle applies, even for generalized

solutions, and is used to prove uk+1(x) ≥ uk(x)! First u2(x) ≥ u1(x) in U as a

consequence of ∆u2(x) ≤ ∆u1(x) for x ∈ U , and u2(x) = g(x) ≥ u1(x) for x ∈ ∂U .

Next, using ∆[uk+1(x) − uk(x)] = −c(x)[uk(x) − uk−1(x)] ≤ 0 together with the

assumption c(x) ≥ 0 and the induction hypothesis uk(x) − uk−1(x) ≥ 0 in U , it

follows that that uk+1(x)−uk(x) ≥ 0 in U , and that ∆uk+1(x) = −c(x)uk(x)+f(x) ≥
−c(x)uk+1(x) + f(x) in U , namely, uk+1 continues to be a subsolution.

In order to get a convergence sequence {uk(x)}, we need some upper bound on

uk(x). This is guaranteed if we assume that there exists a supersolution w(x) such
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that w(x) ≥ v(x) in U . Then ∆u1(x) ≥ −c(x)w(x) + f(x) ≥ ∆w(x) in U , again

using the sign of c(x). Thus u1(x) ≤ w(x) in U . The same argument works for each

uk(x) inductively to deduce that uk(x) ≤ w(x) in U for all k. Thus we conclude that

{uk(x)} converges in U . What remains is to use the derivative estimates to conclude

that the limit satisfies the equation and the boundary condition.

Our description of this method relies on our ability to solve the Dirichlet problem

for the Laplace operator. The variational approach can be adapted to solve the

Dirichlet problem for ∆− λ for any λ > 0. Using this, we can adapt the approach to

solve the Dirichlet problem for ∆u(x) = −c(x)uk(x) + f(x) without any assumptions

on the sign of c(x) or even for nonlinear f(x, u(x)), provided that there exists a pair

of subsolution v(x) and supersolution w(x) such that v(x) ≤ w(x) in U . We just need

to choose λ > 0 large enough such that f(x, u)− λu is non-increasing for (x, u) such

that v(x) ≤ u ≤ w(x), and modify our scheme into{
∆uk+1(x)− λuk+1(x) = f(x, uk(x))− λuk(x) x ∈ U,

uk+1(x) = g(x) x ∈ ∂U.

Example 5.1. We illustrate this method by showing that the Dirichlet problem{
∆u(x) = u(x)3 x ∈ U,
u(x) = g(x) x ∈ ∂U,

has a solution for any g ∈ C(∂U), where we also assume that all boundary points of

∂U are regular with respect to the Dirichlet problem for the Laplacian.

According to our discussion, the method is applicable if we are able to con-

struct a subsolution v(x) and supersolution w(x) such that v(x) ≤ w(x) in U ,

and v(x) ≤ g(x) ≤ w(x) on ∂U . The simplest possible candidates for subsolu-

tions or supersolutions are constants. If we take w(x) = max{0,max∂U g}, we

see that ∆w(x) ≤ w(x)3 in U , and w(x) ≥ g(x) on ∂U . Likewise, if we take

v(x) = min{0,min∂U g}, we see that ∆v(x) ≥ v(x)3 in U , and v(x) ≤ g(x) on

∂U . Furthermore, v(x) ≤ w(x) in U , so we can apply the method of subsolu-

tions and supersolutions to conclude that there exists a solution u(x), which satisfies

min{0,min∂U g} ≤ u(x) ≤ max{0,max∂U g} in U .

Exercises

Exercise 5.8.1. Suppose u is bounded, harmonic in B \K, where

K = {x = (0, 0, x3, · · · , xn) ∈ B : x2
3 + · · · + x2

n ≤ 1
2
} (assume n ≥ 3). Then u
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extends to a smooth harmonic function over B. The same conclusion holds when

K is a compact submanifold of B with codimension 2 or higher; one could use the

Newtonian potential of unit density of K to play the role of |x|2−n above.

Exercise 5.8.2. Prove that the w̃(x) constructed above is a (global) barrier function

at ξ ∈ ∂U .

Exercise 5.8.3. In this exercise, you are asked to construct a barrier at the vertex

of a cone Kθ0 of opening angle θ0 for the Dirichlet problem on Kθ0 , where Kθ0 = {x ∈
R3 : x3 = |x| cos θ, 0 ≤ θ ≤ θ0}, and 0 < θ0 < π. You may construct a barrier in

the form of u(x) = |x|αΘ(θ) for appropriate choice of α > 0, Θ(θ) : Θ(θ) > 0 for

0 ≤ θ < θ0, and Θ(θ0) = 0. Note that the condition

0 ≥ ∆(|x|αΘ(θ)) = [α(α + 1)Θ(θ) + ∆S2Θ(θ)] |x|α−2

turns into

∆S2Θ(θ) = sin−1(θ)(sin(θ)Θ′(θ))′ ≤ −α(α + 1)Θ(θ)

for some α > 0. A positive eigenfunction of ∆S2 on Kθ0 ∩ S2 with zero Dirichlet

boundary value would do, the existence of which can be obtained by solving the

one-dimensional variational problem:

min{
∫ θ0

0

|Θ′(θ)|2 sin θ dθ :

∫ θ0

0

|Θ(θ)|2 sin θ dθ = 1,Θ(θ0) = 0}.

Explain how the argument and conclusion breaks down when θ0 = π.

Exercise 5.8.4. Assume that all boundary points of ∂U are regular with respect

to the Dirichlet problem for the Laplacian. Given any g ∈ C(∂U). Construct a

subsolution v(x) and a supersolution w(x) to{
∆u(x) = sin(|x|) + cosu(x) in U ,

u(x) = g(x) on ∂U ,

such that v(x) ≤ w(x) in U and prove that this problem has a solution.

We now provide an indirect argument that, in dimension 2 or higher, there are

f ∈ C(U) for which there is no C2(U) solution of ∆u(x) = f(x) in U ! We work

with U so as to use the Banach space structure of X = {u ∈ C2(U) : u = 0 on ∂U},
and work with the bounded linear map T : X 7→ C(U), where T (u) = ∆u. The

norm for f ∈ C(U) is the standard |f |0;U := maxU |f |, while the norm for u ∈ X is
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|u|2,0;U :=
∑2
|α|=0 |∂αxu|0;U . Note that ker(T ) = {0} by the uniqueness theorem. If

for every f ∈ C(U), there is a solution u ∈ X to ∆u = f in U , then by the Banach

theorem, there exists a constant C > 0 such that

|u|2,0;U ≤ C |∆u|0;U , for all u ∈ X. (5.37)

But we can verify that such an inequality cannot hold for all u ∈ X by simply testing

on a family of functions which are appropriate cut off of some harmonic functions.

Exercise 5.8.5. (i) Assume 0 ∈ U , and take p(x) = x2
1 − x2

2. Construct a family of

cut-off functions η ∈ X to show that η(x)p(x) can not satisfy (5.37).

(ii) Take U = B1(0), and defineXrad = {u ∈ C2(U) : u(x) is radial in x, and u = 0 on ∂U}.
Prove that (5.37) holds for all u ∈ Xrad.

5.9 Additional Problems

Problem 5.9.1. Prove that under the assumption c(x) ≤ 0 for x ∈ U and α(x) ≥ 0

for x ∈ ∂U , there exists at most one solution u to ∆u+ c(x)u = f, in U ,

∂u

∂ν
+ α(x)u(x) = g(x), on ∂U ,

in the class C2(U)∩C1(U), unless c(x) ≡ 0 and α(x) ≡ 0, in which case the uniqueness

is up to a constant. Give an example of the failure of the uniqueness when the

condition on c(x) or α is not satisfied.

Problem 5.9.2. Suppose that 0 is an interior point of the domain U in Rn, n ≥ 3,

and u(x) is a nonnegative harmonic function on U \ {0}. Prove that there exists a

constant A ≥ 0 and a smooth harmonic function h(x) in U such that

u(x) = A|x|2−n + h(x), for all x ∈ U .

Problem 5.9.3. Suppose U is a bounded domain and x0 ∈ ∂U . Let u ∈ C(U \{x0})
be a bounded harmonic function in U such that u ≡ 0 on ∂U \ {x0}). Prove that

u ≡ 0 in U .

Problem 5.9.4. Let u be a bounded harmonic function on U = {x = (x′, xn) : 0 <

xn < h}. Prove that

sup
U

|u| = sup
∂U
|u|.
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Problem 5.9.5. Let B+ denote the half disk {(x, y) ∈ R2 : x2 + y2 < 1, y > 0}.
Suppose u ∈ C2(B+) ∩ C(B

+
) is a solution of ∂2

xu+ y∂2
yu+ c(x, y)u = f(x, y), in B+,

u(x, y) = g(x, y), on ∂B+.
(*)

1. There is at most one solution of (*) under the assumption c(x, y) ≤ 0.

2. Assume −c0 ≤ c(x, y) ≤ 0 in B+. Then there exists a constant C > 0 depending

only on c0 such that for any solution u to (*),

max
B+
|u| ≤ C

[
max
B+
|f |+ max

∂B+
|g|
]
.

Problem 5.9.6. (i). Prove that for a bounded domain U with its boundary being

a piecewise C1 hypersurface and any bounded measurable f defined on ∂U ,∫
∂U

Φ(x− y)f(y) dσ(y) defines a C2(U) ∩ C0(U) harmonic function.

(ii). Prove that for any bounded measurable f defined in a bounded domain U ,∫
U

Φ(x−y)f(y) dy defines a C1, α(U)∩C1(U) function for every 0 < α < 1, and

Dxi

∫
U

Φ(x− y)f(y) dy =

∫
U

DxiΦ(x− y)f(y) dy.

Problem 5.9.7. For x, y ∈ ∂U , x 6= y, define K(x, y) = ∂Φ(x−y)
∂n(y)

. Prove that, if ∂U is

assumed to be a piecewise C2 surface, then for any continuous function f defined on

∂U ,
∫
∂U

∂Φ(x−y)
∂n(y)

f(y) dσ(y), x ∈ U , extends continuously to U , and for any x̄ ∈ ∂U ,

lim
x∈U, x→x̄

∫
∂U

∂Φ(x− y)

∂n(y)
f(y) dσ(y) =

1

2
f(x̄) +

∫
∂U

K(x̄, y)f(y) dσ(y).

Problem 5.9.8. Here is a concrete construction of a C2(B) function f for which there

is no C2 solution of ∆u = f in any neighborhood of (0, 0). Let η be a radial smooth

cut-off function in C∞0 ({(x, y) ∈ R2 : |(x, y)| < 2}) with η ≡ 1 when |(x, y)| ≤ 1. Let

ck → 0 as k → ∞ and
∑

k ck divergent, with
∑N

k=1 ck = o(2N), and let P (x, y) =

x2 − y2,

uN(x, y) =
N∑
k=1

ckη(2kx, 2ky)P (x, y).

Prove that f(x, y) = limN→∞∆uN(x, y) is in C(B̄), that û(x, y) = limN→∞ uN(x, y)

is in C1(B̄), with û(x, y) ≡ 0 on ∂B, but not in C2(B̄), and that there is no C2

solution of ∆u = f for such an f in any neighborhood of (0, 0).
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Problem 5.9.9. Consider the Dirichlet problem{
∆u(x)−m2u(x) = 0 for x ∈ Rn

+,

u(x) = g(x′) for x = (x′, 0) ∈ ∂Rn
+.

(i). Use Fourier’s method to derive that a solution u(x) with appropriate behavior

at ∞ has the representation

u(x) =

∫
∂Rn+

g(η)P (x′ − η, xn) dη,

where

P (x′, xn) =
1

(2π)n−1

∫
Rn−1

eix
′·ξ−
√
|ξ|2+m2xndξ.

(ii). Use the method of descent to derive that a solution u(x) with appropriate

behavior at ∞ has the alternative representation

u(x) =

∫
∂Rn+

g(η)P̂ (x′ − η, xn) dη,

where

P̂ (x′, xn) =
2xnIn+1

2
(m
√
|x′|2 + x2

n)

|Sn| (|x′|2 + x2
n)

n
2

,

and

In+1
2

(s) =

∫
R

cos(sz)

(1 + |z|2)
n+1

2

dz.

(iii). The In+1
2

(s) is related to the Fourier transform of (1 + |z|2)−
n+1

2 . For odd n’s,

this can be done using the calculus of residues; but in general it is a non-trivial

task. Prove that J(s) = s−n/2In+1
2

(s) satisfies the modified Bessel’s equation of

order n
2
: s2J ′′(s) + sJ ′(s) +

[
−s2 − (n

2
)2
]
J(s) = 0. Use this relation to identify

In+1
2

(s). Comparison with (5.28) (which corresponds to the m = 0 case) reveals

that

In+1
2

(0) =

∫
R

1

(1 + |z|2)
n+1

2

dz =
|Sn|
|Sn−1|

.

(iv). Use the method of image to derive an alternative representation for a solu-

tion u(x) in terms of the Green’s function for this problem, which, in turn, is

expressed in terms of solutions to the the modified Bessel’s equation.
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Part II

Some More General Methods and

Results for BVPs, IVPs, or IBVPs
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Chapter 6

Adjoint/Transpose Operators and

Fundamental Solutions

6.1 Green’s Identities and the Fundamental solu-

tion of the Heat Equation

We have used the fundamental solutions of the Laplace and heat equations on several

occasions. We now introduce two other concepts that will play important roles in

the study of PDEs: (i) adjoint/transpose operators and Green’s identities, and (ii)

fundamental solutions of more general linear differential operators. We will first

introduce these concepts in the context of the study of heat equations.

Green’s identities are based on the Green/Stokes/Divergence theorems applied to

certain bilinear expressions associated to a differential operator. In the case of the

heat equation, we have

(∂t −∆x)u(x, t) · v(x, t)− u(x, t) · (−∂t −∆x) v(x, t)

=∂t [u(x, t) · v(x, t)] +∇ [u(x, t) · ∇v(x, t)− v(x, t) · ∇u(x, t)] ,
(6.1)

−∂t−∆x is called the adjoint/transpose operator of ∂t−∆x. Based on the divergence

structure of the right hand side above, if u(x, t) and v(x, t) are in C2,1
x,t (U × [0, T ]),
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and U is a bounded domain, we can use Green’s identities to derive∫ t1

t0

∫
U

(∂t −∆x)u(x, t) · v(x, t) dxdt

=

∫ t1

t0

∫
U

u(x, t) · (−∂t −∆x)v(x, t) dxdt+

∫
U

u(x, t1) · v(x, t1) dx−
∫
U

u(x, t0) · v(x, t0) dx

+

∫ t1

t0

∫
∂U

(
u(x, t) · ∂v(x, t)

∂n
− v(x, t) · ∂u(x, t)

∂n

)
dσ(x)dt for any 0 ≤ t0 < t1 ≤ T .

(6.2)

We can get useful information by judicious choices of the pair u(x, t) and v(x, t).

For instance, if (∂t − ∆x)u(x, t) = f(x, t) ∈ C(U × [0, T ]), and we are interested in

representing u in terms of f and the initial/boundary values of u, we take v(x, t) =

K(X − x, T + ε− t) for some ε > 0 in (6.2), where

K(x, t) =

 e−
|x|2
4t

(4πt)n/2
if t > 0

0 if t ≤ 0

is the fundamental solution of the heat equation which we encountered earlier. Note

that

(−∂t −∆x)v(x, t) = (∂T −∆X)K(X − x, T + ε− t) = 0

for (x, t) ∈ U×[0, T ], and ε > 0 is inserted so as to make sure that K(X−x, T+ε−t) ∈
C2(U × [0, T ]); then (6.2) with t0 = 0 and t1 = T would imply∫

U

u(x, T ) ·K(X − x, ε) dx

=

∫
U

u(x, 0) ·K(X − x, T + ε) dx+

∫ T

0

∫
U

f(x, t) ·K(X − x, T + ε− t) dxdt

−
∫ T

0

∫
∂U

(
u(x, t) · ∂K(X − x, T + ε− t)

∂n(x)
−K(X − x, T + ε− t) · ∂u(x, t)

∂n(x)

)
dσ(x)dt.

Sending ε↘ 0, and noting that
∫
U
u(x, T ) ·K(X − x, ε) dx→ u(X,T ), we obtain

u(X,T ) =

∫
U

u(x, 0) ·K(X − x, T ) dx+

∫ T

0

∫
U

f(x, t) ·K(X − x, T − t) dxdt

−
∫ T

0

∫
∂U

(
u(x, t) · ∂K(X − x, T − t)

∂n(x)
−K(X − x, T − t) · ∂u(x, t)

∂n(x)

)
dσ(x)dt.

(6.3)

This representation can be used to read off the regularity of u in terms of that of f—

the integral term
∫
U
u(x, 0)·K(X−x, T ) dx and the other two boundary integral terms
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provide C∞ functions of (X,T ) for X ∈ U and T > 0 using the smooth dependence

of K(X − x, T − t) on (X,T ), X ∈ U , T > 0, when (x, t) = (x, 0), or x ∈ ∂U .

Remark 6.1. If u(x, t) satisfies (∂t −∆x)u(x, t) ≤ 0 for x ∈ Rn and 0 < t < T ,

and has some growth control as |x| → ∞, say, u(x, t) bounded uniformly, then we

apply (6.2) to u(x, t) and v(x, t) = K(X −x, T + ε− t)η(x/R) on BR× [t0, t1] for any

0 < t0 < t1 < T , where η is a non-negative cut-off function with compact support

such that η(y) ≡ 1 for |y| ≤ 1/2. Using

(−∂t−∆x)v(x, t) = −2R−1∇K(X−x, T+ε−t)·∇η(x/R)−R−2K(X−x, T+ε−t)∆η(x/R)

and the assumed bounds on u(x, t), by sending R→∞, then ε→ 0+, we get∫
Rn
u(x, t1)K(X − x, T − t1) dx ≤

∫
Rn
u(x, t0)K(X − x, T − t0) dx.

Namely, t 7→
∫
Rn u(x, t)K(X − x, T − t) dx is monotone non-increasing for 0 < t <

T . Such kind of properties are crucial for analyzing behavior of solutions of many

nonlinear problems.

If u has compact support in Rn+1, then we can apply (6.3) to obtain

u(X,T ) =

∫∫
Rn+1

f(x, t)·K(X−x, T−t) dxdt =

∫ T

0

∫
Rn

(∂t −∆x)u(x, t)·K(X−x, T−t) dxdt,

thus the integral operator f 7→
∫∫

Rn+1 f(x, t) ·K(X − x, T − t) dxdt provides a left

inverse to the operator ∂t −∆x on C∞c (Rn+1).

As we will see, if f has Hölder continuity in x, then the same integral operator

also provides a right inverse to the operator ∂t −∆x in the sense that

(∂T −∆X)

∫∫
Rn+1

f(x, t) ·K(X − x, T − t) dxdt = f(X,T ).

We can also use (6.2) to reduce a proof for uniqueness to an IBVP to the existence

of solutions to an adjoint IBVP. Suppose that U is a bounded domain in Rn, and

u ∈ C(U × [0, T ]) ∩ C2,1
x,t (U × (0, T ]) satisfies
(∂t −∆x)u(x, t) = 0 (x, t) ∈ U × (0, T ],

u(x, t) = 0 (x, t) ∈ ∂U × (0, T ],

u(x, 0) = 0 x ∈ U,

and we would like to prove that u ≡ 0 in U × [0, T ]. If we can solve for v(x, t)
(−∂t −∆x)v(x, t) = 0 (x, t) ∈ U × [0, τ),

v(x, t) = 0 (x, t) ∈ ∂U × [0, τ),

v(x, τ) = g(x) x ∈ U,
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for any 0 < τ ≤ T and any g ∈ C(U), then we use this v(x, t) with u(x, t) in (6.2)

with t0 = 0, t1 = τ , to get ∫
U

u(x, τ) · g(x) dx = 0.

Since g ∈ C(U) is arbitrary, this leads to u(x, τ) ≡ 0 for all 0 < τ ≤ T . Note that

the adjoint IBVP takes τ as its initial time, and solves for 0 ≤ t < τ . A change of

variable w(x, s) = v(x, τ − s) shows that the adjoint IBVP is equivalent to
(∂s −∆x)w(x, s) = 0 (x, s) ∈ U × (0, τ ],

w(x, s) = 0 (x, s) ∈ ∂U × (0, τ ],

w(x, 0) = g(x) x ∈ U,

This technique of reducing a uniqueness question to a question on the existence of an

adjoint problem is called Holmgren’s method. When U is a one dimensional interval

we have proved that this IBVP always has a solution for any g ∈ C(U), thus we have

proved uniqueness to the IBVP for the heat equation by the Holmgren’s method for

this case.

(6.2) can also be used to prove uniqueness of solution of the Cauchy problem for

the heat equation on Rn× (0, T ] among the class of functions with controlled growth.

Theorem 6.1. Suppose that (∂t − ∆x)u(x, t) = 0 on Rn × (0, T ], and there exists

C > 0 such that |u(x, t)| + |∇u(x, t)| ≤ Cexp(a|x|
2

4T
) for some 0 < a < 1 and all

(x, t) ∈ Rn × (0, T ]. Then for all X ∈ Rn and 0 < τ ≤ T ,

u(X, τ) =

∫
Rn
u(x, 0)K(X − x, τ) dx. (6.4)

In particular, if u(x, 0) ≡ 0, then u(x, t) = 0 in Rn × (0, T ].

This is proved by applying (6.2) with v(x, t) = K(X−x, τ + ε− t) for ε > 0 small,

on increasingly large domains of the form BR × [0, τ ], and by sending ε ↘ 0. This

representation and its consequence of uniqueness do not necessarily hold if we do not

impose the growth restrictions; the first example of non-uniqueness was due to A. N.

Tikhonov.

Exercises

Exercise 6.1.1. Supply details for the proof outlined above. Also, modify v(x, t) =

K(X − x, τ + ε − t) in the suggested proof into v(x, t) = K(X − x, τ + ε − t)ηR(x),

where ηR(x) is a smooth cut-off function supported in BR and ηR(x) ≡ 1 in BR/2.

This will remove the restriction on the growth of |∇u(x, t)|.
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Exercise 6.1.2. Suppose that f(x, t) is bounded and measurable on Rn×[0, T ]. Prove

that
∫ T

0

∫
Rn f(x, t)K(X − x, T + ε− t) dxdt→

∫ T
0

∫
Rn f(x, t)K(X − x, T − t) dxdt as

ε↘ 0.

Exercise 6.1.3. This exercise uses (6.1) to establish a mean value property for any

solution u(x, t) to (∂t −∆x)u(x, t) = 0. For any a > 0, consider the set

E(X,T );a = {(x, t) : K(X − x, T − t) ≥ a},

which includes (X,T ) as a boundary point. Integrate (6.1), with v(x, t) = K(X −
x, T − t)− a over E(X,T );a ∩ {t ≤ T − ε} for ε > 0 small, then let ε→ 0 to establish

u(X,T )

=−
∫
∂E(X,T );a

[u v nt + unx · ∇xv − v nx · ∇xu] dσ(x, t),

where (nt(x, t),nx(x, t)) is the exterior unit normal to ∂E(X,T );a at (x, t), thus is the

unit vector in the direction of−(Kt(X−x, T−t),∇xK(X−x, T−t)). Using v(x, t) = 0

for (x, t) ∈ ∂E(X,T );a, and

−nx(x, t)∇xv(x, t) =
|∇xK(X − x, T − t)|2√

Kt(X − x, T − t)2 + |∇xK(X − x, T − t)|2

=

|X−x|2
|T−t|2 K(X − x, T − t)2

4
√
Kt(X − x, T − t)2 + |∇xK(X − x, T − t)|2

to prove the mean value property

u(X,T ) =

∫
∂E(X,T );a

u(x, t)

|X−x|2
|T−t|2 a

2

4
√
Kt(X − x, T − t)2 + |∇xK(X − x, T − t)|2

dσ(x, t).

This can be used easily to prove the strong maximum principle for a solution of

(∂t − ∆x)u(x, t) = 0, namely, if u(X,T ) ≥ u(x, t) for all (x, t) ∈ ∂E(X,T );a then

u(X,T ) = u(x, t) for all (x, t) ∈ ∂E(X,T );a. Since E(X,T );a can be foliated by the level

sets ∂E(X,T );a′ for a′ ≥ a, using the co-area formula to the foliation by the level sets

{K(X − x, T − t) = a′}, we get a cleaner form of the mean value property∫∫
E(X,T );a

u(x, t)
|X − x|2

|T − t|2
dx dt

=

∫ ∞
a

∫
E(X,T );a′

u(x, t)

|X−x|2
|T−t|2√

Kt(X − x, T − t)2 + |∇xK(X − x, T − t)|2
dσ(x, t) da′

=

∫ ∞
a

4u(X,T )/a′2 da′

=4u(X,T )/a.
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6.2 Definition of Adjoint/Transpose Operators

I hope that the above discussions illustrate the usefulness of the notion of adjoint/transpose

operator and fundamental solutions. We now extend these notions to more general

linear differential operators. A linear differential operator P (∂x) is defined in terms

of a polynomial of degree m whose coefficients are (sufficiently regular) functions of

x:

P (∂x) =
m∑
|α|=0

aα(x)∂αx ,

where we assume that at any x there exists some α∗ with |α∗| = m such that aα∗(x) 6=
0. m is called the order of the operator P (∂x).

To establish a relation for P (∂x) similar to (6.2), we would like to find a lin-

ear differential operator P ′(∂x), called transpose of P (∂x), such that for any pair of

sufficiently smooth functions u(x) and v(x), [P (∂x)u(x)] v(x)−u(x)P ′(∂x)v(x) is a di-

vergence of a vector field which is built in terms of u(x) and v(x) and their derivatives

up to order m− 1, and bilinear in u and v:

[P (∂x)u(x)] v(x)− u(x)P ′(∂x)v(x) =
n∑
a=1

∂xa (Ba[u, v]) . (6.5)

It turns out that P ′(∂x)v(x) =
∑m
|α|=0(−1)|α|∂αx (aα(x)v(x)).

Example 6.1. For P1 = ∆x =
∑n

a=1 ∂
2
xa , P

′
1 =

∑n
a=1 ∂

2
xa = P1, and

∆xu(x) · v(x)− u(x) ·∆xv(x) =
n∑
a=1

∂xa (uxa(x)v(x)− u(x)vxa(x)) .

For P2 = ∆x +
∑n

a=1 ba(x)∂xa , P
′
2 = ∆x −

∑n
a=1 ∂xa (ba(x)·), and

[P2u(x)] · v(x)− u(x) · P ′2v(x) =
n∑
a=1

∂xa [uxa(x)v(x)− u(x)vxa(x) + ba(x)u(x)v(x)] .

For P3 = ∂t −∆x, P
′
3 = −∂t −∆x, and (6.1) holds.

For P4 = ∂2
t + a(x, t)∂t + b(x, t)∂2

tx − ∂2
x, we have

P ′4[v] = ∂2
t v(x, t)− ∂t[a(x, t)v(x, t)] + ∂2

tx[b(x, t)v(x, t)]− ∂2
xv(x, t).
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This follows from

v(x, t)∂2
t u(x, t) =∂t[v(x, t)∂t u(x, t) ]− ∂tv(x, t)∂t u(x, t)

=∂t[v(x, t)∂t u(x, t) ]− ∂t[∂tv(x, t) u(x, t) ] + ∂2
t v(x, t) u(x, t) ,

v(x, t)a(x, t)∂t u(x, t) =∂t[a(x, t)v(x, t) u(x, t) ]− ∂t[a(x, t)v(x, t)] u(x, t) ,

v(x, t)b(x, t)∂2
tx u(x, t) =∂x[v(x, t)b(x, t)∂t u(x, t) ]− ∂x[v(x, t)b(x, t)]∂t u(x, t)

=∂x[v(x, t)b(x, t)∂t u(x, t) ]− ∂t{∂x[v(x, t)b(x, t)] u(x, t) }

+ ∂xt[v(x, t)b(x, t)] u(x, t)

v(x, t)∂2
x u(x, t) =∂x[v(x, t)∂x u(x, t) − u(x, t) ∂xv(x, t)] + u(x, t) ∂2

xv(x, t),

so we see that

v(x, t)P4[ u(x, t) ]− u(x, t) P ′4[v(x, t)]

=∂t[v(x, t)∂t u(x, t) − ∂tv(x, t) u(x, t) + a(x, t)v(x, t) u(x, t) − ∂x[v(x, t)b(x, t)] u(x, t) ]

+ ∂x[v(x, t)b(x, t)∂t u(x, t) − v(x, t)∂x u(x, t) + u(x, t) ∂xv(x, t)].

The bilinear form B[u, v] here looks complicated, but as we will see later, we often

pay attention to the terms in B[u, v] which do not involve differentiation in u(x, t).

Remark 6.2. We have confined ourselves to differential operators with real coeffi-

cients acting on real valued functions and considered the transpose of a differential

operator in the context of treating the linear paring
∫
P [u]v dx as a linear functional

on u (or v). In some context, there is a need to use a specific inner product (or

Hermitian product) structure of the function space (using complex valued functions

in the latter context). In such a setting the transpose should be modified to satisfy

{P (∂x)u(x)} v(x)− u(x)P ∗(∂x)v(x) =
n∑
a=1

∂xa (Ba[u, v]) .

where P ∗v(x) = P ′(v̄(x)) and P ∗ is called the adjoint of P . For operators with real

coefficients they are the same.

For example, for P2 = ∆x +
∑n

a=1 ba(x)∂xa , where ba(x) may be complex valued,

[P2u(x)] · v(x)− u(x)

{
∆xv(x)−

n∑
a=1

∂xa

(
ba(x)v(x)

)}

=
n∑
a=1

∂xa

[
uxa(x)v(x)− u(x)vxa(x) + ba(x)u(x)v(x)

]
.
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So P ∗2 v(x) = ∆xv(x)−
∑n

a=1 ∂xa

(
ba(x)v(x)

)
is the adjoint of P , while the transpose

of P2 is simply given by P ′2v(x) := ∆xv(x)−
∑n

a=1 ∂xa (ba(x)v(x)), which satisfies

{P2(∂x)u(x)} v(x)− u(x)P ′2(∂x)v(x) =
n∑
a=1

∂xa (Ba[u, v]) .

For P5 = i d
dx

,[(
i
d

dx

)
u(x)

]
v(x)− u(x)

(
i
d

dx

)
v(x) = i

d

dx

(
u(x)v(x)

)
,

so P ∗5 = i d
dx

= P5, while the transpose of P5 will be −i d
dx

.

The purpose of (6.5) is to establish its integral consequence, namely,∫
Rn

[P (∂x)u(x)] v(x) dx =

∫
Rn
u(x)P ′(∂x)v(x) dx

when at one of u(x) or v(x) has compact support.

For the Fourier transform operator F [u](ξ) = (2π)−n/2
∫
Rn u(x)e−ix·ξ dx, using∫

Rn

(∫
Rn
u(x)e−ix·ξ dx

)
v(ξ) dξ =

∫
Rn
u(x)

(∫
Rn
v(ξ)e−ix·ξ dξ

)
dx

we see that F ′ = F , while F∗ = F , namely,

F∗[u](ξ) = (2π)−n/2
∫
Rn
u(x)eix·ξ dx,

which is the inverse Fourier transform of u.

A proper discussion of the spectrum theory of a linear operator would need to

work with a Hermitian product of the function space involving complex scaler field

and complex conjugate.

We already discussed the notion of fundamental solutions for the Laplace and heat

operators. The same consideration applies to a general linear differential operator.

There are often two perspectives:

(I). Represent u(x) in terms of an integral operator of the form
∫
F (y;x)P (∂y)[u(y)] dy

and some boundary integrals—for u(x) ∈ C∞c (Rn), the boundary integrals will

be absent so we expect u(x) =
∫
Rn F (y;x)P (∂y)[u(y)] dy.

This is usually used to study the regularity of u(x) in terms of that of P (∂y)[u(y)].
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(II). Find a function (more properly a distribution) E(x; y) such that

P (∂x)

∫
Rn
E(x; y)f(y) dy = f(x), at any x, at least for f ∈ C∞c (Rn).

In other words u(x) :=
∫
Rn E(x; y)f(y) dy provides a solution to P (∂x)u(x) =

f(x).

The proper formulation of (I) also involves the notion of distribution. The idea is

that if for any x ∈ U , one can find a family vε(y) ∈ Cm(U) such that P ′(∂y)vε(y) =

ηε(y), where the family ηε(y) ∈ C∞c (U) is an approximation of identity (at x) in the

sense that

lim
ε→0

∫
U

u(y)ηε(y) dy = u(x) for any u ∈ C(U),

and if one assumes that the family vε(y) → F (y;x) in appropriate sense, then inte-

grating (6.5) for u ∈ C∞c (U), vε:∫
U

[P (∂y)u(y)] vε(y) dy =

∫
U

u(y)P ′(∂y)vε(y) dy,

and taking the limit as ε→ 0, one obtains the representation in (I). Here, we assumed

u ∈ C∞c (U) for convenience of discussion to avoid dealing with the boundary integrals.

We next give a brief description of the language of distribution to put our discus-

sion on a firmer ground.

6.3 A Brief Introduction of Distribution∗

We have used an approximation of identity in several instances, where a family of C∞

(or C(U)) functions ηε(y) converges to a limiting object not in a norm, but considered

as a continuous linear functional on Cc(U) 3 u 7→
∫
u(y)ηε dy → u(x) ∈ R as ε → 0.

This notion of convergence produces objects that form the space of distributions.

6.3.1 Definition of Distribution

The spaces C∞c (U), or C∞(U), or C(U) are test function spaces. We often choose

to work with E (U) := C∞(U) or D(U) := C∞c (U). E (U) is a complete metric space

with the metric

ρE (U)(φ, ψ) =
∞∑
l=1

1

2l
pl(φ− ψ)

1 + pl(φ− ψ)
,

∗The material of this section is only used in a limited fashion in the remaining sections of this

chapter; a student can work through the remaining part of these notes without a systematic mastery

of the material of this section.
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where we choose a sequence of increasing compact subdomains K1 ⊂ K2 ⊂ · · · ⊂ U

exhausting U : U = ∪∞l=1Kl, and for any m ∈ Z≥0 and compact K ⊂ U ,

pm,K(φ) =
∑
|α|≤m

sup
x∈K
|∂αφ(x)|, pl := pl,Kl .

A linear functional l on E (U) is continuous if the set {φ ∈ E (U) : |〈l, φ〉| < 1}
contains an open neighborhood of 0 in E (U) of the form {φ ∈ E (U) : pm,K(φ) < δ} for

somem ∈ Z≥0, compactK ⊂ U , and δ > 0. Then for any φ in E (U) with pm,K(φ) 6= 0,

and 0 < δ′ < δ, the function g = δ′φ/pm,K(φ) ∈ {φ ∈ E (U) : pm,K(φ) < δ}, so

|〈l, g〉| < 1, which then implies |〈l, φ〉| < (δ′)−1pm,K(φ).

Sending δ′ → δ and denoting C = (δ)−1, we obtain

|〈l, φ〉| ≤ Cpm,K(φ).

If pm,K(φ) = 0, then for any M > 0, pm,K(Mφ) = 0, so |〈l,Mφ〉| < 1 for any

M > 0, which implies that |〈l, φ〉| = 0 for such a φ. Thus we obtain the following

characterization of a continuous linear functional l on E (U).

Theorem 6.2. Suppose that l is a continuous linear functional l on E (U). Then

there exist some m ∈ Z≥0, compact K ⊂ U , and C > 0 such that for all φ ∈ E (U),

|〈l, φ〉| ≤ Cpm,K(φ). (6.6)

The set of all continuous linear functionals on E (U) is denoted as E ′(U).

A sequence of continuous linear functionals {lk} on E (U) is said to converge if for

any φ ∈ E (U), limk→∞〈lk, φ〉 exists. Namely, the convergence in E ′(U) is the notion

of weak-* convergence.

Using the completeness of E (U) under the metric ρE (U) and uniform boundedness

principle, one can prove that if {lk} converges, then there exist m ∈ Z≥0, compact

K ⊂ U , and C > 0, independent of k, such that (6.6) holds for l = lk for all k; as a

result,

〈l, φ〉 := lim
k→∞
〈lk, φ〉

defines an element in E ′(U).

There is a need to consider continuous linear functionals on D(U) ⊂ E (U). Here

we don’t use the topology induced by ρE (U) on D(U), as D(U) is not complete in

this metric. Instead, we use the following notion of sequential convergence in D(U).
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For any compact subdomain K ⊂ U , denote by D(K) the subspace of functions φ in

D(U) whose support is a subset of K.

A sequence of functions {φk} ⊂ D(U) is said to converge in D(U) if there exists

some compact set K ⊂ U such that φk ∈ D(K) and converges in the metric ρE (K).

A linear functional l on D(U) is said to be continuous if for any sequence of

functions {φk} converging to φ in D(U), we have 〈l, φk〉 → 〈l, φ〉 as k → ∞. A

continuous linear functional on D(U) is called a distribution on U . The set of all

continuous linear functionals on D(U) is denoted as D ′(U). Note that E ′(U) ⊂ D ′(U).

Similar to Theorem 6.2, we have

Theorem 6.3. Given any continuous linear functional l ∈ D ′(U), then for any com-

pact set K ⊂ U , there exists m = m(l,K) ∈ Z≥0 and C = C(l,K) such that (6.6)

holds for all φ ∈ D(K).

Note that, here, K is not an attribute of l but needs to be chosen as a compact

subset of U first, the inequality (6.6) is for φ ∈ D(K), and the constants m and C

generally depend on K.

A sequence of distributions {lk} ⊂ D ′(U) is said to converge if for any φ ∈ D(U),

limk→∞〈lk, φ〉 exists. In such a case, for any compact K ⊂ U , there exist m = m(K) ∈
Z≥0, and C = C(K) > 0, independent of k, such that (6.6) holds for l = lk for all k

and all φ ∈ D(K), and

〈l, φ〉 := lim
k→∞
〈lk, φ〉

defines an element in D ′(U).

Any function f ∈ L1
local(U) defines an element of D ′(U) by

〈f, φ〉 :=

∫
U

f(x)φ(x) dx.

This definition does not place any growth restriction on f . For example, ex
2

defines

a distribution on R by 〈ex2
, φ〉 =

∫
R e

x2
φ(x) dx for φ ∈ D(R).

The inclusion relations

D(U) ⊂ E (U) ⊂ C(U) ⊂ L1
local(U)

are not just set-theoretic; convergence in each implies convergence in the subsequent

one. Using these relations, any function in the above function spaces naturally defines

an element of D ′(U); and if {fk} converges in one of the spaces, {fk} also converges

as elements of D ′(U). Note, however, a sequence of functions in any of these function
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spaces may not converge in these function spaces but converge in D ′(U) to a limit!

Note also that a function in L1
local(U) may not define an element in E ′(U).

In fact, any Radon measure µ on U defines an element of D ′(U) by

〈µ, φ〉 :=

∫
U

φ(x) dµ(x) for φ ∈ D(U).

The simplest such a distribution is the Dirac distribution δ(x − a) for any a ∈ U

defined by

〈δ(x− a), φ〉 := φ(a), for φ ∈ D(U).

Another simple example of such a distribution is the arclength measure along any

differential curve Γ ⊂ U whose length in any compact subset of U is finite.

Since many of the distributions that we commonly encounter arise from an element

in L1
local(U) or a Radon measure µ on U , we often abuse notation and write the pairing

between a distribution 〈f, φ〉 or 〈µ, φ〉 in the form of an integral.

The notion of support of a function extends to a distribution naturally. A dis-

tribution l ∈ D ′(U) is equal to 0 on an open subset V ⊂ U , if 〈l, φ〉 = 0 for any

φ ∈ D(V ). Using partition of unity it is routine to prove that if l = 0 on a collection

of Vα ⊂ U of open subsets of U , then l = 0 on ∪αVα. This leads to the notion of

support of l as the complement of the open set in which l = 0:

supp l := U \ ∪αVα, where l = 0 in Vα ⊂ U.

The support of δ(x − a) is simply {a}. For any l ∈ E ′(U), using (6.6) in Theo-

rem 6.2 for any φ ∈ D(U \K), we see that l = 0 on U \K. Thus

Corollary 6.4. Every l ∈ E ′(U) has a compact support. In other words, E ′(U)

consists of those distributions in D ′(U) with compact support.

The notion of singular support of a distribution is defined as the complement

of the union of open sets Vα in which its restriction as an element of D ′(Vα) can be

identified as a distribution induced by some element in E (Vα). The Heaviside function

H, defined as

H(x) =

1 if x ≥ 0,

0 if x < 0,

is a locally integrable function; as a distribution, its support is [0,∞) and its singular

support is {0}.

262



6.3. A BRIEF INTRODUCTION OF DISTRIBUTION

6.3.2 Operations On and Between Distributions

A most basic operation on distributions is differentiation. For any l ∈ D ′(U) and any

i, 1 ≤ i ≤ n, we define a distribution ∂xil by

〈∂xil, φ〉 := −〈l, ∂xiφ〉 for φ ∈ D(U). (6.7)

When l is given by a continuously differentiable function in U , this equality holds

in the traditional sense by integration-by-parts, but φ having compact support in U

plays a role here. This is part of the reason it is easier to work with D(U) as the

space of test functions.

A most convenient feature of this operation is that any distribution can be differen-

tiated any number of times. Thus for any distribution l ∈ D ′(U) and any multi-index

α, ∂αl is defined. Note that if a sequence of distributions lk → l in D ′(U), then for

any multi-index α, ∂αlk → ∂αl in D ′(U).

Example 6.2. ln |x| defines a distribution in D(R). Its derivative satisfies∫
R

(∂ ln |x|)φ(x) dx = −
∫
R
(ln |x|) φ′(x) dx.

We can integrate by parts in the second integral. However, due to the behavior of

ln |x| near x = 0, only specific handling of the boundary terms from the integration

by parts can those terms be properly accounted for. More specifically, if we take

symmetric approximation in the improper integral
∫
R ln |x|φ′(x) dx as follows,∫

R
(ln |x|) φ′(x) dx = lim

ε↘0

∫
|x|>ε

(ln |x|) φ′(x) dx = lim
ε↘0

{
(φ(−ε)− φ(ε)) ln ε−

∫
|x|>ε

1

x
φ(x) dx

}
we would get ∫

R
(∂ ln |x|)φ(x) dx = lim

ε↘0

∫
|x|>ε

1

x
φ(x) dx.

This limit is called the principal value of the integral of 1
x
φ(x) over R, and is usually

denoted as PV
∫
R

1
x
φ(x) dx.

In addition to the vector space structure of D ′(U), there is also multiplication

between any η ∈ E (U) and any distribution l ∈ D ′(U) by

〈ηl, φ〉 := 〈l, φη〉 for φ ∈ D(U).

For any l ∈ D ′(U) and any compact subset K of U , (6.6) involves only the pm,K

norm of functions η ∈ D(K), which allows 〈l, φ〉 to extend to Cm
c (K). Then for any
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η ∈ Cm(K), ηl also is well defined as a distribution on K. If l ∈ E ′(U), then the m

and K are attributes of l, which allow 〈l, φ〉 to extend to Cm
c (U) and allow ηl to be

defined for any η ∈ Cm(U).

If l, L ∈ D ′(U) are such that L = ηl for some η ∈ E (U) and η never vanishes, then

l = η−1L. This no longer holds if η vanishes somewhere. For example, xδ(x) = 0 in

D ′(R), yet δ 6= 0 in D ′(R).

The product rule of differentiation holds for the multiplication between an η ∈
E (U) and a distribution l ∈ D ′(U). However, there is no multiplication between two

arbitrary distributions in D ′(U).

In fact, the above two operations are examples of a more general operation. Sup-

pose that T : D(U) 7→ D(U) is linear and continuous in the sense that if {φk} ⊂ D(U)

converges in D(U), then {T (φk)} also converges in D(U); furthermore, that T has an

transpose T ′ : D(U) 7→ D(U) defined via∫
U

T ′(φ)ψ dx =

∫
U

φT (ψ) dx for all φ, ψ ∈ D(U),

and that T ′ is also continuous in the same sense. Then for any l ∈ D ′(U), we define

〈T (l), φ〉 = 〈l, T ′(φ)〉 any φ ∈ D(U).

We verify easily that this T (l) ∈ D ′(U). This T : D ′(U) 7→ D ′(U) is considered an

extension of T : D(U) 7→ D(U).

Example 6.3. (i) When we take T (φ) = ∂φ, we find that T ′(φ) = −∂φ = −T (φ),

which gives rise to the operation ∂l on D ′(U).

(ii) For any η ∈ E (U), we take T (φ) = ηφ, then T ′(φ) = ηφ = T (φ), which gives

rise to the operation ηl on D ′(U).

(iii) When U = Rn, and A is an invertible n×n matrix, TA(φ)(x) =
√
| detA|φ(Ax),

then T ′A = TA−1 , so we can define TA[l] for any l ∈ D ′(Rn) via

〈TA[l], φ〉 = 〈l, TA−1φ〉.

For example, when A = λI for some λ > 0, TA(φ) = λn/2φ(λx), so for l = δ(x),

we get TA(δ) = λn/2δ(λx) = λ−n/2δ(x), which implies λnδ(λx) = δ(x).

(iv) When U = Rn, and a ∈ Rn, T (φ)(x) = φ(x−a), then T ′(φ)(x) = φ(x+a), and

T (l) is then well defined, and is usually denoted as l(x− a). 〈l(x− a), φ(x)〉 =

〈l(x), φ(x + a)〉.
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(v) For any η ∈ D(Rn), the convolution with η

T (φ)(x) =

∫
Rn
φ(x− y)η(y) dy =

∫
Rn
φ(y)η(x− y) dy

defines a continuous linear map from D(Rn) to D(Rn), with a continuous linear

transpose

T ′(φ)(x) =

∫
Rn
φ(y)η(y − x) dy,

namely, T ′(φ) is convolution with x 7→ η(−x). This T (φ) is usually denoted as

η ∗ φ. We denote T ′(φ) here by η̆ ∗ φ. Thus we can define, for any l ∈ D ′(Rn),

〈η ∗ l, φ〉 = 〈l, T ′(φ)〉 = 〈l, η̆ ∗ φ〉.

Note that using the continuity of l, we have

〈l, η̆ ∗ φ〉 = 〈l,
∫
Rn
φ(y)η(y − x) dy〉 =

∫
Rn
φ(y)〈l, η(y − x)〉 dy,

and λ(y) := 〈l, η(y − x)〉 is in E (Rn), with

∂yiλ(y) = 〈l, ∂yiη(y − x)〉 = 〈l,−∂xi [η(y − x)]〉 = 〈∂xil, η(y − x)〉,

so we can identify η ∗ l with the C∞(Rn) function 〈l, η(y − x)〉.

If we choose a family of approximation of identity ηε ∈ D(Rn), we find that

ηε ∗ l→ l in D ′(Rn). Thus any distribution l ∈ D ′(Rn) can be approximated in

the sense of distribution by C∞(Rn) functions.

Exercise 6.3.1. Prove that for any l ∈ D ′(U), η ∈ D(U), λ(y) := 〈l, η(y − x)〉 is in

E (Rn). Hint: Fix any y and 1 ≤ j ≤ n, prove that (η(y + hej − x)− η(y − x)) /h→
∂yjη(y − x) in D(U) as h→ 0.

Exercise 6.3.2. For any φ ∈ D(Rn), suppose that the support of φ is contained in the

compact box U and that {Uj} is a partition of U , yj ∈ Uj. Prove that
∑

j φ(yj)η(yj−
x) vol(Uj)→

∫
Rn φ(y)η(y−x) dy in D(Rn), therefore

∑
j φ(yj)〈l, η(yj−x)〉 vol(Uj)→

〈l,
∫
Rn φ(y)η(y − x) dy〉.

Exercise 6.3.3. Suppose that l ∈ D ′(R) satisfies ∂xl = 0. Prove that there exists

some constant c such that 〈l, φ〉 =
∫
R cφ(x) dx.

Exercise 6.3.4. Prove that

lim
ε↘0

∫
R

1

x+ iε
φ(x) dx = P. V.

∫
R

1

x
φ(x) dx− πiφ(0)
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for any φ ∈ D(R). This limit in D ′(R) is usually denoted as
1

x+ i0
. Define

〈 1

x− i0
, φ〉 = lim

ε↘0

∫
R

1

x− iε
φ(x) dx.

Identify
1

x− i0
in terms of P. V.

(
1

x

)
and δ(x).

Exercise 6.3.5. Define

〈l, φ〉 =

∫
Rn

φ(x)

|x|n−2
dx for all φ ∈ D(Rn).

Show that, for n ≥ 3, ∆l = −(n− 2)|Sn−1|δ(x), and

Φ(x) := 〈l(· − x), φ〉 =

∫
Rn

φ(y)

|x− y|n−2
dy

satisfies ∆Φ(x) = −(n− 2)|Sn−1|φ(x) in the sense of distribution, namely,

〈Φ(x),∆ψ(x)〉 = −(n− 2)|Sn−1|
∫
Rn
φ(x)ψ(x) dx for all φ, ψ ∈ D(Rn).

6.4 Definition and Construction of A Fundamental

Solution

We now give the formal definition of a fundamental solution.

Definition. A distribution E(x;ξξξ) in x parametrized by ξξξ is called a fundamental

solution of the differential operator P (∂x) with pole at ξξξ if P (∂x)E(x;ξξξ) = δ(x − ξξξ)
in the sense of distribution, namely, for any η ∈ C∞c (Rn),

η(ξξξ) = 〈E(x;ξξξ), P ′(∂x)η(x)〉.

When we can identify E(x;ξξξ) as a locally integrable function in x, we can write

η(ξξξ) = 〈E(x;ξξξ), P ′(∂x)η(x)〉 =

∫
Rn
E(x;ξξξ)P ′(∂x)η(x) dx. (6.8)

Note that (6.8) represents a smooth function η (with compact support) in terms

of an integral operator acting on P ′(∂x)η(x), and the integral operator plays the role

of a left inverse to P ′(∂x). Likewise, if one would like to represent a smooth function
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u(x) (with compact support) in terms of an integral operator acting on P (∂x)u(x) in

the form

u(ξξξ) = 〈E ′(x;ξξξ), P (∂x)u(x)〉 =

∫
Rn
E ′(x;ξξξ)P (∂x)u(x) dx, (6.9)

for some distribution E ′(x;ξξξ) (may think of it for now as locally integrable in x ∈ Rn),

then E ′(x;ξξξ) is a fundamental solution of P ′ in the sense defined above.

In other words, a left inverse for P (∂x) is constructed using an integral operator

involving a fundamental solution of P ′; while a left inverse for P ′(∂x) is constructed

using an integral operator involving a fundamental solution of P .

The original motivation for defining a fundamental solution is to use it to produce

a right inverse to P in the sense that, under appropriate conditions on a given function

f(ξξξ),
∫
E(x;ξξξ)f(ξξξ)dξξξ—when it makes sense—would satisfy P (∂x)

[∫
E(x;ξξξ)f(ξξξ)dξξξ

]
=

f(x). On a formal level, this appears to be always valid if P (∂x)E(x;ξξξ) = δ(x − ξξξ);
but its actual verification in the classical sense often requires additional work, and

appropriate regularity condition on f(ξξξ)—even if one can justify passing the differ-

ential operator P (∂x) into the integral
∫
E(x;ξξξ)f(ξξξ)dξξξ, (6.8) asks for a function f of

x, not ξξξ.

First, a brief discussion on the meaning of
∫
E(x;ξξξ)f(ξξξ)dξξξ. It is meant as the

limit in the distribution sense of a finite Riemann sum of distributions. Take any

η ∈ D(U), then for any finite number of ξξξj, vj,

〈
∑
j

E(x;ξξξj)f(ξξξj)vj, η〉 =
∑
j

〈E(x;ξξξj), η〉f(ξξξj)vj

makes sense. If the integral
∫
〈E(x;ξξξ), η〉f(ξξξ) dξξξ is defined for any η ∈ D(U), we say

that
∫
E(x;ξξξ)f(ξξξ)dξξξ is defined, and

〈
∫
E(x;ξξξ)f(ξξξ) dξξξ, η〉 =

∫
〈E(x;ξξξ), η〉f(ξξξ) dξξξ.

In such a situation we can verify that P (∂x)
[∫
E(x;ξξξ)f(ξξξ)dξξξ

]
= f(x) holds in the

sense of distribution as follows. Take f, η ∈ D(U),
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〈P (∂x)

[∫
E(x;ξξξ)f(ξξξ)dξξξ

]
, η〉

=〈
∫
E(x;ξξξ)f(ξξξ)dξξξ, P ′(∂x)η〉

=

∫
〈E(x;ξξξ), P ′(∂x)η〉f(ξξξ)dξξξ

=

∫
〈P (∂x)E(x;ξξξ), η〉f(ξξξ)dξξξ

=

∫
η(ξξξ)f(ξξξ)dξξξ,

from which it follows that P (∂x)
[∫
E(x;ξξξ)f(ξξξ)dξξξ

]
= f(x) in the sense of distribution.

Note also that when constructing a right inverse to P (∂x), we construct an in-

tegral operator using E(x;ξξξ) and doing superposition (integration) against the pole

parameter ξξξ, while when constructing a left inverse to P (∂x), we construct an integral

operator using E ′(x;ξξξ) (a fundamental solution of P ′(∂x)) and doing superposition

(integration) against x.

Note that if P (∂x) is an mth order differential operator and u is a Cm(Rn) solution

of P (∂x)u = 0, and η ∈ Cm
c (Rn), then by (6.5)∫

Rn
u(x)P ′(∂x)η(x) dx = 0,

so (6.8) can’t hold if we use such a u(x) as E(x;ξξξ) in (6.8). Thus a fundamental

solution of P can’t be in Cm, and that if E(x;ξξξ) is a fundamental solution for P (∂x),

satisfying (6.8), so will E(x;ξξξ) + u(x). So when P (∂x) has a fundamental solution,

it may not be unique. Additional considerations in choosing a fundamental solution

may include causality for evolution equations—this would be reflected in the support

of a fundamental solution.

We now relate the notion of fundamental solution to the setting of (I) and (II)

on page 258. Any F (ξξξ; x) for (I) satisfies P ′(∂ξξξ)F (ξξξ; x) = 0 for ξξξ in any open set

not containing x in the sense of distribution and usually has some kind of singu-

larity at ξξξ = x. Take any ξξξ∗ 6= x and ε > 0 small so that x 6∈ Bε(ξξξ
∗), then if

we apply (6.5) with v(ξξξ) = F (ξξξ; x) and u(ξξξ) ∈ C∞c (Bε(ξξξ
∗)), we get 0 = u(x) =∫

Bε(ξξξ∗)
P ′(∂ξξξ)F (ξξξ; x)u(ξξξ) dξξξ, which implies that P ′(∂ξξξ)F (ξξξ; x) = 0 for ξξξ ∈ Bε(ξξξ

∗) in

the sense of distribution. Note that if F (ξξξ; x) is smooth in ξξξ for ξξξ in some neighbor-

hood of ξξξ∗ 6= x, then it satisfies P ′(∂ξξξ)F (ξξξ; x) = 0 in the classical sense for ξξξ in this

neighborhood.

Next, suppose that F (ξξξ; x) is smooth in ξξξ for ξξξ ∈ Rn \Bε(x) for some small ε > 0,

then, if we apply (6.5) with v(ξξξ) = F (ξξξ; x) and u(ξξξ) ∈ C∞c (Rn) over Rn \Bε(x), then
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we should get ∫
Rn\Bε(x)

([P (∂ξξξ)u(ξξξ)]F (ξξξ; x)− u(ξξξ)P ′(∂ξξξ)F (ξξξ; x)) dξξξ

=−
∫
∂Bε(x)

(
n∑
a=1

(Ba[u(ξξξ), F (ξξξ; x)]) νa(ξξξ)

)
dσ(ξξξ).

From this we can see that to accomplish (I), we should choose F (ξξξ; x) such that

P ′(∂ξξξ)F (ξξξ; x) = 0 for ξξξ 6= x,

and

lim
ε→0

∫
∂Bε(x)

(
n∑
a=1

(Ba[u(ξξξ), F (ξξξ; x)]) νa(ξξξ)

)
dσ(ξξξ) = −u(x)

for any u ∈ C∞c (Rn).

The bilinear form Ba[u(ξξξ), F (ξξξ; x)] involves u(ξξξ) and F (ξξξ; x) such that each term

in the summand has their total order of derivatives at most m−1. The consideration

above implies that any boundary integral terms on ∂Bε(x) containing derivatives of

u(ξξξ) would have 0 as their limits as ε→ 0, and by taking u(ξξξ) such that u(ξξξ) ≡ 1 in

a neighborhood of x, we see that
∫
∂Bε(x)

(
∑n

a=1 (Ba[1, F (ξξξ; x)]) νa(ξξξ)) dσ(ξξξ) = −1—

these give conditions on the kind of singular behavior F (ξξξ; x) is allowed to have as

ξξξ → x, just as we did for the Laplace operator.

For (II), for any fixed x, if we take any f such that its support separates from

x, then f(x) = 0, and we get P (∂x)
∫
Rn E(x;ξξξ)f(ξξξ) dξξξ = 0 for such f . This suggests

that P (∂x)E(x;ξξξ) = 0 for x 6= ξξξ.

So in the general situation we need to find F (ξξξ; x) such that P ′(∂ξξξ)F (ξξξ; x) = 0

for x 6= ξξξ for (I), and E(x;ξξξ) such that P (∂x)E(x;ξξξ) = 0 for x 6= ξξξ for (II), both

with some prescribed singular behavior at x = ξξξ. But when P (∂x) has constant

coefficients, we may consider F (ξξξ; x) and E(x;ξξξ) in the form of H(x − ξξξ). Then we

note that

P (∂x)H(x− ξξξ) = P ′(∂ξξξ)H(x− ξξξ),

and can try to construct such an H(x− ξξξ) for both (I) and (II).

The construction of fundamental solutions to a general constant coefficient linear

operator was carried out in the 1950’s using the tool of Fourier transforms. But that

construction does not necessarily give an explicit form of a fundamental solution; and

it would still take considerable effort to extract properties of a fundamental solution

from that construction. We will first illustrate how to construct fundamental solutions

to one dimensional equations, and to our prototype PDEs: the Laplace, the heat, and
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the wave equations — we will make use of the scaling and symmetry of the operators

involved for these situations.

Recall that a fundamental solution E(x;ξξξ) satisfies P (∂x)E(x;ξξξ) = 0 away from

the pole ξξξ in the sense that∫
E(x;ξξξ)P ′(∂x)η(x)dx = 0 if ξξξ /∈ support (η).

In any region of Rn\{ξξξ} where E(x;ξξξ) is Cm in x, this would imply P (∂x)E(x;ξξξ) = 0

in the classical sense there, as Green’s identity would imply
∫
P (∂x)E(x;ξξξ)η(x)dx = 0

for any η ∈ C∞c supported in that region. This is often used in constructing a

fundamental solution.

Let

ΩE = {x ∈ Rn : E(x;ξξξ) can be identified as a Cm function in a neighborhood of x}.

Then Rn \ ΩE is called the singular support of E(x;ξξξ). As will be seen, for the

Laplace and heat equations, the singular support of their fundamental solutions con-

sist of only their pole; while for the wave equation, the singular support of its funda-

mental solutions consists of a cone with the pole as its vertex.

The behavior of E(x;ξξξ) can be characterized as follows when E(x;ξξξ) is known

to be Cm away from ξξξ and is locally integrable: we split the integral in η(ξξξ) =∫
Rn E(x;ξξξ)P ′(∂x)η(x)dx as

∫
|x−ξξξ|>εE(x;ξξξ)P ′(∂x)η(x)dx, plus the integral over Bε(ξξξ),

which → 0 as ε → 0 due to the local integrability assumption of E(x;ξξξ). The first

integral can be treated by Green’s identify, using P (∂x)E(x;ξξξ) = 0 for x 6= ξξξ, and we

get ∫
|x−ξξξ|>ε

E(x;ξξξ)P ′(∂x)η(x)dx = −
∫
|x−ξξξ|=ε

n∑
a=1

νaBa[E(x;ξξξ), η(x)]dσ(x),

where Ba[·, ·] is the bilinear form associated with P , as in (6.5). Thus, in such a

situation, we expect that for any η ∈ Cm
c (Rn),

η(ξξξ) = − lim
ε→0

∫
|x−ξξξ|=ε

n∑
a=1

νaBa[E(x;ξξξ), η(x)]dσ(x).

We can often use this property on test functions (such as η ∈ Cm
c (Rn) with η = 1

near ξξξ) to extract information on E(x;ξξξ) near ξξξ. It should be cautioned, though,

that a fundamental solution may not be everywhere Cm away from its pole, as will

be seen by the fundamental solutions of the wave equation.
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Example 6.4. A fundamental solution E(x; ξ) to the one dimensional operator d
dx
−λ

would satisfy dE(x;ξ)
dx
− λE(x; ξ) = 0 for x 6= ξ in the sense of distribution. It is to

be proved in the exercises that such an E(x; ξ) can be identified with the classical

solution Ceλx for x > ξ and for x < ξ with different choices of C; and the condition
dE(x;ξ)
dx
−λE(x; ξ) = δ(x− ξ) at x = ξ implies that E(x; ξ) has a jump of size 1 across

x = ξ: E(ξ + 0; ξ)− E(ξ − 0; ξ) = 1. If E(ξ − 0; ξ) = C, then the solution is

E(x; ξ) =

(C + 1)eλ(x−ξ) x > ξ,

Ceλ(x−ξ) x ≤ ξ.

If we choose C = 0, we get a fundamental solution E(x; ξ) supported in {x ≥ ξ},
which can be written as H(x−ξ)eλ(x−ξ), with H(·) being the Heaviside function; while

if we choose C = −1, we get a fundamental solution E(x; ξ) supported in {x ≤ ξ},
written as −H(ξ − x)eλ(x−ξ).

Recall that the transpose of d
dx
− λ is − d

dx
− λ:

u(x)(
d

dx
− λ)v(x)− v(x)

(
− d

dx
− λ
)
u(x) =

d

dx
[u(x)v(x)]. (*)

E(x; ξ) can be used to construct a left inverse of − d
dx
− λ: for any u ∈ C1

c (R),

u(ξ) =

〈(
d

dx
− λ
)
E(x; ξ), u(x)

〉
=

〈
E(x; ξ),

(
− d

dx
− λ
)
u(x)

〉
=

∫
R
E(x; ξ)

(
− d

dx
− λ
)
u(x) dx.

For C = 0, the integral reduces to
∫∞
ξ
eλ(x−ξ) (− d

dx
− λ
)
u(x) dx. If λ > 0, then

eλ(x−ξ) grows exponentially in x, and it seems more convenient to choose C = −1 to

get u(ξ) = −
∫ ξ
−∞ e

λ(x−ξ) (− d
dx
− λ
)
u(x) dx.

This can also been seen from exploiting (6.5), and it would allow u not in C1
c (R).

Let’s say we would like to express u(ξ) in terms of an integral operator on
(
− d
dx
− λ
)
u(x).

First take the case that u ∈ C1
c (R). If we choose v = v(x; ξ) such that ( d

dx
−λ)v(x; ξ) =

0 for x < ξ, then integrating (*) from [−∞, ξ], we get

u(ξ)v(ξ) = −
∫ ξ

−∞
v(x)

(
− d

dx
− λ
)
u(x) dx.

Now if we choose v(x; ξ) such that v(ξ; ξ) = −1, then we get

u(ξ) =

∫ ξ

−∞
v(x; ξ)

(
− d

dx
− λ
)
u(x) dx for u ∈ C1

c (R).
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The v(x; ξ) is a fundamental solution of
(
d
dx
− λ
)
, characterized by ( d

dx
−λ)v(x; ξ) = 0

for x < ξ, and with the additional property v(ξ; ξ) = −1 (and implicitly v(x; ξ) = 0

for x > ξ so
∫
R v(x) · · · dx =

∫ ξ
−∞ v(x) · · · dx). The jump discontinuity of v(x; ξ) at

x = ξ is due to ( d
dx
− λ)v(x) = δ(x− ξ).

Such a fundamental solution, with appropriate boundary/initial condition adapted

to the particular BVP/IVP at hand, is usually called a Green’s function.

Suppose that u is not necessarily in C1
c (R) and we would like to express u(ξ) in

terms of an integral operator on
(
− d
dx
− λ
)
u(x) and the initial data of u at 0. Redo

the integration above from, say [0, ξ], we get

u(ξ)v(ξ) = u(0)v(0)−
∫ ξ

0

v(x)

(
− d

dx
− λ
)
u(x) dx.

To construct a left inverse for d
dx
− λ, we use a fundamental solution E ′(x; ξ) for

its transpose − d
dx
− λ, which is given by E(ξ;x) = −H(x− ξ)e−λ(x−ξ). Here we have

chosen one supported in x > ξ. We then get, for u ∈ C1
c (R),

u(ξ) =

∫
R
E ′(x; ξ)

(
d

dx
− λ
)
u(x) dx = −

∫ ∞
ξ

e−λ(x−ξ)
(
d

dx
− λ
)
u(x) dx.

On the other hand, the fundamental solution E(x; ξ) = H(x− ξ)eλ(x−ξ) of d
dx
− λ

gives rise to a right inverse
∫
RE(x; ξ)f(ξ) dξ in the sense that(

d

dx
− λ
)∫

R
E(x; ξ)f(ξ) dξ =

(
d

dx
− λ
)∫ x

−∞
eλ(x−ξ)f(ξ) dξ = f(x)

for any f ∈ C1
c (R) (in fact it suffices here for f ∈ Cc(R)). If we choose to work with

E(x; ξ) = −H(ξ−x)eλ(x−ξ), we get −
∫∞
x
eλ(x−ξ)f(ξ) dξ, which, for λ > 0, would allow

f to have some growth at ∞.

Example 6.5. The last approach in the previous example can be used in formulating

conditions on a fundamental solution to a Cauchy problem. Let’s use a special case of

P4 = ∂2
t + a(x, t)∂t − ∂2

x to illustrate this process. We will start with an even simpler

case: L[u] = ∂2
t u(t) + a(t)∂tu(t) on a function u(t) of one variable. Then the Green’s

identity takes the form

v(t)L[u]− u(t)L′[v(t)] = v(t)[∂2
t u(t) + a(t)∂tu(t)]− u(t)[∂2

t v(t)− ∂t (a(t)v(t))]

= ∂t[v(t)∂tu(t)− u(t)∂tv(t) + a(t)u(t)v(t)].

To construct a solution to the Cauchy problem
L[u(t)] = f(t), t > 0,

u(0) = u0,

u′(0) = u′0,
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we integrate the above Green’s identity from 0 < t < τ to get

[v(t)∂tu(t)− u(t)∂tv(t) + a(t)u(t)v(t)]
∣∣∣
t=τ

=v(0)∂tu(0)− u(0)∂tv(0) + a(0)u(0)v(0) +

∫ τ

0

[v(t)L[u(t)]− uL′[v(t)]] dt.

We see now that if we choose v = v(t; τ) such that −∂tv(t; τ)|t=τ = 1, v(τ ; τ) = 0,

and L′[v(t; τ)] = 0 for 0 < t < τ , we would get

u(τ) = v(0; τ)u′(0)− u(0)∂tv(0; τ) + a(0)u(0)v(0; τ) +

∫ τ

0

v(t; τ)L[u(t)] dt.

In summary, we have reduced the construction of a solution to a (non-homogeneous)

Cauchy problem to the construction of a fundamental solution to the transpose oper-

ator, which solves a homogeneous Cauchy problem with a special initial data —this

is consistent with the the Duhamel principle, as we will see that, treating v(t; τ) as a

function of τ , we have L(∂τ )[v(t; τ)] = 0 for τ > t, and ∂τv(t; τ)|τ=t = 1.

When we generalize this consideration to the Cauchy problem for the partial

differential operator P4 = ∂2
t + a(x, t)∂t − ∂2

x, we integrate the Green’s identity

v(x, t)P [u(x, t)]− u(x, t)P ′[v(x, t)] for 0 < t < τ and x ∈ R (assuming the boundary

terms in x will vanish, which is the case when we work with u(x, t) which vanishes

for large |x|), we would get∫
R
[v(x, t) ∂tu(x, t) − ∂tv(x, t) u(x, t) + a(x, t)v(x, t) u(x, t) ]

∣∣∣
t=τ

dx

=

∫
R
[v(x, 0) ∂tu(x, t) |t=0 − ∂tv(x, t)|t=0 u(x, 0) + a(x, 0)v(x, 0) u(x, 0) ] dx

+

∫ τ

0

∫
R

[
v(x, t)P [ u(x, t) ]− u(x, t) P ′[v(x, t)]

]
dx dt.

We should choose v = v(x, t; ξ, τ) such that P ′[v(x, t; ξ, τ)] = 0, v(x, τ ; ξ, τ) = 0, and∫
R−∂tv(x, t; ξ, τ)|t=τ u(x, τ) dx = u(ξ, τ) . But no regular function−∂tv(x, t; ξ, τ)|t=τ

can satisfy
∫
R−∂tv(x, t; ξ, τ)|t=τ u(x, τ) dx = u(ξ, τ) for all functions u(x, τ) . The

way we handle this is to note that we can construct a family of functions φε(x; ξ) such

that
∫
R φε(x; ξ) u(x, τ) dx→ u(ξ, τ) , as ε→ 0. We then construct vε(x, t; ξ, τ) such

that 
P ′[vε(x, t; ξ, τ)] = 0, for t < τ ,

vε(x, τ ; ξ, τ) = 0,

∂tvε(x, t; ξ, τ)
∣∣∣
t=τ

= −φε(x; ξ).

What remains is to prove that vε(x, t; ξ, τ) has a limit v(x, t; ξ, τ) as ε→ 0, then this

v(x, t; ξ, τ) will be a fundamental solution to the transpose operator.
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Remark 6.3. If we are interested in solving a boundary value problem involving

L[u(t)] = ∂2
t u(t) + a(t)∂tu(t), say,

L[u(t)] = f(t), l > t > 0,

u(0) = given,

u(l) = given,

we would like to choose a fundamental solution which is more adapted to the boundary

value problem here, namely, which would eliminate the dependence on u′(0) and u′(l)

in the integral representation for u(τ) in terms of L[u(t)]. First, we carry out a similar

analysis on [0, τ ], and instead of forcing v(τ ; τ) = 0, we should choose v(0; τ) = 0,

which would leave us with

[v(t; τ)∂tu(t)− u(t)∂tv(t; τ) + a(t)u(t)v(t; τ)]
∣∣∣
t=τ−

=− u(0)∂tv(0; τ) +

∫ τ

0

v(t; τ)L[u(t)] dt.

If we repeat a similar computation on [τ, l], and make sure that L′[v(t; τ)] = 0 for

τ < t < l, and v(l; τ) = 0, we would get

− u(l)∂tv(l; τ)− [v(t; τ)∂tu(t)− u(t)∂tv(t; τ) + a(t)u(t)v(t; τ)]
∣∣∣
t=τ+

=

∫ l

τ

v(t; τ)L[u(t)] dt.

If we can make v(t; τ) be continuous as a function of t, but ∂tv(τ+; τ)−∂tv(τ−; τ) = 1,

then by adding the two equalities, we get

u(τ) = u(l)∂tv(l; τ)− u(0)∂tv(0; τ) +

∫ l

0

v(t; τ)L[u(t)] dt.

In summary, we need some v(t; τ) such that L′[v(t; τ)] = 0 for t 6= τ , v(t; τ) continuous

in t, ∂tv(t; τ)|t=τ+ − ∂tv(t; τ)|t=τ− = 1, and v(0; τ) = v(l; τ) = 0. This gives us a

Green’s function for this boundary value problem. The jump discontinuity in ∂tv(t; τ)

at t = τ implies that L′[v(t; τ)] = δ(t−τ). The existence of such a Green’s function is

not automatically guaranteed, even when a fundamental solution without additional

conditions is known to exist.

Example 6.6. When P = ∂2
t − c2∂2

x is the wave operator in 1-spatial dimension, and

u(x, t) ∈ C2
c (R2), we have, by the d’Alembert’s formula with initial time chosen such
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that both u and ut vanish at the initial time

u(x, t) =
1

2c

∫ t

0

∫ x+c(t−s)

x−c(t−s)

[
∂2
s − c2∂2

y

]
u(y, s) dyds,

which can be written as
∫∫

H(x− y, t− s)
[
∂2
s − c2∂2

y

]
u(y, s) dyds, where

H(x− y, t− s) =

 1
2c

if t > s and |y − x| ≤ c(t− s),

0 otherwise.

So this identifies E ′(y, s;x, t) = H(x − y, t − s) defined above as a fundamental

solution of the transpose of one dimensional wave operator. Note that this fundamen-

tal solution E ′(y, s;x, t) = H(x− y, t− s) is supported in the “backward light cone”

{(y, s) : |y − x| ≤ c(t − s), s ≤ t} and has a jump discontinuity along its boundary;

while, considered as a function of (x, t), H(x− y, t− s) is supported in the “forward

light cone” {(x, t) : |y − x| ≤ c(t− s), t ≥ s}.
H(x− y, t− s) can also be found as a limit of solutions uε(x, t) to

[
∂2
t − c2∂2

x

]
uε(x, t) = 0 t > s,

uε(x, s) = 0,

∂tuε(x, s) = φε(x),

uε(x, t) = 0, t < s,

where φε(x) → δ(x − y) as ε → 0 in the sense of distribution. This is based on the

Duhamel principle for constructing solutions to IVP for [∂2
t − c2∂2

x]u(x, t) = δ(x −
y, t − s). Since for t > s, uε(x, t) = 1

2c

∫ x+c(t−s)
x−c(t−s) φε(z)dz, if we take φε(z) to be

supported in [y − ε, y + ε] with
∫ y+ε

y−ε φε(z) dz = 1, it is now clear that uε(x, t) = 0 if

either x− c(t− s) ≥ y+ ε or x+ c(t− s) ≤ y− ε, and uε(x, t) = 1
2c

if −c(t− s) + ε ≤
x − y ≤ c(t − s) − ε. Thus for any −c(t − s) < x − y < c(t − s), uε(x, t) → 1

2c
, as

ε → 0, and for any x < y − c(t− s) or x > y + c(t− s), uε(x, t) → 0 as ε→ 0. This

at least identifies

E(x, t; y, s) =

 1
2c

t > s,−c(t− s) < x− y < c(t− s),

0 x < y − c(t− s) or x > y + c(t− s) or t < s.

What remains is to determine whether E(x, t; y, s) has any singular behavior as

a distribution along |x− y| = c(t− s), t > s. Since E(x, t; y, s) is constructed as the

limit of uε(x, t), which are uniformly bounded in (x, t) and ε, and converges point

wise to E(x, t; y, s), except not known along |x−y| = c(t−s), t > s, we conclude that

E(x, t; y, s), as a distribution, is defined by the locally integrable function above.
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Remark 6.4. When we work with a fundamental solution of a differential operator

P which has a (well-posed) IVP, we can often construct or identify a fundamental

solution as the limit of solutions to the IVP, in which the highest order Cauchy data

approaches the unit source δ(x − ξ) in the limit, while the lower order Cauchy data

are taken to be zero, as was done above.

Exercises

Exercise 6.4.1. Suppose that d
dx
E(x; ξ) − λE(x; ξ) = δ(x − ξ). Show that the dis-

tribution F (x; ξ) := e−λ(x−ξ)E(x; ξ) satisfies d
dx
F (x; ξ) = δ(x− ξ), and that F (x; ξ) =

H(x− ξ) +C for some constant C, where H(·) is the Heaviside function. Use this to

show that E(x; ξ) = eλ(x−ξ) (H(x− ξ) + C).

Exercise 6.4.2. Suppose that A(x) is an n × n-matrix valued smooth function of

x ∈ R. Let S(x) be the n× n-matrix valued solution to

S ′(x) = A(x)S(x), S(0) = I.

Note that S(x) remains invertible for all x. Consider Rn-valued distribution u(x),

namely, u(x) = (u1(x), · · · , un(x))T, where each uj(x) is a distribution in x. Suppose

that u′(x)−A(x)u(x) = (δ(x), · · · , δ(x))T. Define an Rn-valued distribution v(x) by

the equation u(x) = S(x)v(x). Show that v′(x) = (δ(x), · · · , δ(x))T and use this to

show that u(x) = S(x)
(
c +H(x)(1, · · · , 1)T

)
, where c is some constant vector.

Exercise 6.4.3. Suppose that aj(x), j = 0, · · · , k − 1, are smooth functions of x.

Show that a fundamental solution E(x) of

dk

dxk
E(x) + ak−1(x)

dk−1

dxk−1
E(x) + · · ·+ a0(x)E(x) = δ(x)

can be constructed as S(x)H(x), where S(x) is the solution to
dk

dxk
S(x) + ak−1(x)

dk−1

dxk−1
S(x) + · · ·+ a0(x)S(x) = 0,

dj

dxj
S(0) = 0, j = 0, · · · , k − 2,

dk−1

dxk−1
S(0) = 1.

Exercise 6.4.4. Construct a fundamental solution E(x; ξ) to d2

dx2 ±m2 on R which

lies in S ′(R). Here m is a real parameter. Is such an E(x; ξ) uniquely determined?

Exercise 6.4.5. Construct a fundamental solution E(x; ξ) to the operator d2

dx2 ±m2

on R which is supported on {x : x ≥ ξ}. Is such an E(x; ξ) in S ′(R)?
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Exercise 6.4.6. Consider the differential operator P [u] = u′′(x) + (b(x)u(x))′ on

R, and its transpose P ′[v] = v′′(x) − b(x)v′(x). Follow the instructions to work out

fundamental solutions of P and P ′.

(i). Derive that

E(x; ξ) =

B−1(x)
∫ x
ξ
B(s)ds, if x > ξ,

0, if x ≤ ξ,

is a fundamental solutions of P , where B(x) = exp(
∫ x

b(s)ds). Furthermore,

verify that, if f ∈ Cc(R), then

u(x) =

∫
R
E(x; ξ)f(ξ)dξ

is a solution of P [u](x) = f(x).

(ii). Verify that

E ′(x; ξ) =

B−1(ξ)
∫ ξ
x
B(s)ds, if x < ξ,

0, if x ≥ ξ,

is a fundamental solutions of P ′, where B(x) = exp(
∫ x

b(s)ds). Furthermore,

verify that

u(x) =

∫
R
E ′(y;x)P [u](y) dy.

Hint: you could also try setting P [u](x) = f(x) and deriving u(x) in terms of

an integral operator of f , and then identifying E ′(y;x).

Exercise 6.4.7. This exercise discusses the relation between a fundamental solution

E of P and a fundamental solution E ′ of P ′. Let Fa[u, v] be defined through

P [u](x)v(x)− u(x)P ′[v](x) =
n∑
a=1

∂xa {Fa[u(x), v(x)]} .

Let E(x; y) be a fundamental solution of P with pole at y, and E ′(x; z) be a funda-

mental solution of P ′ with pole at z. Suppose that both are given by functions that

are smooth except at their poles.

(i). Prove that if Ω is a domain with piecewise C1 boundary, and y, z ∈ Ω, then

for any u and v which are sufficiently smooth in a domain which contains the

closure of Ω, we have

u(z) =

∫∫
Ω

E ′(x; z)P [u](x) dx−
∫
∂Ω

n∑
a=1

νa(x)Fa[u(x), E ′(x; z)] dσ(x).

(6.10)
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v(y) =

∫∫
Ω

E(x; y)P ′[v](x) dx +

∫
∂Ω

n∑
a=1

νa(x)Fa[E(x; y); v(x)] dσ(x).

(6.11)

(ii). Given y 6= z ∈ Ω. Take u(x) = E(x; y), and apply (6.10) with B(z, r) replacing

Ω, for r > 0 small enough such that B(y, r) ∩B(z, r) = ∅, prove that

E(z; y) = −
∫
∂B(z,r)

n∑
a=1

νa(x)Fa[E(x; y), E ′(x; z)] dσ(x).

Note also that the integral above is independent of r > 0 for sufficiently small

r. Next, take v(x) = E ′(x; z), and apply (6.11) with B(y, r) replacing Ω, for

sufficiently small r > 0, prove that

E ′(y; z) =

∫
∂B(y,r)

n∑
a=1

νa(x)Fa[E(x; y), E ′(x; z)] dσ(x).

(iii). Prove that if
∫
∂Ω

∑n
a=1 νa(x)Fa[E(x; y), E ′(x; z)] dσ(x) = 0 for y 6= z ∈ Ω, then

E(z; y) = E ′(y; z).

Exercise 6.4.8. Verify that

E(x) =


|x|4−n

2(n−2)(n−4)|Sn−1 if n > 4 or n = 3,

log |x|−1

4|S3| if n = 4,

|x|2 log |x|
8π

if n = 2,

provides a fundamental solution for the bi-Laplace operator ∆2 on Rn.

Exercise 6.4.9. Follow the guidance to find a fundamental solution of

Lu =
∑n

i,j=1 aij∂
2
xixj

u(x) = −δ(x), where A = (aij) forms a positive definite matrix.

(i). Prove that if a linear change of variables yk =
∑n

l=1 Tklxl is made, where T =

(Tkl) is non-singular, and v(y) = u(x), then Lu =
∑n

k,l=1 ãkl∂
2
ykyl

v(y) := L̃v,

where ãkl =
∑n

i,j=1 TkiaijTlj. In terms of matrix operation, with A = (aij) and

Ã = (ãkl), this amounts to Ã = TAT ′. If A is positive definite, choose T such

that TAT ′ is the identity matrix, then Lu = ∆v(y).

(ii) Prove that under the change of variables y = Tx, the integral relation
∫
E(x)Lu(x) =

u(0) turns into
∫
E(T−1y)L̃v(y)| detT |−1 dy = v(0). Thus if L̃ = −∆, then

E(x) = | detT |Φ(Tx) is a fundamental solution of L.
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(iii). Since Φ(Tx) depends on Tx through |Tx|, using the relation |Tx|2 = x′T ′Tx,

and TAT ′ = I to derive that |Tx|2 = x′A−1x, and that | detT | = 1/
√

detA.

Thus E(x) = Φ(
√

x′A−1x)/
√

detA.

Exercise 6.4.10. Follow the guidance below to construct a fundamental solution of

the Helmholtz equation (∆ + c)E(x) = −δ(x), where c is a constant. Note that ∆

and c have different scaling, so we can’t rely on scaling-invariance to find a funda-

mental solution; but we can still use the rotational invariance of ∆ + c to look for a

fundamental solution E = E(|x|).

(i). It is known that E(r) is smooth for r > 0, so E ′′(r)+n−1
r
E ′(r)+cE(r) = 0 for r >

0. Recall that when n = 2 and c = 1, solutions to this ODE are called Bessel’s

functions (of order 0). A separable solution R(r)Θ(θ) to ∆u(x) + cu(x) = 0 (on

Rn \ {0}) leads to

R′′(r) +
n− 1

r
R′(r) +

[
− λ
r2

+ c

]
R(r) = 0, (6.12)

and ∆θΘ(θ) + λΘ(θ) = 0 for θ ∈ Sn−1, where ∆θ is the Laplace-Beltrami

operator on the round sphere Sn−1 (when n = 2, ∆θ = ∂2
θ and Θ(θ) = eimθ for

m ∈ Z, so λ = m2; when n ≥ 3, λ = m(m+ n− 2) for m ∈ Z≥0).

(ii). Suppose that R(r) is a solution of (6.12). Let R̂(r) = r
n−2

2 R(r). Verify that

R̂′′(r) +
R̂′(r)

r
+

[
c−

λ+
(
n−2

2

)2

r2

]
R̂(r) = 0.

If c > 0, set J(r) = R̂( r√
c
), verify that J(r) satisfies (2.50), Bessel equation of

order α with α2 = λ+
(
n−2

2

)2
.

(iii). Prove that, when c > 0, E(r) = −1
4
Y0(
√
cr) is a fundamental solution of (∆ +

c)E(x) = −δ(x) on R2 (Hint: use E ′(r) → − 1
2πr

as r → 0); for n ≥ 3, a

fundamental solution can be constructed in the form of a r
2−n

2 J−n−2
2

(
√
cr) for n

odd, and a r
2−n

2 Yn−2
2

(
√
cr) for n even, where a is chosen appropriately depending

on n and c. When c < 0, (6.12) can be reduced to the modified Bessel’s equation

(2.51).

Note also that for c > 0, R(r) = r
2−n

2 Jn−2
2

(
√
cr) provides an entire solution

on Rn to (∆ + c)E(x) = 0, which decays to 0 at a rate of r
1−n

2 as r → ∞;

furthermore, for any y = (y′, yn) ∈ Rn
+, E(x) = |x−y| 2−n2 Jn−2

2
(
√
c|x−y|)−|x−
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ŷ| 2−n2 Jn−2
2

(
√
c|x − ŷ|), where ŷ = (y′,−yn) and x = (x′, xn), defines a solution

of (∆ + c)E(x) = 0 on Rn
+, such that E(x)|∂Rn+ = 0, and E(x) → 0 as x → ∞

in Rn
+ (sin(

√
cxn) is also a solution equal to 0 on ∂Rn

+, but it does not decay

to 0 as x → ∞ in Rn
+). These provide additional examples for the failure of

uniqueness to the Dirichlet problem for ∆ + c on Rn
+.

Exercise 6.4.11. This exercise continues to explore solutions E(r) := En,c(r) to

E ′′(r) + n−1
r
E ′(r) + cE(r) = 0.

(i). Verify that when E ′′n,c(r) + n−1
r
E ′n,c(r) + cEn,c(r) = 0 for r > 0, then w(r) =

E ′n,c(r)/r satisfies w′′(r) + n+1
r
w′(r) + cw(r) = 0 for r > 0. Conversely, for any

solution w(r) of the latter, rw′(r)+nw(r) is a solution of the former. So we can

determine En+2,c(r) in terms of En,c(r) in the form of En+2,c(r) = AE ′n,c(r)/r

for some constant A.

(ii). Note that, if En,c(r) is a fundamental solution to (∆ + c)E = −δ(x), then for

φ ∈ C2
c (Rn), we have −φ(0) =

∫
Rn En,c(x)(∆ + c)φ(x) dx, and if φ ≡ 1 in Bε(0),

we would have

−1 = −φ(0) =

∫
Rn
En,c(x)(∆ + c)φ(x) dx

= lim
ε↘0

∫
Rn\Bε(0)

En,c(x)(∆ + c)φ(x) dx

= − lim
ε↘0

∫
∂Bε(0)

[
En,c(x)

∂φ(x)

∂r
− φ(x)

∂En,c(x)

∂r

]
dσ(x)

= lim
ε↘0

∫
∂Bε(0)

∂En,c(x)

∂r
dσ(x),

so we expect rn−1E ′n,c(r)|Sn−1| =
∫
∂Br(0)

∂rEn,c(r) dσ(x) → −1 as r → 0. Use

this and (i) to determine En,c(r) for n = 1, 2, 3, 4. What role does the sign of c

play?

(iii). Use the recursive relations and the previous exercise to establish relations be-

tween J± 1
2
(r) with sin r√

r
and cos r√

r
, respectively.

6.5 More on Fundamental Solutions

Notice that for a constant coefficient operator P (∂x) of order m, if E is a fundamental

solution with pole 0, then E(x− ξξξ) is a fundamental solution of P (∂x) at pole ξξξ,

η(ξξξ) = 〈E(x− ξξξ), P ′(∂x)η(x)〉 .
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Furthermore, for any u ∈ Cm
c (Rn), if we set η(x) = u(ξξξ − x), we find that, using

∂αx [u(ξξξ − x)] = (−1)|α|∂αξξξ u(ξξξ − x), we have

P ′(∂x)η(x) = P ′(∂x)[u(ξξξ−x)] =
m∑
|α|=0

(−1)|α|aα∂
α
xη(x) =

m∑
|α|=0

aα∂
α
ξξξ u(ξξξ−x) = P (∂ξξξ)u(ξξξ−x).

So

u(ξξξ) = η(0) = 〈E(x), P ′(∂x)η(x)〉
= 〈E(x), P (∂ξξξ)u(ξξξ − x) 〉
= 〈E(ξξξ − y), P (∂y)u(y) 〉 .

In other words, if E(x − ξξξ) is a fundamental solution for P (∂x), then E ′(x;ξξξ) :=

E(ξξξ − x) is a fundamental solution for P ′(∂x). Put in a different way, E(x − ξξξ),
regarded as a distribution in ξξξ, is a fundamental solution of the transpose P ′(∂ξξξ) of

P (∂ξξξ) with pole at x.

Theorem 6.5. For a given linear differential operator with constant coefficients

P (∂x), if E is a fundamental solution with pole 0, then for any distributions u and f

with compact support, we have

P (∂x)(E ∗ f) = f, (6.13)

E ∗ (P (∂x)u) = u. (6.14)

Proof. (6.13) is established as follows when f ∈ C∞c (Rn). Using E ∗f = 〈E(z), f(x−
z)〉,

P (∂x)(E ∗ f)(x) = P (∂x)(〈E(z), f(x− z)〉
= 〈E(z), P (∂x)f(x− z)〉
= 〈E(z), P ′(∂z) [f(x− z)]〉
= f(x− z)

∣∣
z=0

using (6.8) at ξ = 0 with η(ξ) = f(x− ξ)
= f(x).

For (6.14), for u ∈ C∞c (Rn), we have

E ∗ (P (∂x)u) =〈E(z), P (∂x)u(x− z)〉 = 〈E(z), P ′(∂z)[u(x− z)]〉
=〈P (∂z)E(z), u(x− z)〉 = u(x).
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(6.13) gives us a way of constructing a solution of (6.13) for a given f (with

sufficient regularity and compact support), and (6.14) gives us a way of reconstructing

u (with compact support) in terms of P (∂x)u, and can be used to establish regularity

and estimates on solutions as below and in the following sections.

Suppose Ω is a subdomain of U and f = P (∂x)u is known to be smooth in Ω.

For any subdomain V of Ω, choose a smooth cut off function η such that η ≡ 1 on

V and is compactly supported in Ω. Then uη = E ∗ [P (∂x)(uη)]. But P (∂x)(uη) =

(P (∂x)u))η+ g, where g represents the sum of terms involving derivatives of η, which

vanish in V . Thus for x ∈ V , u = uη = E ∗ [(P (∂x)u) η]+E ∗g, where (P (∂x)u) η is a

smooth distribution with compact support in Ω, and g is zero in V . So E∗[(P (∂x)u) η]

is a smooth function using (P (∂x)u) η being smooth with compact support, while if

E is known to be smooth except at 0, then for x ∈ V , E ∗g(x) =
∫

Ω\V E(x−y)g(y) dy

is also smooth in x ∈ V , proving that u is smooth in V . This argument gives

Theorem 6.6. If a linear differential operator with constant coefficients P (∂x) has

a fundamental solution E with pole 0 such that it is smooth except at 0, then for any

distributional solution u to P (∂x)u = f , if f is smooth in Ω, so is u.

Exercises

Exercise 6.5.1. Establish a Green’s representation for solutions to the Helmholtz

equation ∆u(x) + cu(x) = 0 similar to (5.23), and use it to prove that any C2

solution of this equation is C∞. Also formulate and establish gradient estimates for

its solutions; analyze the dependence of the estimates on the radius R of the ball

on which the gradient estimates are to be proved. (Hint: although one can use the

newly established Green’s representation for solutions to the Helmholtz equation to

prove their gradient estimates, it’s easier to prove them using (5.23) directly, treating

u(x) as a solution of −∆u(x) = f(x), with f(x) = cu(x) assumed having control on

its C0 norm.)

6.6 Additional Applications of the Fundamental

Solution of the Heat Equation

We now carry out another construction of fundamental solutions to ∂t − ∆x. The

approach here is different from earlier ones using Fourier’s method. Based on an

argument similar to that for the Duhamel principle, the condition (∂t−∆x)E(x, t) =
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δ(x)δ(t) can be satisfied if
(∂t −∆x)E(x, t) = 0 if x ∈ Rn, t > 0,

E(x, 0) = δ(x)

E(x, t) = 0 if x ∈ Rn, t < 0.

Note that if Eλ(x, t) = λnE(λx, λ2t) for λ > 0, then Eλ(x, t) would satisfy the same

conditions above—including the initial condition Eλ(x, 0) = δ(x); other scalings such

as λmE(λx, λ2t) for m 6= n also satisfies the equation, but fails to satisfy the initial

condition, so it is reasonable to look for E(x, t) such that Eλ(x, t) = E(x, t) for all

λ > 0. This leads to E(x, t) = t−n/2E(x/
√
t, 1) when we choose λ = 1/

√
t. Due to

the rotational symmetry of ∆x, we may expect E(x/
√
t, 1) to depend on ‖x‖/

√
t.

Thus we look for some f(ρ) for ρ ≥ 0 such that

E(x, t) =


f(‖x‖/

√
t)

tn/2
for t > 0,

0 for t ≤ 0.

Then the equation (∂t − ∆x)E(x, t) = 0 for t > 0 turns into the following ODE for

f(ρ):

f ′′(ρ) +

(
ρ

2
+
n− 1

ρ

)
f ′(ρ) +

n

2
f(ρ) = 0, (6.15)

where we have used

Et(x, t) = −nf(ρ) + ρf ′(ρ)

2tn/2+1
,

∆xE(x, t) =

(
∂2

∂r2
+
n− 1

r

∂

∂r

)
E(r, t) =

f ′′(ρ) + n−1
ρ
f ′(ρ)

tn/2+1
.

(6.15) can be rewritten as(
f ′(ρ) +

ρ

2
f(ρ)

)′
+
n− 1

ρ

(
f ′(ρ) +

ρ

2
f(ρ)

)
= 0,

from which it follows that [
ρn−1

(
f ′(ρ) +

ρ

2
f(ρ)

)]′
= 0.

Thus ρn−1
(
f ′(ρ) + ρ

2
f(ρ)

)
= C for some constant C and all ρ ≥ 0. Examining the

behavior near ρ = 0 implies that C = 0, which leads to f(ρ) = C ′e−ρ
2/4. C ′ is
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determined by the requirement that
∫
Rn E(x, t) dx→ 1 for t→ 0.

∫
Rn
E(x, t) dx = C ′

∫
Rn

e−
‖x‖2

4t

tn/2
dx

= C ′

∫
R

e−
x2
1

4t

t1/2
dx1

n

= C ′
(

2

∫
R
e−z

2
1 dz1

)n
= C ′

(
2
√
π
)n

so C ′ = (4π)−n/2, and E(x, t) = (4πt)−n/2e−
‖x‖2

4t for t > 0, which agrees with the heat

kernel K(x, t) we found earlier.

Poisson’s representation such as (6.3) can also be used to establish derivative

estimates on solutions.

Theorem 6.7. Suppose that (∂t−∆x)u(x, t) = 0 for (x, t) in a region U2R(X0, T0) =

B2R(X0)× (T0−4R2, T0], and ||u||L1(U2R(X0,T0)) <∞. Then there exists C = C|α|+2j >

0 such that

sup
UR/2(X0,T0)

R|α|+2j|∇α
x∇

j
tu(X,T )| ≤ C|α|+2jR

−n−2||u||L1(U2R(X,T )). (6.16)

Proof. We will scale the problem to U2(0, 0) as follows. Fix a smooth cut off function

η(x, t) such that η ≡ 1 in U1(0, 0), and is compactly supported in U2(0, 0). It is easiest

to use the scale invariance to work with uR(x, t) = u(X0 + Rx, T0 + R2t) defined on

U2(0, 0). Then

(∂t −∆x)uR(x, t) = R2(∂t −∆x)u(X0 +Rx, T0 +R2t) = 0

in U2(0, 0), if (∂t −∆x)u(x, t) = 0 in U2R(X0, T0).

In (6.3), take U = U2(0, 0), (ξ, τ) ∈ U1/2(0, 0), u to be uR(x, t)η(x, t), v(x, t) =
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K(ξ − x, τ − t), t1 = τ , t0 = −4. Then

uR(ξ, τ) =

∫ τ

−4

∫
B2(0)

(∂t −∆x) [uR(x, t)η(x, t)] ·K(ξ − x, τ − t) dxdt

=

∫ τ

−4

∫
B2(0)

[(∂t −∆x)η(x, t) · uR(x, t)] ·K(ξ − x, τ − t) dxdt

− 2

∫ τ

−4

∫
B2(0)

[∇xuR(x, t) · ∇x (η(x, t))] ·K(ξ − x, τ − t) dxdt

=

∫ τ

−4

∫
B2(0)

[(∂t −∆x)η(x, t)]K(ξ − x, τ − t)uR(x, t) dxdt

+

∫ τ

−4

∫
B2(0)

[2∇x {K(ξ − x, τ − t)∇xη(x, t)}]uR(x, t) dxdt

:=

∫ τ

−4

∫
B2(0)

K̂(ξ, τ ; x, t)uR(x, t) dxdt,

(6.17)

where we have applied the divergence theorem and the zero boundary condition of

∇x (η(x, t)) on ∂B2(0)× [−4, τ ] to deduce

− 2

∫ τ

−4

∫
B2(0)

[∇xuR(x, t) · ∇x (η(x, t))] ·K(ξ − x, τ − t) dxdt

=

∫ τ

−4

∫
B2(0)

[2∇x {K(ξ − x, τ − t)∇xη(x, t)}]uR(x, t) dxdt.

Note that

K̂(ξ, τ ; x, t) = (∂t −∆x)η(x, t) ·K(ξ − x, τ − t) + 2∇x {K(ξ − x, τ − t)∇xη(x, t)}

is a smooth function of (ξ, τ ; x, t) ∈ U1/2(0, 0)×Rn+1 supported for (x, t) in U2(0, 0)\
U1(0, 0), due to the support of η and η ≡ 1 in U1(0, 0), with K̂(ξ, τ ; x, τ) = 0 for

(ξ, τ) ∈ U1/2(0, 0) and x ∈ B2(0) \B1(0). Thus, using the observation that

∂αx∂
m
t K(x, t) =

1

t
|α|
2

+m
p|α|+2m(

x√
t
)K(x, t),

where p|α|+2m is a polynomial of degree |α|+ 2m, we have

|∂αξ ∂jτuR(ξ, τ)|

≤
∫ τ

−4

∫
B2(0)

|∂αξ ∂jτK̂(ξ, τ ; x, t)||uR(x, t)| dxdt

≤C
∫ τ

−4

∫
B2(0)

Mη(x, t)
(1 + |ξ−x|√

|τ−t|
)|α|+2jK(ξ − x, τ − t)

|τ − t||α|/2+j
|uR(x, t)| dxdt,
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where Mη(x, t) = |∂tη(x, t)|+ |∆xη(x, t)|+ |∇xη(x, t)|. The integration is effectively

carried out on (x, t) ∈ U2(0, 0) \ U1(0, 0), and when (ξ, τ) ∈ U1/2(0, 0) and (x, t) ∈
U2(0, 0) \ U1(0, 0), there is C|α|+2j > 0 such that

|τ − t|−|α|/2−j|(1 +
|ξ − x|√
|τ − t|

)|α|+2jK(ξ − x, τ − t) ≤ C|α|+2j.

Thus

max
U1/2(0,0)

|∇α
ξ∇j

τuR| ≤ C|α|+2j||uR||L1(U2(0,0)) ≤ C|α|+2jR
−n−2||u||L1(U2R(X,T )).

When (X,T ) = (X0 +Rξ, T0 +R2τ) ∈ UR/2(X0, T0), (ξ, τ) ∈ U1/2(0, 0), so

R|α|+2j|∇α
x∇

j
tu(X,T )| = |∇α

ξ∇j
τuR(ξ, τ)| ≤ C|α|+2jR

−n−2||u||L1(U2R(X,T )).

With the derivative estimates, we have the following version of Liouville theorem

and convergence properties.

Theorem 6.8. Suppose that u(x, t) is an ancient solution of (∂t−∆x)u(x, t) = 0 on

Rn, namely, it is defined on Rn × (−∞, T ] for some finite T . Suppose that u(x, t) is

bounded, then it must be a constant.

Proof. At any (X, τ), with τ ≤ T , we can apply the above gradient estimates on

UR(X, τ) for any R > 0 to obtain

R|∇xu(X, τ)|+R2|∇tu(X, τ)| ≤ CR−n−2||u||L1(U2R(X,τ)) ≤ C ′ sup
Rn×(−∞,T ]

|u(x, t)|.

Since this holds for any R > 0, we conclude that |∇xu(X, τ)| = |∇tu(X, τ)| = 0.

Since these two equations hold for all (X, τ) ∈ Rn × (−∞, T ], we conclude that u

must be a constant on Rn × (−∞, T ].

Theorem 6.9. (i). Uniform limit of a sequence of solutions to

(∂t −∆x)u(x, t) = 0 (6.18)

in a region UT is a solution of (6.18).

(ii). A bounded sequence of solutions in UT must have a subsequence that converges

on any compact subset of UT to a solution of (6.18) in UT .
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(iii) If U is a bounded domain, and for a sequence gk ∈ C(∂′UT ), there exists a

(unique) solution uk to  (∂t −∆)uk = 0, in UT ,

uk = gk, on ∂′UT ,
(6.19)

and gk → g uniformly on ∂′UT , then (6.19) with g as boundary value has a unique

solution.

The proof for (i) and (ii) is similar to that for the Laplace equation, relying on

the derivative estimates and Arzela-Ascoli theorem; details will be left as exercises.

We sketch here a proof for (iii). Since gk → g uniformly on ∂′UT , {gk} is Cauchy in

C(∂′UT ). By the maximum principle, maxUT |uj−uk| ≤ max∂′UT |gj− gk|, which→ 0

as j, k →∞. Thus there exists u ∈ C(UT ) such that uk → u uniformly over UT , and

u = g on ∂′UT . It remains to prove that (∂t−∆)u = 0 in UT . It suffices to do this for

any BR(x0) × [t0 − R2, t0] ⊂ UT , for which B4R(x0) × [t0 − 16R2, t0] ⊂ UT . But the

gradient estimates can be applied to {uk} over B4R(x0)× [t0− 16R2, t0], which would

then imply that there is a subsequence {ukl} such that {∂tukl} and {∂2
xukl} converge

uniformly over BR(x0)× [t0 − R2, t0]. Since each ukl satisfies (∂t −∆)ukl = 0 in UT ,

this then implies (∂t −∆)u = 0 in BR(x0)× [t0 −R2, t0].

Exercise 6.6.1. Verify that for the heat kernel defined for (x, t) ∈ R× R+,

∂lx∂
m
t K(x, t) =

1

t
l
2

+m
pl+2m(

x√
t
)K(x, t),

where pl+2m is a polynomial of degree l + 2m.

Exercise 6.6.2. Verify that

KA(x, t) =

 e−
x′A−1x

4t√
detA(4πt)n/2

t > 0

0 t ≤ 0

is a fundamental solution of (∂t − L)u = ut −
∑n

i,j=1 aij∂
2
xixj

u(x, t) = δ(0, 0). Here

A = (aij) is assumed to be positive definite. Hint: Make a linear change of variables

to transform the equation to the standard heat equation, as was done in Exercise

6.4.9.

Exercise 6.6.3. Verify that ectK(x + bt, t) is a fundamental solution of ∂tu(x, t) −
∆xu(x, t)−

∑n
j=1 bj∂xju(x, t)− cu(x, t) = δ(0, 0), where b = (b1, · · · , bn).

Exercise 6.6.4. Verify that for n ≥ 3,
∫∞

0
K(x, t)dt = Φ(x), where Φ(x) is the

fundamental solution to −∆xΦ(x) = δ(x) introduced earlier.
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6.7 Fourier transform on tempered distributions∗

Fourier’s method has been very essential in our study of PDE problems. Unfortu-

nately, the Fourier transform, as a linear functional on D(Rn), does not map D(Rn)

into itself. For any φ ∈ D(Rn), its Fourier transform F [φ] is in the Schwartz space

S (Rn), the function space consisting those functions in E (Rn) which, together with

any of their derivatives, decay faster than any power of |x|−1 as x → ∞. For any

φ ∈ S (Rn), define the semi-norm

‖φ‖α,β = sup
x∈Rn
|xα∂βxφ(x)|

for any multi-indices α, β. Then S (Rn) is the subspace of E (Rn) consisting of func-

tions for which ‖φ‖α,β <∞ for any multi-indices α, β. Furthermore, we can define a

metric ρS (Rn) on S (Rn) by

ρS (Rn)(φ, ψ) =
∞∑
k=0

∑
|α|+|β|=k

1

2k
‖φ− ψ‖α,β

1 + ‖φ− ψ‖α,β
.

Then S (Rn) is a complete metric space, and a converging sequence in S (Rn) also

converges in E (Rn). In addition, D(Rn) ⊂ S (Rn), and a converging sequence in

D(Rn) also converges in S (Rn), although a sequence in D(Rn) converging in the

metric of S (Rn) may not converge in D(Rn).

As a consequence, any continuous linear functional of S (Rn) is also a continuous

linear functional of D(Rn). A continuous linear functional of S (Rn) is called a tem-

pered distribution. The space of tempered distributions is denoted as S ′(Rn).

In the following sense a tempered distribution has a finite order of differentiation

and a finite order of growth at infinity: If l ∈ S ′(Rn), then there exists some k ∈ Z≥0

and a constant C > 0 such that

|〈l, φ〉| ≤ C
∑

|α|+|β|≤k

‖φ‖α,β (6.20)

for all φ ∈ S (Rn).

This is seen by noting that there is an open neighborhood O of φ = 0 in S (Rn)

such that |〈l, φ〉| < 1 for all φ ∈ O. But O must contain {φ ∈ S (Rn) : ρS (Rn)(φ, 0) <

ε} for some ε > 0. Note that there exists some k ∈ Z≥0 such that∑
|α|+|β|>k

1

2k
‖φ‖α,β

1 + ‖φ‖α,β
≤

∑
|α|+|β|>k

1

2k
< ε/2,

∗The material of this section is not used in a substantial way in the remaining notes.
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and whenever
∑
|α|+|β|≤k ‖φ‖α,β < ε/2, we have

ρS (Rn)(φ, 0) ≤
∑

|α|+|β|≤k

‖φ‖α,β + ε/2 < ε,

therefore for such φ, we have |〈l, φ〉| < 1. Now for any φ ∈ S (Rn), if A :=∑
|α|+|β|≤k ‖φ‖α,β > 0, then for any 0 < ε′ < ε/2,

∑
|α|+|β|≤k ‖ε′φ/A‖α,β < ε/2, there-

fore |〈l, ε′φ/A〉| < 1, which implies that

|〈l, φ〉| < (ε′)−1
∑

|α|+|β|≤k

‖φ‖α,β.

This leads to

|〈l, φ〉| ≤ ε−1
∑

|α|+|β|≤k

‖φ‖α,β.

If
∑
|α|+|β|≤k ‖φ‖α,β = 0, then φ = 0, and the above inequality holds trivially. This

proves (6.20).

Any L1
local(Rn) function p(x) with at most polynomial growth at ∞ defines a

tempered distribution by φ 7→
∫
Rn p(x)φ(x) dx for φ ∈ S (Rn). If l ∈ S ′(Rn), then

∂xk l as defined via (6.7) is an element of S ′(Rn). So is p(x)l for any polynomial p(x)

defined by

〈p(x)l, η〉 = 〈l, p(x)η〉 for η ∈ S (Rn).

Note, however, ekx for k 6= 0 ∈ R is in D ′(R), but not in S ′(R).

Theorem 6.10. The Fourier transform is a continuous linear function from S (Rn)

onto S (Rn) and has a continuous inverse. Furthermore∫
Rn
F [φ](ξ)ψ(ξ) dξ =

∫
Rn
φ(ξ)F [ψ](ξ) dξ for any φ, ψ ∈ S (Rn).

Using this theorem, we can define the Fourier transform of any tempered distri-

bution l ∈ S ′(Rn) via

〈F [l], φ〉 = 〈l, F [φ]〉 for any φ ∈ S (Rn). (6.21)

In the above F can be any of the alternative formulation of the Fourier transform.

Sometimes we may use the convention φ̂ of Fourier transform as defined in (2.30), or

the convention φ̃, and denote their respective extension to l ∈ S ′(Rn) accordingly.

The different conventions may differ by a factor of a power of 2π when dealing with

the convolution or computing F ◦ F and F ◦ ∂, or the Plancherel identity. In the
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CHAPTER 6. ADJOINT/TRANSPOSE OPERATORS AND FUNDAMENTAL SOLUTIONS

following we will take F [φ] = φ̃ to avoid carrying a factor of a power of 2π for the

first three situations.

The following two fundamental properties of Fourier transform on S (Rn) extend

to S ′(Rn) as well:

F [∂xk l] = iξkF [l], F [xkl] = i∂ξkF [l], (6.22)

except that the distinction between xk and ξk becomes blurred in this context, as one

does not necessarily treat the distribution F [l] as a continuous linear functional on

functions of ξξξ in D(Rn).

For l ∈ S ′(Rn) this can be seen by taking η ∈ S (Rn) and evaluating

〈∂xk l, F [η]〉 = −〈l, ∂xkF [η]〉
= 〈l, iF [ξkη]〉
= 〈F [l], iξkη〉
= 〈iξkF [l], η〉.

Also note that

F [eix·al](ξξξ) = F [l](ξξξ − a), F [l(· − a)] = e−iξξξ·aF [l](ξξξ) for a ∈ Rn. (6.23)

The relation between the Fourier transform and the linear map TAφ(x) =
√
| detA|φ(Ax)

is given by

F ◦ TA = T(A−1)T ◦ F.

This property extends to l ∈ S ′(Rn). Taking the case of A = λI for λ > 0, we get

F [φ(λ·)](ξ) = λ−nF [φ](
ξ

λ
). (6.24)

Another most useful property of Fourier transform on S (Rn):

F [φ ∗ ψ] = F [φ]F [ψ] φ, ψ ∈ S (Rn), (6.25)

also has an extension when φ ∈ S ′(Rn), ψ ∈ E ′(Rn) or when φ ∈ E ′(Rn), ψ ∈ S ′(Rn),

for, when ψ ∈ E ′(Rn), F [ψ] ∈ E (Rn) with the property that F [ψ] and any of its

derivatives are bounded on Rn, so for any η ∈ S (Rn), F [ψ]η ∈ S (Rn), and

〈F [φ]F [ψ], η〉 := 〈F [φ], F [ψ]η〉

is a well defined element in S ′(Rn).
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Example 6.7. (i) By direct evaluation of the integral, we get

F [e−ax
2

] =

∫
R
e−ax

2−iξx dx =

√
π

a
e−

ξ2

4a

for a > 0.

(ii) F [e−|x|] = 2
1+|ξ|2 and F [ 1

π(1+|ξ|2)
] = e−|x| on S ′(R). The first follows by an

easy evaluation of the integral in F [e−|x|], while the second one follows by using

F ◦ F [φ(x)] = 2πφ(−x).

(iii) F [δ(x − a)] = e−iξ·a and F [e−ix·a] = (2π)nδ(x + a) on S ′(Rn). The first one

follows from

〈F [δ(x− a)], φ〉 = 〈δ(x− a), F [φ]〉

= 〈δ(x− a),

∫
Rn
φ(ξξξ)e−ix·ξξξ dξξξ〉

=

∫
Rn
φ(ξξξ)e−ia·ξξξ dξξξ = 〈e−iξξξ·a, φ〉.

The second one follows from using F ◦ F [φ(x)] = (2π)nφ(−x) or

〈F [e−ix·a], φ〉 = 〈e−ix·a, F [φ]〉

= 〈e−ix·a,
∫
Rn
φ(ξξξ)e−ix·ξξξ dξξξ〉

= (2π)nφ(−a) (by the Fourier inversion formula)

= 〈(2π)nδ(x + a), φ〉.

(iv) F [(−ix)αe−ix·a] = (2π)n∂αxδ(x + a) on S ′(Rn) for any multi-index α. In partic-

ular, setting a = 0 gives F [(−ix)α] = (2π)n∂αxδ(x). This follows from applying

the rule (6.22) to F [e−ix·a] = (2π)nδ(x + a).

Remark 6.5. Sometimes one needs to evaluate certain integrals involving some (tem-

pered) distributions which do not correspond to an integrable function in the tra-

ditional sense. In such a situation, one often uses some kind of regularization to

approximate the given distribution in the sense of D ′(Rn) or S ′(Rn).

For example, to evaluate F [H], where H is the Heaviside function

H(x) =

1 if x ≥ 0,

0 if x < 0,
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one can’t evaluate directly
∫
RH(x)e−iξx dx. One uses e−εxH(x) for ε↘ 0 to approx-

imate H(x) in S ′(R). Since

F [e−εxH(x)] =

∫
R
e−εxH(x)e−iξx dx =

1

ε+ iξ
,

one can use the limit

lim
ε↘0

F [e−εxH(x)] = lim
ε↘0

1

ε+ iξ

as F [H]. Here the limit is in the sense of S ′(R):

lim
ε↘0

∫
R

1

ε+ iξ
φ(ξ) dξ for φ ∈ S (R);

this limit exists by noting that∫
R

1

ε+ iξ
φ(ξ) dξ = −i

∫
R
φ(ξ) d ln(ε+ iξ) = i

∫
R

ln(ε+ iξ)φ′(ξ) dξ,

and that ln(ε+ iξ)→ ln |ξ|+ sign(ξ)π
2
i as ε↘ 0, resulting in

lim
ε↘0

∫
R

1

ε+ iξ
φ(ξ) dξ = i

(∫
R

ln |ξ|φ′(ξ) dξ − iπφ(0)

)
.

We can further identify∫
R

ln |ξ|φ′(ξ) dξ

= lim
ε↘0

∫
|ξ|>ε

ln |ξ|φ′(ξ) dξ

= lim
ε↘0

(
ln ε [−φ(ε) + φ(−ε)]−

∫
|ξ|>ε

φ(ξ)

ξ
dξ

)
=− PV

∫
R

φ(ξ)

ξ
dξ.

In summary,

F [H] = lim
ε↘0

1

ε+ iξ
= −i PV

(
1

ξ

)
+ πδ(ξ).

Likewise, one can compute directly that F [χ[−1,1]] = 2 sin(ξ)
ξ

, but the right hand side

is not in L1(R) directly, so one can’t directly evaluate F [2 sin(ξ)
ξ

] =
∫
R

2 sin(ξ)
ξ

e−ixξ dξ.

Here one can use e−εξ
2 2 sin(ξ)

ξ
to regularize 2 sin(ξ)

ξ
as ε↘ 0. Since

F [
e−

x2

4ε

√
4πε

] = e−εξ
2

,
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we see that

e−εξ
2 2 sin(ξ)

ξ
= F [

e−
x2

4ε

√
4πε

]F [χ[−1,1]] = F [
e−

x2

4ε

√
4πε
∗ χ[−1,1]]

and ∫
R
e−εξ

2−ixξ 2 sin(ξ)

ξ
dξ

=F [e−εξ
2 2 sin(ξ)

ξ
]

=F ◦ F [
e−

x2

4ε

√
4πε
∗ χ[−1,1]]

=2π

(
e−

x2

4ε

√
4πε
∗ χ[−1,1]

)
Since, as ε↘ 0,

e−
x2

4ε

√
4πε
∗ χ[−1,1] → χ[−1,1]

in L1(R), and therefore in S ′(R), we obtain

F [
2 sin(ξ)

ξ
] = 2π lim

ε↘0

e−
x2

4ε

√
4πε
∗ χ[−1,1] = 2πχ[−1,1].

In the above we used F ◦ F [φ](x) = 2πφ(−x) only for φ ∈ S (R), not assuming its

validity for φ ∈ S ′(R).

Fourier transform is a useful tool in constructing a fundamental solution for a

constant coefficient operator P (∂x). Suppose that P (∂x)E = δ(x) and E ∈ S ′(Rn),

then P (iξξξ)F [E] = F [P (∂x)E] = F [δ(x)] = 1. If P (iξξξ) 6= 0 for any ξξξ ∈ Rn, then

we can conclude that F [E] = 1/P (iξξξ) and E = F−1(1/P (iξξξ)). An argument needs

to be made that 1/P (iξξξ) ∈ S ′(Rn) and it may not be easy to have more explicit

information about E.

If there exists ξξξ ∈ Rn such that P (iξξξ) = 0, then one can no longer deduce directly

that F [E] = 1/P (iξξξ); in any case, one has to make sense of 1/P (iξξξ) as an element of

S ′(Rn). We sketch out a solution following an argument given by Nirenberg in 1953.

One step of the argument uses Cauchy’s Theorem on contour integrals of complex

analytic functions; students without this knowledge can either assume this property

or skip this part.

First, we construct E in the form of (1−∆)NEN for some EN ∈ S ′(Rn). This leads

to EN = F−1( 1
(1+|ξξξ|2)NP (iξξξ)

). We choose N sufficiently large to help make 1
(1+|ξξξ|2)NP (iξξξ)
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decay sufficiently fast as ξξξ →∞. Second, we assume that P is a degree k differential

operator and a rotation of axes has been made, if necessary, so that the coefficient of

∂kn is 1. Thus P (iξξξ) is a degree k polynomial in ξn with coefficients of ξjn a polynomial

of ξξξ′ = (ξ1, · · · , ξn−1) of degree ≤ k − j.
For each fixed ξξξ′, P (i(ξξξ′, ζ)) = 0 has k roots in ζ = ξn + iη ∈ C. In the strip

|Im(ζ)| ≤ 1/2 of the complex plane of ζ, there exists a band parallel to the ξn

axis of width (k + 1)−1 which contains none of the roots, so there exists a line η =

c(ξξξ′) whose distance to any of the roots is at least (2k + 2)−1. This implies that

|P (i(ξξξ′, ξn + ic(ξξξ′))| ≥ (2k + 2)−k. It is also clear that

|1 + |ξξξ′|2 + (ξn + ic(ξξξ′))2| ≥ 1

2

(
1 + |(ξξξ′, ξn)|2

)
.

Thus

1

| (1 + |ξξξ′|2 + (ξn + ic(ξξξ′))2)N ||P (i(ξξξ′, ξn + ic(ξξξ′))|
≤ (2k+2)−k2N

(
1 + |(ξξξ′, ξn))|2

)−N
.

Then the integral

(2π)−n
∫
Rn−1

∫
R

eix·(ξξξ
′,ξn+ic(ξξξ′))

(1 + |ξξξ′|2 + (ξn + ic(ξξξ′))2)N P (i(ξξξ′, ξn + ic(ξξξ′))
dξn dξξξ

′

is well defined, and we call it EN(x). EN(x) has as many desired differentiability in

x as one would like as long as one chooses N sufficiently large.

We now verify that EN(x) satisfies P (∂x)(1−∆)NEN(x) = δ(x) in the sense that

u(0) =

∫
Rn
EN(x)(1−∆)NP ′(∂x)u(x) dx

for any u ∈ D(Rn). We may suppose that u is supported in BR(0). Then∫
Rn
EN(x)(1−∆)NP ′(∂x)u(x) dx

=(2π)−n
∫
BR(0)

∫
Rn−1

∫
R

eix·(ξξξ
′,ξn+ic(ξξξ′))(1−∆)NP ′(∂x)u(x)

(1 + |ξξξ′|2 + (ξn + ic(ξξξ′))2)N P (i(ξξξ′, ξn + ic(ξξξ′))
dξn dξξξ

′ dx

=(2π)−n
∫
Rn−1

∫
R

∫
BR(0)

eix·(ξξξ
′,ξn+ic(ξξξ′))(1−∆)NP ′(∂x)u(x)

(1 + |ξξξ′|2 + (ξn + ic(ξξξ′))2)N P (i(ξξξ′, ξn + ic(ξξξ′))
dx dξn dξξξ

′.

But ∫
BR(0)

eix·(ξξξ
′,ξn+ic(ξξξ′))(1−∆)NP ′(∂x)u(x) dx

=

∫
BR(0)

P (∂x)(1−∆)Neix·(ξξξ
′,ξn+ic(ξξξ′))u(x) dx

=

∫
BR(0)

(
1 + |ξξξ′|2 + (ξn + ic(ξξξ′))2

)N
P (i(ξξξ′, ξn + ic(ξξξ′))eix·(ξξξ

′,ξn+ic(ξξξ′))u(x) dx
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so ∫
Rn
EN(x)(1−∆)NP ′(∂x)u(x) dx

=(2π)−n
∫
Rn−1

∫
R

∫
BR(0)

eix·(ξξξ
′,ξn+ic(ξξξ′))u(x) dx dξn dξξξ

′.

The function

ζ 7→
∫
BR(0)

eix·(ξξξ
′,ζ)u(x) dx

is complex analytic in ζ = ξn+iη and decays sufficiently fast as ξn →∞ for |η| ≤ 1/2.

Then Cauchy Theorem in complex analysis allows us to shift the line of integral

Imζ = c(ξξξ′) to Imζ = 0 to imply that∫
R

∫
BR(0)

eix·(ξξξ
′,ξn+ic(ξξξ′))u(x) dx dξn =

∫
R

∫
BR(0)

eix·(ξξξ
′,ξn)u(x) dx dξn,

which implies that∫
Rn
EN(x)P ′(∂x)(1−∆)Nu(x) dx = (2π)−n

∫
Rn−1

∫
R

∫
BR(0)

eix·(ξξξ
′,ξn)u(x) dx dξn dξξξ

′ = u(0)

by the Fourier inversion formula applied to u.

In the case of a constant coefficient operator P (∂x) of order k in one variable x,

P (iξ) is a polynomial of one variable ξ. Any root ξ of P (iξ) = 0 gives rise to a solution

eiξx of P (∂x)e
iξx = 0. When ξ is a real root, this solution is smooth and bounded so

lies in S ′(R); this also means that P (∂x) will not have a unique fundamental solution

in S ′(R). When ξ is a non-real root, this solution grows exponentially as x→∞ or

−∞ so is not in S ′(R).

One possible construction of a fundamental solution in this case is to adapt the

approach in Example 6.5. Namely, construct a solution G(x) such that P (∂x)G = 0,

∂jxG(0) = 0 for j = 0, · · · , k − 2, and ∂k−1
x G(0) = 1, and take E(x) = H(x)G(x),

where H(x) is the Heaviside function. An application of the Cauchy Theorem shows

that

G(x) =
1

2π

∫
ξ∈∂DR(0)

eixξ

P (iξ)
dξ (6.26)

is one such solution, where R > 0 is chosen such that DR(0) contains all the roots of

P (iξ) = 0. It is elementary to verify that

∂jx

(∫
ξ∈∂DR(0)

eixξ

P (iξ)
dξ

)
=

∫
ξ∈∂DR(0)

(iξ)jeixξ

P (iξ)
dξ,
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so

P (∂x)G(x) =
1

2π

∫
ξ∈∂DR(0)

eixξ dξ,

and

G(j)(0) =
1

2π

∫
ξ∈∂DR(0)

(iξ)j

P (iξ)
dξ.

The evaluation of these integrals to their respective values relies on the Cauchy The-

orem.

Another modification of the Fourier transform to deal with such exponentially

growing functions is the Laplace transform, used in the context of evolution equa-

tions, where one transform a function f defined on R+ (under some grow control) to

L[f ](ξ) =
∫∞

0
f(t)eiξt dt, restricting the parameter ξ to be complex parameter such

that Im(ξ) is sufficiently large.

Exercises

Exercise 6.7.1. Suppose that l ∈ D ′(R) satisfies ∂xl = δ(x). Prove that there exists

some constant c such that l = H(x) + c, where H(x) is the Heaviside function.

Exercise 6.7.2. Suppose that m 6= 0. Find l ∈ D ′(R) such that ∂xl −ml = δ(x). Is

it unique? For m ∈ R, can you find one such that l ∈ S ′(R)?

Exercise 6.7.3. Prove that

F [H(−x)] = i PV

(
1

ξ

)
+ πδ(ξ) and F [H(x)−H(−x)] = −2i PV

(
1

ξ

)
.

Exercise 6.7.4. Suppose that l ∈ S ′(R) satisfies ∂xl = δ(x). Prove that that

iξF [l] = 1. Does it follow that F [l] = −i PV
(

1
ξ

)
and that l = [H(x)−H(−x)]/2?

Exercise 6.7.5. Try to use Fourier transform to construct a fundamental solution

E(x; ξ) to d2

dx2 ±m2 on R which lies in S ′(R). Here m is a real parameter. Is such an

E(x; ξ) uniquely determined? Can the method be adapted to produce a fundamental

solution supported on {x : x ≥ ξ}?

Exercise 6.7.6. If one applies the argument as given by Nirenberg to the operator
d2

dx2 +m2 on R, one would get

E(x) =
1

2π

∫
R

eix(ξ+ci)

m2 − (ξ + ci)2
dξ

where c is a real parameter with |c| ≤ 1/2. Can this E(x) be identified? The similarly

defined G(x) in (6.26) is infinitely times differentiable. Is this E(x) also infinitely

times differentiable? Note: The solution may need knowledge of the calculus of

residues.
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6.8 Fundamental Solution of the Wave Equation

Here we are looking for a distribution E(x, t) such that[
∂2
t − c2∆x

]
E(x, t) = δ(x, t).

Based on an argument similar to that for the Duhamel’s principle, if we are look-

ing for an E(x, t) which is supported in {t ≥ 0}, then such an E(x, t) can also be

characterized by 

[
∂2
t − c2∆x

]
E(x, t) = 0

E(x, 0) = 0

Et(x, 0) = δ(x)

E(x, t) = 0 for t < 0.

It is possible to look for an E(x, t) with other constraints on its support. In addition,

E(x, t) has the property that a solution u(x, t) to
[
∂2
t − c2∆x

]
u(x, t) = 0

u(x, 0) = g(x)

ut(x, 0) = h(x)

(6.27)

can be represented through E(x, t) and initial data, via Green’s identity, as

u(x, t) = 〈E(x− y, t)h(y)〉+
∂

∂t
〈E(x− y, t), g(y)〉 ,

which we often write informally as

u(x, t) =

∫
Rn
E(x− y, t)h(y) dy +

∂

∂t

(∫
Rn
E(x− y, t)g(y) dy

)
.

We will find E(x, t) using one of the characterizations here depending on the approach

taken.

If we use Fourier’s method to construct a solution to (6.27), then we need to solve

û(ξ, t) such that 
ûtt(ξξξ, t) + c2‖ξξξ‖2û(ξξξ, t) = 0 t > 0

û(ξξξ, 0) = ĝ(ξξξ)

ût(ξξξ, 0) = ĥ(ξξξ).

The solution is given by û(ξξξ, t) = cos(c‖ξξξ‖t)ĝ(ξξξ) + sin(c‖ξξξ‖t)
c‖ξξξ‖ ĥ(ξξξ). Thus

u(x, t) = (2π)−n
∫
Rn

(
cos(c‖ξξξ‖t) ĝ(ξξξ) +

sin(c‖ξξξ‖t)
c‖ξξξ‖

ĥ(ξξξ)

)
eix·ξξξdξξξ,

297



CHAPTER 6. ADJOINT/TRANSPOSE OPERATORS AND FUNDAMENTAL SOLUTIONS

and we expect to be able to write

(2π)−n
∫
Rn

sin(c‖ξξξ‖t)
c‖ξξξ‖

ĥ(ξξξ)eix·ξξξdξξξ = E(·, t) ∗ h,

and

(2π)−n
∫
Rn

cos(‖ξξξ‖t)ĝ(ξξξ)eix·ξξξdξξξ = ∂t [E(·, t) ∗ g] .

This amounts to requiring Ê(ξξξ, t) = sin(c‖ξξξ‖t)
c‖ξξξ‖ . Since sin(c‖ξξξ‖t)

c‖ξξξ‖ is not in L1(Rn) or

L2(Rn) when n ≥ 2, the identification of such an E(x, t) would require the framework

of Fourier transforms on temperate distributions, and is not an easy task anyway. We

will present an approach below using more elementary means.

We can still make use the scaling invariance to look for E(x, t) such that

Eλ(x, t) = λn−1E(λx, λt) = E(x, t) for all λ > 0 (the factor λn−1 is chosen so that

∂tEλ(x, t)
∣∣
t=0

has the same scaling as the point source function δ(x)). We will exploit

some invariance property of the wave operator ∂2
t − c2∆x in the construction of such

an E(x, t).

The wave operator ∂2
t − c2∆x is invariant under the Lorentz transforms, which

are defined as linear transformations on Rn+1

[
s

y

]
= T

[
t

x

]
such that T


1 0 · · ·
0 −c2 · · ·
...

...
...

0 · · · −c2

T ′ =


1 0 · · ·
0 −c2 · · ·
...

...
...

0 · · · −c2

 . (6.28)

This follows from writing ∂2
t − c2∆x in matrix form

[
∂t ∂x1 · · · ∂xn

]


1 0 · · ·
0 −c2 · · ·
...

...
...

0 · · · −c2



∂t

∂x1

...

∂xn

 ,

and noting

[
∂t ∂x1 · · · ∂xn

]
=
[
∂s ∂y1 · · · ∂yn

]
T and


∂t

∂x1

...

∂xn

 = T ′


∂s

∂y1

...

∂yn

 .
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(6.28) is equivalent to

T ′


c2 0 · · ·
0 −1 · · ·
...

...
...

0 · · · −1

T =


c2 0 · · ·
0 −1 · · ·
...

...
...

0 · · · −1

 , (6.29)

from which it follows that such transformations preserve the quadratic form c2t2 −
‖x‖2:

c2t2 − ‖x‖2 = c2s2 − ‖y‖2 when

[
s

y

]
= T

[
t

x

]
.

The verification of these basic algebraic properties is left as an exercise for the reader.

Due to the invariance of ∂2
t −c2∆x and of c2t2−‖x‖2 under the Lorentz transforms,

we can look for an E(x, t) which is invariant under the Lorentz transforms. This leads

us to look for an E(x, t) = F (c2t2 − ‖x‖2) for some function (or distribution) F . If

we combine this with scaling, and want E(x, t) = λn−1E(λx, λt) for all λ > 0, then

F will obey λn−1F (λ2(c2t2 − ‖x‖2)) = F (c2t2 − ‖x‖2), namely, F has homogeneity

of 1−n
2

. If E(x, t) is represented by a locally integrable function, we expect E(x, t) =

A(c2t2 − ‖x‖2)
1−n

2 for some constant A.

Based on our experience with the 1-dimensional wave equation having propagation

speed ≤ c, we can look for an E(x, t) such that it is supported in {(x, t) : ‖x‖ ≤ ct}.
Thus we may look for an E(x, t) such that

E(x, t) =

A(c2t2 − ‖x‖2)
1−n

2 ‖x‖ < ct,

0 ‖x‖ ≥ ct,

for some constant A. But such an E(x, t) is not locally integrable in x when n ≥ 3,

so we have to re-examine our analysis∗, or find an alternative approach when n ≥ 3.

When n = 1, this approach gives an answer consistent with our earlier result that

E(x, t) =

 1
2c
|x| < ct,

0 |x| ≥ ct.

∗A proper analysis along this line can be done in the theory of distribution; but it requires

considerable background preparation, including the theory of homogeneous distributions and of

pull-back of a distribution, see section 6.2 of The Analysis of Linear Partial Differential Operators

I by Lars Hörmander.

299



CHAPTER 6. ADJOINT/TRANSPOSE OPERATORS AND FUNDAMENTAL SOLUTIONS

When n = 2, we get a trial solution of the form

E(x, t) =

A(c2t2 − ‖x‖2)−
1
2 ‖x‖ < ct,

0 ‖x‖ ≥ ct.

We expect

u(x, t) =

∫
R2

E(x− y, t)h(y) dy = A

∫
‖x−y‖<ct

(c2t2 − ‖x− y‖2)−
1
2h(y) dy

to provide a solution of (6.27) with g = 0 and ut(x, 0) = h(x). Since u(x, t) = t is a

solution with g(y) ≡ 0 and h(y) ≡ 1, we expect

t = A

∫
‖x−y‖<ct

(c2t2 − ‖x− y‖2)−
1
2 dy.

But a change of variables y = x + ct z in the right hand side integral gives

t = Act

∫
‖z‖<1

(1− ‖z‖2)−
1
2 dz = 2πAct.

Thus A = 1/(2πc). One can now verify directly that

E(x, t) =

(2πc)−1(c2t2 − ‖x‖2)−
1
2 ‖x‖ < ct,

0 ‖x‖ ≥ ct,

provides a fundamental solution of the 2-dimensional wave equation (6.27).

For n ≥ 3, we will use a recursive structure in the dimension n of radial solutions

on Rn×R to [∂2
t − c2∆x]u(x, t) = 0, similar to that in Exercise 6.4.11: if En(r, t) is

a solution of[
∂2
t − c2∆x

]
En(r, t) = ∂2

tEn(r, t)− c2

[
∂2
r +

n− 1

r
∂r

]
En(r, t) = 0,

then En+2(r, t) := A∂rEn(r, t)/r is a solution of

∂2
tEn+2(r, t)− c2

[
∂2
r +

n+ 1

r
∂r

]
En+2(r, t) = 0.

We apply this to our fundamental solution of the 1-dimensional wave equation to

produce a candidate for a fundamental solution of the 3-dimensional wave equation.

Since for each t, our fundamental solution of the 1-dimensional wave equation is a

step function in r, with a jump discontinuity at r = ct, so ∂rE1(r, t) = − δ(r−ct)
2c

,
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and we have E3(r, t) = A δ(r−ct)
r

as a candidate for a fundamental solution of the

3-dimensional wave equation. Again A can be determined by examining

u(x, t) = E3(r, t) ∗ h =
A

ct

∫
‖x−y‖=ct

h(y) dσ(y)

in the case u(x, t) = t, which is a solution of [∂2
t − c2∆x]u(x, t) = 0 with u(x, 0) = 0

and h(x) = ut(x, 0) = 1. We thus expect

t =
A

ct

∫
‖x−y‖=ct

dy = 4πctA.

So A = (4πc)−1.

Note that the scaling behavior of this fundamental solution E(x, t) = δ(‖x‖−ct)
4πc‖x‖ is

consistent with our earlier scaling analysis: it is supported on {(x, t) : ‖x‖ = ct},
and has scaling consistent with E(x, t) = λn−1E(λx, λt) for n = 3; it is just that the

behavior of E(x, t) on {(x, t) : ‖x‖ = ct} does not follow directly from the scaling

argument.

We can now verify directly that

u(x, t) =
1

4πc2t

∫
‖x−y‖=ct

h(y) dσ(y)

provides a solution of (6.27) with u(x, 0) ≡ 0 and ut(x, 0) = h(x), provided that

h ∈ C2(R3). With y = x + ctωωω, ωωω ∈ S2, the integral can be written as u(x, t) =
t

4π

∫
S2 h(x + ctωωω) dσ(ωωω). Thus

utt(x, t) =
1

2π

∫
S2

∂

∂t
[h(x + ctωωω)] dσ(ωωω) +

t

4π

∫
S2

∂2

∂t2
[h(x + ctωωω)] dσ(ωωω)

=
t

4π

∫
S2

[
∂2

∂t2
+

2

t

∂

∂t

]
h(x + ctωωω) dσ(ωωω).

With z = rωωω = ctωωω, we note that[
∂2

∂t2
+

2

t

∂

∂t

]
h(x + ctωωω)

=c2

[
∂2

∂r2
+

2

r

∂

∂r

]
h(x + rωωω)

=c2

[
∆zh(x + z)

∣∣
z=ctωωω

− ∆ωωω[h(x + rωωω)]

r2

∣∣
r=ct

]
=c2

[
∆xh(x + z)

∣∣
z=ctωωω

− ∆ωωω[h(x + rωωω)]

r2

∣∣
r=ct

]
.
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So

utt(x, t) =
c2t

4π

∫
S2

[
∆xh(x + ctωωω)− ∆ωωω[h(x + rωωω)]

r2

]
dσ(ωωω) =

c2t

4π

∫
S2

∆xh(x+ctωωω) dσ(ωωω),

using
∫
S2 ∆ωωω[h(x+rωωω)] dσ(ωωω) = 0. One key fact above that will also be useful for other

purposes is the following three dimensional case of the Euler-Poisson-Darboux

equation [
∂2

∂r2
+

2

r

∂

∂r

] ∫
S2

h(x + rωωω) dσ(ωωω) =

∫
S2

∆xh(x + rωωω) dσ(ωωω). (6.30)

Next,

∆xu(x, t) =
t

4π

∫
S2

∆xh(x + ctωωω) dσ(ωωω),

thus [∂2
t − c2∆x]u(x, t) = 0. Finally, u(x, 0) = t

4π

∫
S2 h(x + ctωωω) dσ(ωωω)

∣∣
t=0

= 0, and

ut(x, 0) = (4π)−1
∫
S2 h(x + ctωωω) dσ(ωωω)

∣∣
t=0

= h(x).

Note that a C2 solution u(x, t) of (6.27) gives rise to a C1 h(x) = ut(x, 0); but in

general a C2 h(x) is needed to produce a C2 solution u(x, t) of (6.27). Note also that

h propagates at exactly speed c in the n = 3 case, and that E3(x, t) is represented by

a surface integral along ‖x‖ = ct, not by a locally integrable function. The procedure

for getting E3(x, t) also suggests that for n > 3 odd, En(x, t) is expected to involve

derivatives of the δ function supported on ‖x‖ = ct, so will be more singular in some

sense.

Using Duhamel’s principle, we obtain a solution of the non-homogeneous version

of the 3-dimensional (6.27) as

u(x, t) =
1

4πc2t

∫
‖x−y‖=ct

h(y) dσ(y) +
∂

∂t

(
1

4πc2t

∫
‖x−y‖=ct

g(y) dσ(y)

)
+

1

4πc2

∫ t

0

∫
‖x−y‖=c(t−s)

f(y, s)

t− s
dσ(y)ds.

This formula is called the Kirchhoff’s formula.

The last term is an integral over a section of the cone {(y, s) ∈ R4 : ‖x − y‖ =

c(t − s), 0 ≤ s ≤ t} in R4 with vertex (x, t), which can be parametrized as a graph

over the ball {y ∈ R3 : ‖x− y‖ ≤ ct}, and allows one to rewrite the integral as∫ t

0

∫
‖x−y‖=c(t−s)

f(y, s)

t− s
dσ(y)ds =

∫
‖x−y‖≤ct

f(y, t− ‖x−y‖
c

)

‖x− y‖
dy.

Note that the integral is a weighted integral of f(y, t − ‖x−y‖
c

) with a retarded time

t− ‖x−y‖
c

.
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The approach we used to obtain the fundamental solution for the wave equation

may seem somewhat ad hoc; we choose this approach to illustrate the need to use

whatever approach that is effective, instead of insisting on using only one approach.

In the exercises we will explore the method of spherical means and the method of

descent to solve (6.27).

Let’s record here the Euler-Poisson-Darboux equation in Rn satisfied by the spher-

ical mean of a function h(x) defined by

Mh(r; x) =
1

|∂Br(x)|

∫
∂Br(x)

h(y) dσ(y) = |Sn−1|−1

∫
Sn−1

h(x + rωωω) dσ(ωωω).

The Euler-Poisson-Darboux equation is

∆xMh(r; x) =

(
∂2

∂r2
+
n− 1

r

∂

∂r

)
Mh(r; x). (6.31)

The proof for the three dimensional case above generalizes readily. For those who

are not comfortable working with the spherical Laplace operator, here is another

proof.

Start with∫ r

0

∫
Sn−1

∆xh(x + sωωω)sn−1 dωωωds

=

∫
‖z‖<r

∆xh(x + z) dz =

∫
‖z‖<r

∆zh(x + z) dz

=

∫
Sn−1

∂h(x + rωωω)

∂r
rn−1 dσ(ωωω) (using the divergence theorem)

=rn−1 ∂

∂r

(∫
Sn−1

h(x + rωωω) dσ(ωωω)

)
.

Then differentiating with respect to r to obtain

rn−1

∫
Sn−1

∆xh(x + rωωω) dσ(ωωω) =
∂

∂r

[
rn−1 ∂

∂r

](∫
Sn−1

h(x + rωωω) dσ(ωωω)

)
.

This then gives

∆xMh(r; x) = |Sn−1|−1

∫
Sn−1

∆xh(x + rωωω) dσ(ωωω)

= r1−n ∂

∂r

[
rn−1 ∂

∂r

]
Mh(r; x)

=

(
∂2

∂r2
+
n− 1

r

∂

∂r

)
Mh(r; x).
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Define ∆ωωω[h(rωωω)] through the relation

∆zh(z) =

(
∂2

∂r2
+
n− 1

r

∂

∂r

)
h(rωωω) +

∆ωωω[h(rωωω)]

r2
,

then the same relation above can also be recognized as∫
Sn−1

[(
∂2

∂r2
+
n− 1

r

∂

∂r

)
h(x + rωωω) +

∆ωωω[h(x + rωωω)]

r2

]
dσ(ωωω)

=

∫
Sn−1

∆zh(x + rωωω) dσ(ωωω)

=r1−n ∂

∂r

[
rn−1 ∂

∂r

](∫
Sn−1

h(x + rωωω) dσ(ωωω)

)
=

∫
Sn−1

r1−n ∂

∂r

[
rn−1 ∂

∂r

]
h(x + rωωω) dσ(ωωω).

Comparing both sides gives∫
Sn−1

∆ωωω[h(x + rωωω)] dσ(ωωω) = 0,

which is used in the derivation for the three dimensional Euler-Poisson-Darboux equa-

tion.

Exercises

Exercise 6.8.1. Prove that (6.28) is equivalent to (6.29). Furthermore, any matrix

satisfying (6.28) must have detA = ±1, and

T−1
ij =


Tji i, j ≥ 1 or i = j = 1

−c−2Tj1 i = 1, j ≥ 2

−c2T1i i ≥ 2, j = 1

Exercise 6.8.2. Prove that in R3∫
‖x‖=ct

eix·ξξξ dσ(x) = 4πct
sin(‖ξξξ‖ct)
‖ξξξ‖

,

and use this to confirm that

F

[
δ(‖x‖ − ct)

4πc2t

]
=

sin(‖ξξξ‖ct)
c‖ξξξ‖

in R3.

Exercise 6.8.3. Suppose that E(r, t) is a solution of

∂2
tE(r, t)− c2

[
∂2
r +

m

r
∂r

]
E(r, t) = 0.
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(i). Verify that F (r, t) = ∂rE(r, t)/r is a solution of

∂2
t F (r, t)− c2

[
∂2
r +

m+ 2

r
∂r

]
F (r, t) = 0.

(ii). Verify that G(r, t) = rm−1E(r, t) is a solution of

∂2
tG(r, t)− c2

[
∂2
r +
−m+ 2

r
∂r

]
G(r, t) = 0.

(iii). Use (i) and (ii) to solve radial solutions to (6.27) for the cases of n = 3, 5.

Answer: Extend u(r, 0) = g(r) and ut(r, 0) = h(r) as even functions for r ∈ R.

Then for n = 3,

u(r, t) =
1

2cr

∫ r+ct

r−ct
h(s)s ds+

∂

∂t

(
1

2cr

∫ r+ct

r−ct
g(s)s ds

)
;

and for n = 5,

u(r, t) =
1

4cr3

∫ r+ct

r−ct

[
(r2 − c2t2) + s2

]
h(s)s ds+

∂

∂t

(
1

4cr3

∫ r+ct

r−ct

[
(r2 − c2t2) + s2

]
g(s)s ds

)
.

Exercise 6.8.4. Given u(x, t) and h(x), define the spherical mean of h as at the end

of this section and that of u(x, t) as

Mu(r; x, t) =
1

|∂Br(x)|

∫
∂Br(x)

u(y, t) dσ(y) = |Sn−1|−1

∫
Sn−1

u(x + rωωω, t) dσ(ωωω).

(i). Verify that if [∂2
t − c2∆x]u(x, t) = 0, then

∂2
tMu(r; x, t)− c2

(
∂2

∂r2
+
n− 1

r

∂

∂r

)
Mu(r; x, t) = 0.

(ii). Verify that Mu(r; x, 0) = Mu(·,0)(r; x) and Mut(·,0)(r; x) = ∂tMu(r; x, t)
∣∣
t=0

.

(iii). Suppose that u(x, t) solves (6.27). Construct a corresponding IVP forMu(r; x, t)

in the variables (r, t), and construct its solution for n = 3, 5. Hint: Use the

previous exercise.

(iv). Using u(x, t) = limr↘0Mu(r; x, t) to construct a solution of (6.27).

Exercise 6.8.5. This exercise works out the method of descent, which is a method

for solving (6.27) in dimension n−1, if the solution formula is known in dimension n.

We will use n = 3 to illustrate how this works. For the given g and h in R2, we extend
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them to R3 by g̃(x1, x2, x3) = g(x1, x2), and h̃(x1, x2, x3) = h(x1, x2), then note that

ũ(x1, x2, x3, t) = u(x1, x2, t) solves the wave equation in dimension 3, and use the

solution formula for the wave equation in dimension 3 and evaluate ũ(x1, x2, x3, t) at

(x1, x2, 0, t) to construct a solution of (6.27) in dimension 2:

u(x1, x2, t) =
1

4πc2t

∫∫
‖(x1,x2,0)−y‖=ct

h̃(y) dσ(y)+
∂

∂t

(
1

4πc2t

∫∫
‖(x1,x2,0)−y‖=ct

g̃(y) dσ(y)

)
.

Note that {y ∈ R3 : ‖(x1, x2, 0)− y‖ = ct} is given by two halves of the hemispheres

y3 = ±
√

(ct)2 − (y1 − x1)2 − (y2 − x2)2. Prove that∫∫
‖(x1,x2,0)−y‖=ct

h̃(y) dσ(y) =

∫∫
(y1−x1)2+(y2−x2)2<(ct)2

2ct h(y1, y2)√
(ct)2 − (y1 − x1)2 − (y2 − x2)2

dy,

which establishes

u(x1, x2, t) =
1

2πc

∫∫
(y1−x1)2+(y2−x2)2<(ct)2

h(y1, y2)√
(ct)2 − (y1 − x1)2 − (y2 − x2)2

dy

+
∂

∂t

(
1

2πc

∫∫
(y1−x1)2+(y2−x2)2<(ct)2

g(y1, y2)√
(ct)2 − (y1 − x1)2 − (y2 − x2)2

dy

)
.

Note that making the change of variables (y1, y2) = (x1, x2) + r(cos θ, sin θ), then

r = ct sin s, the second integral reduces to

1

2πc

∫∫
(y1−x1)2+(y2−x2)2<(ct)2

g(y1, y2)√
(ct)2 − (y1 − x1)2 − (y2 − x2)2

dy = t

∫ π
2

0

Mg(ct sin s;x) sin s ds,

where Mg(ct sin s;x) = (2π)−1
∫ 2π

0
g(x1 + ct sin s cos θ, x2 + ct sin s sin θ) dθ.

Exercise 6.8.6. The method of descent can also be used to solve the Cauchy problem

for the Telegraph equation
utt − c2uxx +m2u = 0 x ∈ R, t ∈ R,

u(x, 0) = g(x), x ∈ R,

ut(x, 0) = h(x), x ∈ R,

where m ∈ R is a real parameter. Construct u(x, t) by considering v(x, y, t) =

cos(my/c)u(x, t), which would solve a 2-dimensional wave equation. Use the method

of descent as described in the last Exercise to verify that

u(x, t) =
1

2c

∫ x+ct

x−ct
J0(

m

c

√
(ct)2 − |x− z|2)h(z) dz

+
∂

∂t

(
1

2c

∫ x+ct

x−ct
J0(

m

c

√
(ct)2 − |x− z|2)g(z) dz

)
,
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where J0(s) = 2
π

∫ π
2

0
cos(s sin θ)dθ is the Bessel function of order 0, solving sJ ′′0 (s) +

J ′0(s)+sJ0(s) = 0, with J0(0) = 1. J0(s) decreases from 1 at s = 0 to about −0.4, and

then starts to oscillate around 0 as s→∞, and has an asymptotic
√

2
πs

cos(s− π
4
) as

s→∞, so the above integral representation indicates that solutions to the Telegraph

equation still have a propagation speed ≤ c, and the solution in terms of the initial

data is weighted more heavily around |x− z| = ct.

Exercise 6.8.7. A solution of the Cauchy problem for the Telegraph equation can

also be constructed using Fourier’e method. Verify that a solution with g = 0 can be

constructed as

(2π)−1

∫
R
ĥ(ξ)

sin(
√
ξ2 +m2t)√
ξ2 +m2

eixξdξ.

Based on this construction, a fundamental solution would be given by
∫
R

sin(
√
ξ2+m2t)√
ξ2+m2

eixξdξ,

namely, the inverse Fourier transform of
sin(
√
ξ2+m2t)√
ξ2+m2

. But a direct evaluation of this

inverse Fourier transform is not easy; and it would take additional efforts to see the

phenomenon of finite speed of propagation from this approach. Also use different

approaches to investigate the solution of
utt − c2uxx −m2u = 0 x ∈ R, t ∈ R,

u(x, 0) = g(x), x ∈ R,

ut(x, 0) = h(x), x ∈ R,
and compare the approaches.

Exercise 6.8.8. Solutions to the Telegraph equation utt(x, t)−c2∆xu(x, t)+λu(x, t) =

0 for (x, t) ∈ Rn × R which are invariant under the Lorentz transformations can be

expressed as u(x, t) = U(s), where s =
√
c2t2 − ‖x‖2. Verify that U(s) would satisfy

U ′′(s) + n
s
U ′(s) + λ

c2
U(s) = 0, and that, if λ = m2 > 0, then V (s) = s

n−1
2 U( cs

m
) would

satisfy Bessel’s equation of order n−1
2

: s2V ′′(s) + sV ′(s) +
[
s2 −

(
n−1

2

)2
]
V (s) = 0.

Use this relation to establish that, for n = 1,

E(x, t) =

 1
2c
J0(m

c

√
c2t2 − |x|2) if |x| < ct,

0 otherwise,

is a fundamental solution of utt − c2uxx +m2u = 0.

Exercise 6.8.9. Use the method of descent to construct a solution of the boundary

value problem for the Helmholtz equation on the upper half plane{
uxx + uyy −m2u = 0 (x, y) ∈ R× R+,

u(x, 0) = g(x), x ∈ R,
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Does the method work if the equation uxx +uyy−m2u = 0 is replaced by uxx +uyy +

m2u = 0? Try also the Fourier’s method.

Exercise 6.8.10. Use a similar approach as in the text to prove that

E5(x, t) =


δ(‖x‖−ct)−‖x‖∂‖x‖δ(‖x‖−ct)

3c|S4|r3 t > 0

0 t ≤ 0

defines a fundamental solution of the wave operator ∂2
t − c2∆x in dimension 5. Here

for a test function φ ∈ C2
c (R5), and t > 0,

〈E5(·, t), φ〉 =(3c|S4|)−1

[∫
‖x‖=ct

φ(x)

‖x‖3
dσ(x)−

∫
S4

∫ ∞
0

∂rδ(‖x‖ − ct)
[
r2φ(rωωω)

]
drdωωω

]
=(3c|S4|)−1

[∫
‖x‖=ct

φ(x)

‖x‖3
dσ(x) +

∫
S4

∫ ∞
0

δ(‖x‖ − ct)∂r
[
r2φ(rωωω)

]
drdωωω

]
=(3c|S4|)−1

[∫
‖x‖=ct

φ(x)

‖x‖3
dσ(x) +

∫
S4

∂r
[
r2φ(rωωω)

] ∣∣∣
r=ct

dωωω

]
=(3c|S4|)−1

[
3ct

∫
S4

φ(ctωωω) dωωω + (ct)2∂r

(∫
S4

φ(rωωω) dωωω

) ∣∣∣
r=ct

]
.

Thus we expect u(x, t) = (3c|S4|)−1
[
3ct
∫
S4 h(x + ctωωω) dωωω + (ct)2∂r

(∫
S4 h(x + rωωω) dωωω

) ∣∣∣
r=ct

]
to define a solution of (6.27) in dimension 5 with u(x, 0) = 0, and ut(x, 0) = h(x).
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Chapter 7

Hadamard-Petrowsky

Wellposedness Condition for

Cauchy Problems

In chapter 1, we made a preliminary discussion on the well-posedness issue. In dis-

cussing the prototype heat and wave equations, we found that the Cauchy problem

for the heat equation is well-posed for forward time, but not well-posed for backward

time; while the wave equation is well-posed for both forward and backward time. In

this chapter we study the Hadamard-Petrowsky well-posedness criteria for the Cauchy

problem of a general constant coefficient differential operator. We will only outline

the main ideas here; please refer to chapter 5 of Fritz John’s text [J] and chapter 3

of Jeffrey Rauch’s text [R] for full details.

7.1 Hadamard-Petrowsky Wellposedness Condition

We will discuss the Cauchy problem of a general constant coefficient differential op-

erator such that the initial value is posed on a hypersurface of the type Σ = {(x, t) :

x ∈ Rn, t = t0}. Here t is singled out as a distinguished variable, and we then write

the m-th order differential operator P =
∑

j+|α|≤m cjα∂
α
x∂

j
t in descending order of

differentiation in t:

P =
l∑

j=0

cj(∂x)∂jt ,

where cj(∂x) is a differential operator of order mj in x such that mj + j ≤ m.

If l = m, then cm is a constant; if we further assume that cm 6= 0, then the
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CHAPTER 7. HADAMARD-PETROWSKY WELLPOSEDNESS CONDITION

hyperplane Σ is said to be non-characteristic with respect to the operator P . In

general we will assume that the leading term cl(iξξξ) 6= 0 for all ξξξ ∈ Rn (recall that

cl(∂x)eix·ξξξ = cl(iξξξ)e
ix·ξξξ); in fact, we will assume that cl(iξξξ) is a non-zero constant,

normalized to be 1, so that

P = ∂lt +
l−1∑
j=0

cj(∂x)∂jt .

The Cauchy problem for P with Σ as the hypersurface for initial data is formulated

as  Pu(x, t) = f(x, t) for (x, t) ∈ Rn × (t1, t2),

∂jtu(x, t0) = gj(x) for x ∈ Rn, 0 ≤ j ≤ l − 1,
(7.1)

where t0 ∈ [t1, t2], and gj(x) are prescribed functions with sufficient regularity (and

compact support or fast enough decay at spatial infinity, if needed); we will also

assume f(x, t) to have sufficient regularity, and compact support or fast enough decay

at spatial infinity, if needed. We will often take t0 = 0 and [t1, t2] to be [0, T ], or

[−T, 0], or [−T, T ] for some T > 0.

Example 7.1. The Cauchy problem for ∂2
t − c2∆x with {t = 0} as initial surface

would be the same as (3.3); {t = 0} is non-characteristic with respect to ∂2
t − c2∆x.

{t = 0} as an initial surface for the Cauchy problem of ∂t −∆x is characteristic,

as the highest order differentiation in t is 1, while this operator is second order.

The Cauchy problem for ∂2
x + ∂2

y with {y = 0} as an initial surface is
uxx(x, y) + uyy(x, y) = 0 x ∈ R, y ∈ [−T, T ],

u(x, 0) = g(x) x ∈ R,

uy(x, 0) = h(x) x ∈ R.

{y = 0} is non-characteristic for this Cauchy problem. Note the difference between

this Cauchy problem and the boundary value problem{
uxx(x, y) + uyy(x, y) = 0 x ∈ R, y ∈ (0,∞),

u(x, 0) = g(x) x ∈ R,

which has a bounded continuous solution for any bounded continuous g on R. This

indicates that the Cauchy problem for the Laplace equation is not well-posed, as there

would be no freedom to prescribe uy(x, 0).
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We now formulate a more definite form of the well-posedness for (7.1). Recall that

for the wave equation—when P = ∂2
t − c2∂2

x, we proved that for any gj ∈ C∞(R),

j = 0, 1, f ∈ C∞(R2), there is a unique solution u(x, t) defined on R× [t1, t2], which

depends on gj’s and f in a continuous fashion. In this case we can keep track of the

differentiability of u in relation to that of f and gj’s, but we decide not to keep an

exact account here, as we would like to leave some flexibility when dealing with more

general operators.

Continuity in C∞(R× [t1, t2]) or C∞(R) can not be measured in terms of a single

norm. However, either of the above spaces carries a countable number of natural

norms of the form maxK{|∂kx∂
j
tu(x, t)| : k ≤ m, j ≤ l} or maxK{|∂kxg(x)| : k ≤ m},

where K is compact, and these can be used to define a metric on these spaces so that

they are complete metric spaces.

Furthermore, in the case of wave equation, we know that for any compact set K

of R× [t1, t2], there is a compact set V such that the value of u on K is determined

by that of f on V and of gj’s on V ∩ (Rn × {t0}). In addition, using the metric on

C∞(Rn× [t1, t2]) the continuous dependence of solution on data in the well-posedness

of (7.1) can be formulated as follows:

For any compact K ⊂ Rn × [t1, t2], for any l1,m1 ∈ Z≥0, there exist a

compact set V ⊂ Rn × [t1, t2], l2,m2,m3 ∈ Z≥0, and a constant C > 0

depending on P , K, l1, and m1 such that for any u ∈ C∞(Rn × [t1, t2]),

we have

max
K
{|∂kx∂

j
tu(x, t)| : k ≤ m1, j ≤ l1}

≤C
[
max
V
{|∂kx∂

j
tPu(x, t)| : k ≤ m2, j ≤ l2}+ max

V ∩Σ
{|∂kx∂

j
tu(x, t0)| : k ≤ m3, j ≤ l − 1}

]
(7.2)

(7.2) says that the map

u 7→ (Pu, u(x, t0), ∂tu(x, t0), · · · , ∂l−1
t u(x, t0))

as a map from C∞(Rn × [t1, t2]) 7→ C∞(Rn × [t1, t2])× Πl−1
j=0C

∞(Rn)

has a continuous inverse.

For the Cauchy problem of the heat equation, we learned that in order to have

a well-posed Cauchy problem, some growth restriction on g, f , and u is needed; in

addition, solutions to the heat equation have infinite speed of propagation, so using

(7.2) as well-posedness for the Cauchy problem for equations such as the heat equation

would not be appropriate, as (7.2) would imply a finite speed of propagation. One
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way to deal with these issues is to work in the space S (Rn) of Schwartz functions.

which are defined as smooth functions in Rn For simplicity, we will not provide details

of the well-posedness formulation in this framework. We will instead use an L2 based

framework.

We now reformulate the well-posedness of (7.1) on [0, T ] in the L2 framework as

follows. Define Xk = {u ∈ C([0, T ], Hk(Rn)) : ∂jtu ∈ C([0, T ], Hk−j(Rn)), 1 ≤ j ≤ k},
with ||u||Xk :=

∑k
j=0 max0≤t≤T ||∂jtu(·, t)||Hk−j(Rn).

(7.1) is well-posed on [0, T ], if there exist k ≥ m, k1, k2 ∈ Z≥0 such that

for any f ∈ Xk1 , gj ∈ Hk2−j(Rn), there is a unique solution u ∈ Xk to

(7.1). Furthermore, there exists C > 0 depending only on P , T , and on

k, k1, k2, such that

||u||Xk ≤ C

[
||f ||Xk1

+
l−1∑
j=0

||gj||Hk2−j(Rn)

]
, (7.3)

for all f ∈ Xk1 , gj ∈ Hk2−j(Rn).

This is a first attempt to formulate the well-posedness in the L2 framework, as we

are not being careful in differentiating the possibly different orders of differentiability

in t and x, such as appeared in the heat equation; but that can be accommodated

easily by modifying the above formulation accordingly.

Formulation (7.2) is easier to work with. We will first use (7.2) to derive a neces-

sary condition for the well-posedness of (7.1). We take t0 = 0, T > 0, K to be the set

of a single point {(0, T )} ⊂ Rn×[0, T ], l1 = m1 = 0, and apply it to u(x, t) = ei(x·ξξξ+τt),

where ξξξ ∈ Rn, and τ is chosen so that Pei(x·ξξξ+τt) =
∑l

j=0 cj(iξξξ)(iτ)j = 0, then, since

P [ei(x·ξξξ+τt)] = 0, the condition (7.2) becomes

e−Im(τ)T = |u(0, T )| ≤C
[
max
V ∩Σ
{|∂αx∂

j
t [e

i(x·ξξξ+τt)]| : |α| ≤ m3, j ≤ l − 1}
]

≤C max{|ξξξ|k|τ |j : k ≤ m3, j ≤ l − 1}.
(7.4)

Since τ is determined through
∑l

j=0 cj(iξξξ)(iτ)j = 0, and we have normalized

cl = 1, we see that there exists C ′ > 0 depending on P such that any root τ of this

equation satisfies

|τ | ≤ C ′(1 + |ξξξ|)m−l+1. (7.5)
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(7.5) follows from

|τ |l ≤
l−1∑
j=0

|cj(iξξξ)||τ |j

≤
l−1∑
j=0

C ′′(1 + |ξξξ|)m−j|τ |j

≤
l−1∑
j=0

C ′′
[
ε|τ |l + ε−

j
l−j (1 + |ξξξ|)

m−j
l−j l
]
,

and by choosing ε > 0 sufficiently small, we obtain the inequality

|τ |l ≤ 2C ′′
l−1∑
j=0

ε−
j
l−j (1 + |ξξξ|)

m−j
l−j l ≤ C ′(1 + |ξξξ|)(m−l+1)l,

for some C ′ > 0, from which (7.5) follows. (7.4) and (7.5) then imply that any root

τ of
∑l

j=0 cj(iξξξ)(iτ)j = 0 would satisfy

e−Im(τ)T ≤ C ′′(1 + |ξξξ|)b for some C ′′ > 0, b > 0, and all ξξξ ∈ Rn. (7.6)

(7.6) is a condition on the roots of the polynomial associated with the operator

P , and is a necessary condition for the well-posedness of (7.1) on Rn × [0, T ]. It

is referred to as the Hadamard-Petrowsky well-posedness condition; and in some

sources it is also referred to as the G̊arding’s condition.

(7.6) is equivalent to

−Im(τ) ≤ b′ ln(1 + |ξξξ|) + c for some b′ > 0, c, and all ξξξ ∈ Rn.

Based on a theorem of Seidenberg-Taski on the roots of polynomials, the above con-

dition is equivalent to

−Im(τ) ≤M for some M , and all ξξξ ∈ Rn. (7.7)

If we use the formulation (7.3), we can still arrive at (7.6) and (7.7) as follows. We

would take u(x, t) = ei(x·ξξξ+τt)η(x), where ξξξ ∈ Rn, τ is still chosen so that Pei(x·ξξξ+τt) =∑l
j=0 cj(iξξξ)(iτ)j = 0, η ∈ C∞c (Rn) is a cut-off function such that η ≡ 1 in Br and

support(u) ⊂ B2r for r large, with |∇kη| ≤ Ck/R
k for some Ck > 0 independent of

R. Note that

max
0≤t≤T

||u(·, t)||Hk(Rn) ≥ ||u(·, T )||L2(Rn) ≥ e−Im(τ)T |BR|1/2,
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while

P [ei(x·ξξξ+τt)η(x)] = η(x)P [ei(x·ξξξ+τt)] +Q(ei(x·ξξξ+τt), ∂xη) = Q(ei(x·ξξξ+τt), ∂xη)

where Q(ei(x·ξξξ+τt), ∂xη) represents certain differential operator acting on ei(x·ξξξ+τt) and

∂xη, is bilinear in ei(x·ξξξ+τt) and ∂xη, and contains derivatives of η of order 1 or higher,

so for 0 ≤ t ≤ T ,

||∂jtPu(·, t)||Hk1−j(Rn)

≤||∂jtQ(ei(x·ξξξ+τt), ∂xη)||Hk1−j(Rn)

≤C(1 + |ξξξ|)k1−j|τ |je−Im(τ)T |B2R(0) \BR(0)|1/2/R.

Similarly

||∂jt
(
ei(x·ξξξ+τt)η(x)

) ∣∣
t=0
||Hk2−j(Rn) ≤ C(1 + |ξξξ|)k2−j|τ |j|B2R(0)|1/2.

Putting these in (7.3), and noting that |BR(0)|, |B2R(0) \ BR(0)|, and |B2R(0)| are

comparable — all a constant multiple of Rn, so after dividing through by Rn and

noting the additional R−1 factor in front of the first term on the right hand side, by

sending R→∞, we arrive at (7.4) again.

The main theorem of this chapter is the following

Theorem 7.1. Let P =
∑l

j=0 cj(∂x)∂jt be a constant coefficient differential operator

of order m such that cl(iξξξ) 6= 0 for all ξξξ ∈ Rn. Then (7.1) is well-posed on [0, T ] for

some T > 0 iff (7.7) is satisfied.

(7.1) is well-posed on [−T, 0] for some T > 0 iff

there exists some M > 0 such that for all ξξξ ∈ Rn, and all roots τ of
l∑

j=0

cj(iξξξ)(iτ)j = 0,

Im(τ) ≤M.

(7.8)

As a consequence, (7.1) is well-posed on [−T, T ] for some T > 0 iff there exists some

M > 0 such that for all ξξξ ∈ Rn, and all roots τ of
∑l

j=0 cj(iξξξ)(iτ)j = 0, |Im(τ)| ≤M .

Definition. When {t = t0} is non-characteristic with respect to P , and both (7.7)

and (7.8) are satisfied, we say that P is hyperbolic with respect to t.

Remark 7.1. If {t = t0} is non-characteristic with respect to P , then (7.7) and (7.8)

imply each other. This is because the sum of the roots τ is a degree 1 polynomial in

ξ by Vieta’s theorem for roots of polynomials. Either (7.7) or (7.8) would imply that

the imaginary part of this degree 1 polynomial must be a constant.
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In checking (7.7) or (7.8), what matters is the behavior of Im(τ) when |ξξξ| is large,

or more importantly, whether all solutions of the form ei(x·ξξξ+τt) for ξξξ ∈ Rn have

bounded or at most polynomial growth in |ξξξ| at some relevant t 6= 0. If this is the

case, we can at least choose initial data to be in the Schwartz class so that ĝj(ξξξ)

decays faster than any negative power of |ξξξ| as ξξξ →∞, and construct solutions to the

homogeneous case of (7.1) in the form of linear combination of
∫
Rn aj(ξξξ)e

i(x·ξξξ+τj(ξξξ)t) dξξξ.

Counting multiplicity,
∑l

j=0 cj(iξξξ)(iτ)j = 0 has l solutions for each ξξξ ∈ Rn; and we

need all l solutions to satisfy (7.7) or (7.8) so as to use all of them in the construction

of solutions to (7.1) to satisfy the l initial conditions in (7.1). For boundary value

problems on the half space or Rn×[t1, t2], such as the one for the Laplace equation, we

only need some of the roots of
∑l

j=0 cj(iξξξ)(iτ)j = 0 to behave in a favorable way, such

as in (7.7), so as to be used in constructing solutions. This is a heuristic explanation

for the difference between the well-posedness for a Cauchy problem and that for a

boundary value problem—we will not have space to discuss general boundary value

problems and their well-posedness—the most studied boundary value problems are

elliptic boundary value problems, and the boundary conditions that correspond to

well-posedness are referred to as the Shapiro-Lopatinski conditions; we just mention

that, although the technical results on these boundary value problems may look very

different, their analysis is rooted in similar considerations as sketched here using

Fourier analysis and information on the roots to
∑l

j=0 cj(iξξξ)(iτ)j = 0 to construct

solutions to the boundary value problem with the prescribed boundary conditions.

When {t = t0} is non-characteristic with respect to P , the behavior of the roots

to
∑l

j=0 cj(iξξξ)(iτ)j = 0 is reflected in the behavior of the roots to the principal part

Pm :=
∑

j+|α|=m cjα∂
α
x∂

j
t of P .

Proposition 7.2. Suppose that {t = t0} is non-characteristic with respect to P , and

(7.7) or (7.8) are satisfied, then all roots to
∑

j+|α|=m cjα(iξξξ)α(iτ)j = 0 must be real.

Definition. If {t = t0} is non-characteristic with respect to P , and for any ξξξ 6= 0 ∈
Rn, the roots τ to the principal part of P , Pm(iξξξ, iτ) = 0 are real and distinct, then

we say P is strictly hyperbolic with respect to {t = t0}.

Proposition 7.3. Suppose that P is strictly hyperbolic with respect to {t = t0}, then

P satisfies (7.7) and (7.8).

Example 7.2. For P1 = ∂2
t − c2∆x, we need to examine the growth in ξξξ of solutions

of the form ei(x·ξξξ+τt) for t 6= 0, which are determined by the roots to (iτ)2 +c2|ξξξ|2 = 0.

The roots are τ = ±c|ξξξ| ∈ R, so Im(τ) = 0, |ei(x·ξξξ+τt)| = 1, and both (7.7) and (7.8)
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are satisfied. By Theorem 7.1, the Cauchy problem for P1 = ∂2
t − c2∆x with t = t0 as

hypersurface for initial data is well-posed for both forward and backward evolution.

P1 is strictly hyperbolic with respect to {t = t0}.

For P2 = ∂t − ∆x, we need to examine the growth in ξξξ ∈ Rn of solutions of

the form ei(x·ξξξ+τt) for t 6= 0, which are determined by the roots to iτ + |ξξξ|2 = 0.

τ = i|ξξξ|2. (7.7) is satisfied, but (7.8) is not satisfied: |ei(x·ξξξ+τt)| = e−|ξξξ|
2t, so the

Cauchy problem for P2 = ∂t −∆x with t = t0 as hypersurface for initial data is well-

posed for forward evolution, but not well-posed for backward evolution. However, if

we choose {(x, t) : x = 0} as the surface for initial data (assuming x ∈ R), then we

need to examine the growth in τ ∈ R of solutions of the form ei(xξ+τt) for τ ∈ R: we

still have iτ + ξ2 = 0, from which we have ξ = ±
√
−iτ , and |ei(xξ+τt)| = e±x

√
|τ |/2,

one of which would grow exponentially with |τ | for x 6= 0. So the Cauchy problem

for P2 with {(x, t) : x = 0} as the surface for initial data is not well-posed.

For P3 = ∂2
t + ∆x (the Laplace operator in Rn+1), we need to examine the the

growth in ξξξ ∈ Rn of solutions of the form ei(x·ξξξ+τt) for t 6= 0, which are determined

by the roots to (iτ)2 − |ξξξ|2 = 0. τ = ±i|ξξξ|. So neither (7.7) nor (7.8) is satisfied:

|ei(x·ξξξ+τt)| = e±|ξξξ|t; at any t 6= 0, one solution grows exponentially in |ξξξ|. The Cauchy

problem for P3 = ∂2
t +∆x with t = t0 as hypersurface for initial data is not well-posed

for either forward or backward evolution. However, we can use the well behaved root

to establish the well-posedness of a boundary value problem (prescribing either u(x, 0)

or ut(x, 0)) on Rn × R+ for P3.

For P4 = i∂t − ∆x, we need to examine the growth in ξξξ ∈ Rn of solutions of

the form ei(x·ξξξ+τt) for t 6= 0, which are determined by the roots to −τ + |ξξξ|2 = 0.

τ = |ξξξ|2. Both (7.7) and (7.8) are satisfied: |ei(x·ξξξ+τt)| = 1. By Theorem 7.1, the

Cauchy problem for P4 = i∂t − ∆x with t = t0 as hypersurface for initial data is

well-posed for both forward and backward evolution.

Consider the following perturbation of P1: P5 = ∂2
t − c2∂2

x +a∂t + b∂x +d for some

constants a, b, and d. We need to examine the growth in ξ ∈ R of solutions of the form

ei(xξ+τt) for t 6= 0, which are determined by the roots to (iτ)2+c2|ξ|2+iaτ+ibξ+d = 0.

The roots are given by

τ =
ia

2
±
√
c2|ξ|2 + ibξ + d− a2

4
.

What matters in verifying (7.7) or (7.8) is the behavior of Im(τ) when |ξ| is large.

316



7.1. HADAMARD-PETROWSKY WELLPOSEDNESS CONDITION

But when |ξ| → ∞,

τ =
ia

2
± c|ξ|

√
1 +

ibξ + d− a2

4

c2|ξ|2

=
ia

2
± c|ξ|

[
1 +

ibξ + d− a2

4

2c2|ξ|2
+ o(

1

|ξ|
)

]

=
ia

2
±

[
c|ξ|+

ibξ + d− a2

4

2c|ξ|
+ o(1)

]
.

From this it is clear that Im(τ) remains bounded for all ξ ∈ R, so the Cauchy problem

for P5 with t = t0 as hypersurface for initial data is well-posed for both forward and

backward evolution.

Consider the following perturbation of P4: P6 = i∂t − ∂2
x + b∂x. We need to

examine the roots to −τ + |ξ|2 + ibξ = 0. If b 6= 0 is real, we see that Im(τ) = bξ,

which does not satisfy either (7.7) or (7.8). Thus the Cauchy problem for P6 with

t = t0 as hypersurface for initial data is not well-posed for either forward or backward

evolution.

This difference of behavior of the well-posedness under lower order term pertur-

bations is due to the Cauchy problem for P5 with t = t0 as hypersurface for initial

data is non-characteristic and strictly hyperbolic, while that for P6 is characteristic.

Proposition 7.2 is proved using the Implicit Function Theorem. Heuristically, if

Pm(iξξξ, iτ) = 0 had a root τ0 with Im(τ0) < 0 for some ξξξ0. Then by homogeneity,

Pm(iλξξξ0, iλτ0) = 0 for all λ ∈ R. Note that for large λ ∈ R+, Im(λτ0) = λIm(τ0)

would be a large negative number. One can use the Implicit Function Theorem to

prove that for sufficiently large λ ∈ R+, one would find a root τ to P (iλξξξ, iλτ) = 0

near (iλξξξ0, iλτ0), which would then violate (7.7). Proposition 7.3 is also proved using

the Implicit Function Theorem.

Exercises

Exercise 7.1.1. For each of the following operators, determine whether the Hadamard-

Petrowsky condition for forward or backward evolution with respect to t holds.

(i). ∂t + (∆x)
2;

(ii). ∂t − (∆x)
2;

(iii). ∂2
t + (∆x)

2;
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(iv). ∂2
t − (∆x)

2;

(v). ∂t − (∂x)
m;

(vi). ∂2
t − (∂x)

2 + ∂x;

(vii). ∂2
t + (∂x)

4 + (∂x)
3.

Exercise 7.1.2. Determine whether the Hadamard-Petrowsky condition for forward

or backward evolution with respect to y holds for the operator ∂y − i∂x. Further-

more, determine necessary and sufficient conditions on u0(x) for the existence of a C1

solution of {
(∂y − i∂x)u(x, y) = 0 x2 + y2 < 1

u(x, 0) = u0(x) |x| < 1
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7.2 Outline of Proof for Sufficiency of the Hadamard-

Petrowsky Condition

We will first do two reductions. First, by Duhamel’s principle, it suffices to establish

the solvability of (7.1) for f(x, t) ≡ 0. Second, we only need to establish the solvability

of (7.1) for f(x, t) ≡ 0, gj ≡ 0 for j = 0, · · · , l − 2, and gl−1(x) = g(x), a prescribed

function with sufficient regularity and decay. The second reduction is based on the

following. Let ug(x, t) stand for the solution of
Pu(x, t) = 0 for (x, t) ∈ Rn × (0, T ),

∂jtu(x, 0) = 0 for x ∈ Rn, 0 ≤ j ≤ l − 2,

∂l−1
t u(x, 0) = g(x) for x ∈ Rn.

(7.9)

Then note that vl−2(x, t) = [∂t + cl−1(∂x)]ugl−2
satisfies

Pvl−2(x, t) = [∂t + cl−1(∂x)]Pugl−2
(x, t) = 0,

∂jt vl−2(x, 0) =
[
∂j+1
t + cl−1(∂x)∂jt

]
ugl−2

(x, 0) = 0 if j ≤ l − 3,

∂l−2
t vl−2(x, 0) =

[
∂l−1
t + cl−1(∂x)∂l−2

t

]
ugl−2

(x, 0) = gl−2(x),

∂l−1
t vl−2(x, 0) =

[
∂lt + cl−1(∂x)∂l−1

t

]
ugl−2

(x, 0) = −
l−2∑
j=0

cj(∂x)∂jtugl−2
(x, 0) = 0.

By similar reasoning, we know that

ugl−1
+ [∂t + cl−1(∂x)]ugl−2

+
[
∂2
t + cl−1(∂x)∂t + cl−2(∂x)

]
ugl−3

+ · · ·+[
∂l−1
t + cl−1(∂x)∂l−2

t + · · ·+ c1(∂x)
]
ug0

would provide a solution of (7.1) with f ≡ 0. Thus we can focus on constructing the

solution ug to (7.9).

ug will be constructed using Fourier’s method

ug(x, t) =

∫
Rn
eix·ξξξû(ξξξ, t)dξξξ,

where û(ξξξ, t) needs to satisfy
P (∂x, ∂t)

[
eix·ξξξû(ξξξ, t)

]
= eix·ξξξP (iξξξ, ∂t)û(ξξξ, t) = 0,

∂jt û(ξξξ, 0) = 0, for 0 ≤ j ≤ l − 2,

∂l−1
t û(ξξξ, 0) = ĝ(ξξξ)
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This is an IVP for an l-th order linear ODE. Solutions to P (iξξξ, ∂t)û(ξξξ, t) = 0 can

be constructed in the form
∑
cje

iτjt, where τj are roots of P (iξξξ, iτ) = 0. When

P (iξξξ, iτ) = 0 has roots of multiplicity great than 1, additional solutions of the form

tkeiτjt need to be included.

The following formula provides a way to solve the above IVP without having to

directly address the complications caused by the possibility of higher multiplicity

roots:

û(ξξξ, t) =
ĝ(ξξξ)

2π

∫
Γ

eiλt

P (iξξξ, iλ)
dλ, (7.10)

where Γ is a closed contour in the complex plane consisting of boundary of the union of

unit disks with each root of P (iξξξ, iτ) = 0 as center, with counterclockwise orientation.

We verify that

P (iξξξ, ∂t)û(ξξξ, t) =
ĝ(ξξξ)

2π

∫
Γ

eiλtP (iξξξ, iλ)

P (iξξξ, iλ)
dλ = 0,

and

∂jt û(ξξξ, 0) =
ĝ(ξξξ)

2π

∫
Γ

(iλ)j

P (iξξξ, iλ)
dλ.

Γ has enclosed all the roots of P (iξξξ, iτ) = 0, so we can deform Γ to a large circle

|λ| = R in evaluating the above integral. When 0 ≤ j ≤ l − 2,
∣∣ (iλ)j

P (iξξξ,iλ)

∣∣ = O(R−2)

when |λ| = R >> 1, thus

∂jt û(ξξξ, 0) =
ĝ(ξξξ)

2π

∫
Γ

(iλ)j

P (iξξξ, iλ)
dλ = 0 if 0 ≤ j ≤ l − 2.

When j = l − 1, ∣∣∣ (iλ)l−1

P (iξξξ, iλ)
− 1

iλ

∣∣∣ = O(
1

R2
) when |λ| = R >> 1,

thus

∂l−1
t û(ξξξ, 0) =

ĝ(ξξξ)

2π

∫
Γ

(iλ)l−1

P (iξξξ, iλ)
dλ = ĝ(ξξξ).

Finally, under (7.6), we will use (7.10) to estimate that |û(ξξξ, t)| has rapid decay

in |ξξξ|, for 0 ≤ t ≤ T , if we choose g such that |ĝ(ξξξ)| has sufficiently rapid decay in |ξξξ|.
Using (7.6), we see that |eiτt| = e−Imτt ≤ eMT for τ being a root of P (iξξξ, iτ) = 0

and 0 ≤ t ≤ T . In fact, even when λ ∈ Γ, we know that −Imλ ≤ M + 1, so

we still have |eiλt| ≤ e(M+1)T for 0 ≤ t ≤ T . In addition, using the factorization
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P (iξξξ, iλ) = Πl
j=1(iλ − iτj(ξξξ)), we see that |P (iξξξ, iλ)| ≥ 1 when λ ∈ Γ. Using (7.5)

and the observation that the total length of Γ is at most 2lπ, it now follows that∣∣∣∂jt û(ξξξ, t)
∣∣∣

≤|ĝ(ξξξ)|
2π

∫
Γ

∣∣∣ (iλ)jeiλt

P (iξξξ, iλ)

∣∣∣|dλ|
≤|ĝ(ξξξ)|

2π

∫
Γ

∣∣∣|λ|je(M+1)T |dλ|

≤C ′|ĝ(ξξξ)|(1 + |ξξξ|)j(m−l+1)e(M+1)T .

(7.11)

Based on (7.10) and (7.11), we have

∂βx∂
j
tug(x, t) =

∫
Rn
∂jt û(ξξξ, t)(iξξξ)βeix·ξξξdξξξ,

provided |∂jt û(ξξξ, t)||ξξξ||β| ∈ L1(Rn); and a sufficient condition for |∂jt û(ξξξ, t)||ξξξ||β| ∈
L1(Rn) is that

|∂jt û(ξξξ, t)||ξξξ||β|| ≤ C ′|ĝ(ξξξ)|(1+|ξξξ|)|β|+j(m−l+1)e(M+1)T ≤ C(1+|ξξξ|)−n−1 for all ξξξ ∈ Rn.

This can be satisfied if |ĝ(ξξξ)| ≤ C(1 + |ξξξ|)−n−1−|β|−j(m−l+1). Since it’s natural to ask

that u ∈ Cm,l
x,t , we will take |β| = m and j = l in the above, then the condition becomes

|ĝ(ξξξ)| ≤ C(1 + |ξξξ|)−n−1−m−l(m−l+1). Using the relation that i|β|ξξξβ ĝ(ξξξ) = ∂̂βxg(ξξξ), we

see that this condition is satisfied if g ∈ Cn+1+m+l(m−l+1)
c (Rn).

The above argument shows that if g ∈ C
n+1+m+l(m−l+1)
c (Rn), then ug(x, t) =∫

Rn û(ξξξ, t)eix·ξξξdξξξ provides a Cm,l
x,t (Rn×[0, T ]) solution. To finish our proof for Theorem

7.1, as formulated there, we estimate ||∂jtug(x, t)||Hk−j(Rn): for |β| ≤ k − j, by using

Plancherel theorem

||∂jtug(x, t)||Hk−j(Rn) ≤||∂jt û(ξξξ, t)(iξξξ)β||L2(Rn)

≤C|||ĝ(ξξξ)|(1 + |ξξξ|)j(m−l+1)+|β|||L2(Rn)e
(M+1)T

≤Ce(M+1)T ||g||Hj(m−l)+k(Rn).

Exercises

Exercise 7.2.1. Provide a detailed justification for
∫

Γ
(iλ)l−1

P (iξξξ,iλ)
dλ = 2π.

Exercise 7.2.2. If τ is a root of P (iξξξ, iτ) = 0 with multiplicity k, and γ is a circle with

τ as center and τ is the only root of P (iξξξ, iτ) = 0 inside γ, prove that
∫
γ

eiλt

P (iξξξ,iλ)
dλ =

Ctk−1eiτt for some constant C.
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Exercise 7.2.3. Using Fourier’s method to prove that if g ∈ C5
c (R), then the Cauchy

problem {
ut − uxxx = 0 (x, t) ∈ R2

u(x, 0) = g(x) x ∈ R

has a classical solution in C3,1
x,t (R × R). Also prove that this Cauchy problem has a

(generalized) solution in C([−T, T ], H1(R)) for g ∈ H1(R) and T > 0.

Exercise 7.2.4. Prove that the Cauchy problem{
ut − uxxx − uxx = 0 (x, t) ∈ R2

u(x, 0) = g(x) x ∈ R

is well-posed for forward evolution, but not well-posed for backward evolution. Fur-

thermore, prove that the above problem has a classical solution in C3,1
x,t (R × (0, T ])

for any g ∈ L1(R) or L2(R) and T > 0, and that the solution is in C(R × [0, T ]) if

g ∈ C2
c (R) or g ∈ H1(R).

7.3 More General Formulation of Non-characteristic

and HP Conditions

Suppose we would like to solve a Cauchy problem for a differential operator P =∑
|α|≤m aα∂

α
x of constant coefficients with respect to a hyperplane H = {x ∈ Rn :∑n

j=1 νjxj = t0}, where ννν = (ν1, · · · , νn) is a unit normal vector to H. How do we

formulate the non-characteristic and HP conditions with respect to H?

This can be done via a linear change of variables to reduce the problem to one

studied in the previous section. If νn 6= 0, then we can make the change of variables

x = (x1, · · · , xn) 7→ y = (y1, · · · , yn−1, t) = (x1, · · · , xn−1,
n∑
j=1

νjxj),

and introduce v(y) = u(x). Then{
∂xju(x) = ∂yjv(y) + νj∂tv(y), for 1 ≤ j ≤ n− 1,

∂xnu(x) = νn∂tv(y).

Then ∂
αj
xj ∂

αn
xn u(x) =

(
∂yj + νj∂t

)αj (νn∂t)
αn v(y), and the principal part of P is now

Pmu =
∑
|α|=m

aα∂
α
xu(x) =

∑
|α|=m

aα
(
∂yj + νj∂t

)αj (νn∂t)
αn v(y).
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H is non-characteristic with respect to P if the coefficient of ∂mt is non-zero. But the

coefficient of ∂mt is
∑
|α|=m aα (νj)

αj (νn)αn =
∑
|α|=m aαν

α, so H is non-characteristic

with respect to P if
∑
|α|=m aαν

α 6= 0.

The Hadamard-Petrowsky (HP) condition is formulated in terms of ξξξ and τ such

that

eiy·ξξξ+iτt = eix·ξξξ+iτ(
∑n
j=1 νjxj) = eix·(ξξξ+τννν),

is a solution of Pu = 0 — the ξξξ is initially chosen to be of the form (ξ1, · · · , ξn−1, 0);

but we can allow arbitrary ξξξ, as this may only affect the real, but not the imaginary

part of τ . Since

Peix·(ξξξ+τννν) = eix·(ξξξ+τννν)P (i(ξξξ + τννν)),

condition (7.7) is now formulated as

∃1 ≤ l ≤ m such that
∑
|α|=l

aαννν
α 6= 0, and

there exists a constant C > 0 such that for any ξξξ ∈ Rn,

−Im(τ) ≤ C holds for any root τ to P (i(ξξξ + τννν)) = 0.

(7.12)

Exercises

Exercise 7.3.1. Prove that the Cauchy problem
utt(x, t)− c2uxx(x, t) = 0 (x, t) ∈ R2,

u(x, t) = u0(x, t) (x, t) ∈ H = {(x, t) : ν1x+ ν0t = h0}
ν1ux(x, t) + ν0ut(x, t) = u1(x, t) (x, t) ∈ H

is well-posed if c2ν2
1 − ν2

0 6= 0.

Exercise 7.3.2. Let H = {(x, t) ∈ Rn × R :
∑n

j=1 νjxj + ν0t = h0}, where n ≥ 2,

and (ν1, · · · , νn, ν0) is a unit vector in Rn+1. Prove that the Cauchy problem
utt(x, t)− c2∆xu(x, t) = 0 (x, t) ∈ Rn × R,

u(x, t) = u0(x, t) (x, t) ∈ H
n∑
j=1

νjuxj(x, t) + ν0ut(x, t) = u1(x, t) (x, t) ∈ H

is well-posed iff c2
∑n

j=1 ν
2
j − ν2

0 < 0.
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Chapter 8

First Order Scalar PDEs and

Notion of Shock Wave Solutions

8.1 The Method of Characteristic Curves for Solv-

ing Linear and Quasilinear First Order Scaler

PDEs

The method of characteristic curves that we used for solving the one-dimensional wave

equation can be easily extended to solve the local Cauchy problem for a quasilinear

first order scaler PDE near a given initial hypersurface Σ:
n∑
i=1

ai(x, u)uxi(x) = c(x, u), near Σ,

u(x) = g(x), on Σ.

(8.1)

Here we assume ai(x, u), i = 1, · · · , n, are locally Lipschitz functions of their argu-

ments. In the case that ai(x, u), i = 1, · · · , n, and c do not depend on u, (8.1) reduces

to a linear first order PDE:
n∑
i=1

ai(x)uxi(x) = c(x), near Σ,

u(x) = g(x), on Σ.

(8.2)

In such cases the geometric meaning of (8.2) is clear:
∑n

i=1 ai(x)uxi(x) is the direc-

tional derivative of u along the vector field X(x) = (a1(x), · · · , an(x)). X(x) is called
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the characteristic direction at x for the PDE in (8.2), The integral curves of X(x),

namely, curves {x(τ) : τ ∈ an interval} that satisfy

dxi(τ)

dτ
= ai(x(τ)), i = 1, · · · , n, (8.3)

are called characteristic curves of the PDE in (8.2).

If a solution u = u(x) exists, then along an integral curve {x(τ)}, we have

du(x(τ))

dτ
=

n∑
i=1

ai(x(τ))uxi(x(τ)) = c(x(τ)).

This last equation provides the rate of change of u(x(τ)) along the integral curve

{x(τ)}, and we can use this to solve for u: for any given x, we look for an integral

curve {x(τ)} to (8.3) subject to the initial condition that x(τ = τ0) = x, where τ0 is a

reference parameter; suppose that this integral curve exists for a long enough interval

containing τ0, and that there exists τx depending on x such that xn(τx) = 0, namely,

this integral curve hits the hyperplane xn = 0 at τ = τx, then we obtain

u(x) = u(x1(τx), · · · , xn−1(τx), 0) +

∫ τ0

τx

c(x(τ))dτ.

Here u(x1(τx), · · · , xn−1(τx), 0) is considered given initial data on the hyperplane xn =

0. The justification for this solution requires some work: conditions need to be

imposed so that τx is defined properly; and its differentiability needs to be studied.

It’s often easier to modify the procedure—to start the characteristic curves on the

initial data hyper surface at τ = 0, and rely on the Implicit Function Theorem (IFT)

to justify the solution as follows.

Let’s first illustrate the method when Σ = {x = (x1, · · · , xn−1, xn) : xn = 0}.
Then u(x1, · · · , xn−1, 0) = g(x1, · · · , xn−1) is prescribed, so uxi(x1, · · · , xn−1, 0) =

gxi(x1, · · · , xn−1), for i = 1, · · · , n− 1, are known. In order for u(x) to solve (8.2) at

(x1, · · · , xn−1, 0), We need to determine uxn(x1, · · · , xn−1, 0) from the equation (8.2).

For that purpose, we need an(x1, · · · , xn−1, 0) 6= 0. It turns out that our argument

will rely on the local existence of solution of the ODE system (8.3) and the continu-

ous dependence the solution on initial data; our first result will establish solvability

of (8.2) locally near (x1, · · · , xn−1, 0). Since we will use x = (x1, · · · , xn−1, xn) as

coordinates for points in this neighborhood, and determine u(x) in terms of g at the

point of intersection with the hyperplane Σ of the characteristic curve through x, we

will use (s, 0) as a parameter for points on Σ, where s ∈ Rn−1 takes values near some

s∗ ∈ Rn−1.
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Thus we assume an(s∗, 0) 6= 0 for some fixed (s∗, 0) ∈ Σ, so an(s, 0) 6= 0 for

s ∈ Rn−1 near s∗, and we solve for the above characteristic system (8.3) with initial

data
xi(τ = 0) = si, i = 1, · · · , n− 1; xn(τ = 0) = 0;

supplemented by
dU(τ)

dτ
= c(x(τ)), and U(τ = 0) = g(s, 0).

By the ODE theory there exists δ > 0 such that a unique solution exists for |τ | < δ.

Since the solution depends on s as well, we denote the solution by xi(τ ; s), U(τ ; s).

We next verify that the map

Φ : (s, τ) 7→ (x1(τ ; s), · · · , xn(τ ; s))

defines a local diffeomorphism from a neighborhood of (s∗, 0) in Rn to a neighborhood

of (s∗, 0). This is due to the condition that an(s∗, 0) 6= 0 and the IFT, as the Jacobian

matrix of Φ at (s∗, 0) is [
e1 · · · en−1 a

]
,

where a is the column vector [a1(s∗, 0), · · · , an(s∗, 0)]T , so the Jacobian determinant

of Φ at (s∗, 0) is an(s∗, 0), which is 6= 0. Thus there is a neighborhood W of (s∗, 0)

in which Φ−1 is well defined and C1. For any x ∈ W , let (s, τ) = Φ−1(x), then the

characteristic curve which starts at (s, 0) will pass through x at τ . Define u(x) =

U(τ ; s) for x ∈ W ; in other words u(Φ(s, τ)) = U(τ ; s). Then u(x) is a C1 function

of x in W . We claim that u(x) solves (8.2) in W and satisfies the initial condition in

W ∩ Σ. Based on the defining relation for u, u ◦ Φ(τ ; s) = U(τ ; s), it follows that

dU

dτ
=

n∑
i=1

∂u

∂xi

dxi
dτ

=
n∑
i=1

∂u

∂xi
(Φ(τ ; s))ai(Φ(τ ; s)).

But dU
dτ

= c(x(τ ; s)). Thus we have

n∑
i=1

∂u

∂xi
(Φ(τ ; s))ai(Φ(τ ; s)) = c(x(τ ; s)).

We can now conclude that at each x = Φ(τ ; s) ∈ W ,
∑n

i=1
∂u
∂xi

(x)ai(x) = c(x),

namely u(x) solves (8.2) in W . When x ∈ W ∩ Σ, Φ−1(x) = (s, 0) for some s, so

u(x) = U(0; s) = g(s, 0).

Next we need to extend the method of characteristic curves to solve (8.2) for a more

general non-characteristic initial surface; but the discussion for a non-characteristic

initial surface for (8.2) can be done at the same time as for the notion of non-

characteristic initial data for the quasilinear PDE (8.1), so we will combine the dis-

cussion in one place. We define an associated vector field in the extended space Rn+1
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whose value at (x, u) ∈ Rn+1 is the vector (a1(x, u), · · · , an(x, u), c(x, u)) and define

its characteristic curves to be the integral curves of the system of ODEs
dxi(τ)

dτ
= ai(x(τ), u(τ)), i = 1, · · · , n,

du(τ)

dτ
= c(x(τ), u(τ)).

(8.4)

Then the quasilinear PDE (8.1) is interpreted geometrically as looking for a graph

(x, u(x)) in Rn+1 which is tangential to the associated characteristic curves everywhere

on it, as (8.1) can be interpreted as

(a1(x, u), · · · , an(x, u), c(x, u)) ⊥ (ux1(x), · · · , uxn(x),−1).

The latter is a normal to the graph of u = u(x) at (x, u(x)), so the above condition

means that (a1(x, u), · · · , an(x, u), c(x, u)) is tangent to the graph of u.

To solve (8.2) or (8.1) near a general initial surface, we describe the initial surface

Σ and the initial data parametrically: locally Σ is given by

xi = φi(s1, · · · , sn−1), i = 1, · · · , n, or symbolically x = φ(s), (8.5)

where φi are regular (say C1) functions of (s1, · · · , sn−1) and satisfy the full rank

condition:  ∂1φ1 ∂1φ2 · · · ∂1φn
...

...
...

...

∂n−1φ1 ∂n−1φ2 · · · ∂n−1φn

 (8.6)

has rank n − 1 at s∗ = (s∗1, · · · , s∗n−1). Set x∗ = φ(s∗) ∈ Σ. The Cauchy data is

described as u(φ(s)) = g(φ(s)) = g̃(s).

Let’s discuss the compatibility conditions along Σ and the notion of non-characteristic

initial data. The main idea is that if u is a C1 function in a neighborhood of Σ sat-

isfying (8.1) and

u(φ1(s), · · · , φn(s)) = g̃(s),

for s in an open neighborhood of s∗, then we ought to be able to determine

uxi(φ1(s), · · · , φn(s)) for s near s∗ from these relations. Differentiating in the sj

direction of the above equation, j = 1, · · · , n− 1, we obtain

n∑
i=1

uxi(φ1(s), · · · , φn(s))∂sjφi(s) = g̃sj(s), j = 1, · · · , n− 1. (8.7)
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These n−1 linear equations in the n quantities uxi(φ1(s), · · · , φn(s)) are the compat-

ibility conditions for u and g along Σ. The equation in (8.2), or (8.1), provides one

more condition for these n quantities.

We say the Cauchy problem (8.2), or (8.1), is non-characteristic, if the Cauchy

data and equation together can determine ∇u(x) for points on Σ. In our case of

(8.2), or (8.1), we can determine uxi(φ1(s), · · · , φn(s)) completely from the Cauchy

data and the PDE, if the joint linear system (8.7) and (8.2) (or (8.1) ) is uniquely

solvable. This amounts to the condition that
∂1φ1 ∂1φ2 · · · ∂1φn

...
...

...
...

∂n−1φ1 ∂n−1φ2 · · · ∂n−1φn

a1 a2 · · · an

 is non-degenerate along Σ. (8.8)

Here the aj’s are evaluated at (φ(s), g̃(s)). Note that each (∂jφ1(s), ∂jφ2(s), · · · , ∂jφn(s))

is a tangent to Σ at φ(s), so another way to describe this non-characteristic condition

is that

(a1(φ(s), g̃(s)), · · · , an(φ(s), g̃(s))) is transversal to Σ at φ(s).

Note that for (8.2), this condition depends only on (a1(φ(s)), · · · , an(φ(s))) and Σ;

while for (8.1), this condition also depends on the initial data g̃(s).

We say Σ is a characteristic surface for (8.2) if (a1(x), · · · , an(x)) is tangent to Σ

for every x ∈ Σ. This implies that every characteristic curve of (8.2) through a point

on Σ will stay on Σ; in other words, a characteristic surface for (8.2) consists of union

of characteristic curves.

Theorem 8.1. Assume that ai(x, u), i = 1, · · · , n, and c(x, u) are C1 functions of

(x, u) near (x∗, u∗), where x∗ = φ(s∗) ∈ Σ and u∗ = g(φ(s∗)) = g̃(s∗), with g a C1

function of x near x∗. Assume the non-characteristic condition (8.8) holds at s = s∗.

Then there exists a neighborhood W of x∗ such that a unique C1 solution u = u(x)

exists to (8.1).

Proof. For s near s∗, we solve for the characteristic system (8.4) with initial data

xi(τ = 0) = φi(s), i = 1, · · · , n, U(τ = 0) = g(φ(s)).

By ODE theory there exists δ > 0 such that a unique solution exists for |τ | < δ. Since

the solution depends on s as well, we denote the solution by xi(τ ; s), and U(τ ; s). We

next verify that the map

Φ : (s, τ) 7→ (x1(τ ; s), · · · , xn(τ ; s))
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defines a local diffeomorphism from a neighborhood of (s∗, 0) in Rn to a neighborhood

of x∗. This is due to the non-characteristic condition (8.8) and the IFT, as the non-

characteristic condition (8.8) implies that the Jacobian matrix of Φ is non-degenerate

at s∗, therefore near s∗ as well. Thus there is a neighborhood W of x∗ in which Φ−1 is

well defined and C1. Define u(x) = U ◦Φ−1(x) for x ∈ W . Then u(x) is a C1 function

of x in W . We claim that u(x) solves (8.1) in W and satisfies the initial condition

in W ∩ Σ. Based on the defining relation for u, we have u ◦ Φ(s, τ) = U(τ ; s), from

which it follows that

dU

dτ
=

n∑
i=1

∂u

∂xi

dxi
dτ

=
n∑
i=1

∂u

∂xi
(Φ(s, τ))ai(Φ(s, τ), U(τ ; s)).

But dU
dτ

= c(x(τ ; s);U(τ ; s)) = c(Φ(s, τ);U(τ ; s)). Thus we have

n∑
i=1

∂u

∂xi
(Φ(s, τ))ai(Φ(s, τ), U(τ ; s)) = c(Φ(s, τ), U(τ ; s)).

We can now conclude that at each x = Φ(s, τ) ∈ W ,
∑n

i=1
∂u
∂xi

(x)ai(x, u(x)) =

c(x, u(x)), namely u(x) solves (8.1) in W . When x ∈ W ∩ Σ, Φ−1(x) = (s, 0) for

some s, so u(x) = U(0; s) = g̃(s).

The uniqueness follows from the uniqueness of the ODE system as follows. Sup-

pose that v(x) is another solution of (8.1) in W . We will prove u(x) = v(x) in W by

considering an ODE in τ of

V (τ ; s) = u(Φ(s, τ))− v(Φ(s, τ)) = U(τ ; s)− v ◦ Φ(s, τ),

where U(τ ; s) and Φ(s, τ) are as above. Note that V (0; s) = g̃(s)− g̃(s) = 0, and

dV

dτ
=
dU

dτ
−

n∑
i=1

∂v

∂xi

dxi
dτ

= c(x(τ ; s), U(τ ; s))−
n∑
i=1

∂v

∂xi
(x(τ ; s))ai(x(τ ; s), U(τ ; s))

= c(x(τ ; s), V (τ ; s) + v ◦ Φ(s, τ))−
n∑
i=1

∂v

∂xi
(x(τ ; s))ai(x(τ ; s), V (τ ; s) + v ◦ Φ(s, τ)).

In the ODE system above for V (τ ; s), V ≡ 0 is a solution due to v(x) being a solution

of (8.1). By the uniqueness of the ODE system, V (τ ; s) ≡ 0, namely, U(τ ; s) =

v ◦ Φ(s, τ), proving that v(x) = u(x) in W .

Remark 8.1. The best we can get here is local existence. Even though no two

characteristic curves in the extended (x, u) space can intersect by the uniqueness
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theorem for ODE systems, it may happen that for some (s1, τ1) 6= (s2, τ2), we have

(x1(s1, τ1), · · · , xn(s1, τ1)) = (x1(s2, τ2), · · · , xn(s2, τ2)), yet U(s1, τ1) 6= U(s2, τ2); if

this happens, then there will be no well defined u at x = (x1(s1, τ1), · · · , xn(s1, τ1)).

Geometrically, this means that, if we project the characteristic curves (x(τ ; s), U(τ ; s))

into the lower dimensional subspace x(τ ; s) ∈ Rn, it is possible for two such projected

characteristic curves to cross each other.

Example 8.1. Solve xuy − yux = u, u(x, 0) = h(x).

The characteristic curves are 

dx

dτ
= −y,

dy

dτ
= x,

dU

dτ
= U.

Note that the initial curve s 7→ (s, 0) is characteristic at (0, 0), so we will take an

interval on the real x-axis not containing (0, 0) as the initial curve, say the positive real

axis. Thus, x(0; s) = s, y(0; s) = 0, U(0; s) = h(x(0; s), y(0; s)) = h(s) for s ∈ R+,

then x(τ ; s) = s cos τ, y(τ ; s) = s sin τ, U(τ ; s) = U(0; s)eτ = h(s)eτ . To obtain

u as a function of (x, y), we determine s and τ in terms of (x, y) from x(τ ; s) =

s cos τ, y(τ ; s) = s sin τ : s =
√
x2 + y2, and τ = arg(x + iy) for (x, y) 6= (0, 0). Here

arg(x+ iy) is the argument of x+ iy, which can be defined as a continuous (in fact,

smooth) function of (x, y) in R2 with a slit from (0, 0) to ∞. We will take the slit to

be the negative real axis, then

u(x, y) = h(
√
x2 + y2)earg(x+iy) for (x, y) ∈ R2 \ R−.

One can see that, for x < 0, limy→0+ u(x, y) = eπh(|x|), and limy→0− u(x, y) =

e−πh(|x|), so u(x, 0) can not be freely prescribed here, once u(x, 0) for x > 0 is

prescribed. This example illustrates how the map Φ from the parameter space (s, τ)

to the physical coordinate space (x, y) can fail to be one-to-one, therefore causing dif-

ficulty to define a solution u(x, y) in the large; it also clarifies how two characteristic

curves can intersect.

Exercise 8.1.1. Construct a solution of the following Cauchy problem
ut(x, t) +

n∑
j=1

bjuxj(x, t) + cu(x, t) = 0 x ∈ Rn, t ∈ R,

u(x, 0) = g(x), x ∈ Rn,
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where bj and c are constants.

Exercise 8.1.2. Construct a solution of the following Cauchy problem{
tut(x, t) + xux(x, t) + cu(x, t) = 0 (x, t) ∈ R2,

u(x,−1) = g(x), x ∈ R.

Describe the domain of existence of the solution.

Exercise 8.1.3. Let Γ = {(ξ(t), t) : t ∈ I} be a C1 curve in a region U which

separates U into two connected subregions U1 and U2. Suppose that u(x, t) is C1 in

the closure of Uj, and satisfies ut(x, t) + u(x, t)ux(x, t) = 0 in each of Uj, j = 1, 2.

Furthermore u is in C(U), but ux(x, t) has a jump discontinuity across Γ. Prove that Γ

is the projection of a characteristic curve for the equation ut(x, t)+u(x, t)ux(x, t) = 0.

Exercise 8.1.4. Show that the solution u to ut(x, t) + a(u(x, t))ux(x, t) = 0 with

initial data u(x, 0) = g(x) becomes singular for some positive t, unless a(g(x)) is a

non-decreasing function of x.

8.2 Notion of Shock Wave Solution

Next, we will discuss the possible failure of existence of smooth solutions in large

domains. This is due to the crossing of the “projected” characteristic curves. We

first examine an example.

Example 8.2. Solve uy + uux = 0, with u(x, 0) = g(x).

The characteristic curves are 

dx

dτ
= U,

dy

dτ
= 1,

dU

dτ
= 0.

Thus, along any characteristic curve, U ≡ u0 for some constant u0, and x = x0 +u0τ ,

y = y0 + τ . The initial data can be described as s 7→ (s, 0, g(s)). So the characteristic

curve through (s, 0, g(s)) at τ = 0 is x = s + g(s)τ , y = τ , and U = g(s). If we can

solve for s in terms of (x, y = τ), then we find the solution u in terms of (x, y). The

projected characteristic τ 7→ (s+ g(s)τ, τ) is a straight line through (s, 0). Two such

projected characteristics will intersect if g(s1) 6= g(s2): they will meet at τ such that

332



8.2. NOTION OF SHOCK WAVE SOLUTION

s1 + g(s1)τ = s2 + g(s2)τ , namely, τ = − s2−s1
g(s2)−g(s1)

. So if there exist s1 < s2 such

that g(s1) > g(s2), then the projected characteristics through (s1, 0) and (s2, 0) will

meet at a positive y = τ , at which U along one projected characteristic is g(s1), but

along the other projected characteristic is g(s2). Thus, although U can be defined as

a smooth function of (s, τ), u can not be defined as a smooth function of (x, y) for

y ≥ − s2−s1
g(s2)−g(s1)

.

For the particular case of

g(x) =


1 if x < 0,

1− x if 0 ≤ x < 1,

0 if x ≥ 1,

the characteristic curve through (s, 0, g(s)) at τ = 0 is, for s < 0, x = s + τ , y = τ ,

and U = 1; for 0 ≤ s < 1, x = s + (1 − s)τ , y = τ , and U = 1 − s; and for s ≥ 1,

x = s, y = τ , and U = 0.

A notion of weak solution is needed to define the solution for large time. In this

context, solutions may arise which are piecewise smooth, but have a discontinuous

jump across an interface. Solutions with such discontinuities are called shock wave

solutions.

The equation in Example 8.2 is a special case of a first order PDE of the form
∂R(u)
∂y

+ ∂S(u)
∂x

= 0. Suppose that u(x, y) is a C1 solution on either side of the curve

Γ : x = ξ(y). To define a weak solution, we reformulate the PDE as follows. When

u(x, y) is a smooth solution across Γ, for any a < ξ(y) < b, we have

∂

∂y

∫ b

a

R(u(x, y)) dx+ S(u(b, y))− S(u(a, y)) = 0. (8.9)

But (8.9) makes sense for a piecewise smooth function u(x, y), with discontinuity

across Γ. Suppose that u(x, y) satisfies ∂R(u)
∂y

+ ∂S(u)
∂x

= 0 on either side of Γ, and

satisfies (8.9). Let u−(ξ(y), y) = limx↗ξ(y) u(x, y), and u+(ξ(y), y) = limx↘ξ(y) u(x, y).

Then

∂

∂y

∫ b

a

R(u(x, y)) dx

=
∂

∂y

(∫ ξ(y)

a

R(u(x, y)) dx+

∫ b

ξ(y)

R(u(x, y)) dx

)

=ξ′(y)R(u−(ξ(y), y)− ξ′(y)R(u+(ξ(y), y) +

(∫ ξ(y)

a

+

∫ b

ξ(y)

)
∂R(u(x, y))

∂y
dx,
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while

S(u(b, y))−S(u(a, y)) = S(u+(ξ(y), y))−S(u−(ξ(y), y)+

(∫ ξ(y)

a

+

∫ b

ξ(y)

)
∂S(u(x, y))

∂x
dx.

So we must have

ξ′(y) [R(u−(ξ(y), y)−R(u+(ξ(y), y)] + S(u+(ξ(y), y))− S(u−(ξ(y), y) = 0,

from which we obtain the Rankine-Hugoniot shock condition

ξ′(y) =
S(u+(ξ(y), y))− S(u−(ξ(y), y)

R(u+(ξ(y), y)−R(u−(ξ(y), y)
(8.10)

In Example 8.2, R(u) = u, S(u) = u2/2, u+(ξ(y), y) = 0, and u−(ξ(y), y) = 1,

so ξ′(y) = 1
2
. Since the shock starts at (1, 1), we define Γ by x = 1 + 1

2
(y − 1), and

extend the definition of u(x, y) to y ≥ 1 by

u(x, y) =

1 if x < 1 + 1
2
(y − 1),

0 if x > 1 + 1
2
(y − 1).

Then the extended u is a weak solution of the Burger’s equation with the particular

initial data as in Example 8.2.

Note that for a C1 solution u to the Burger’s equation, the equation is essentially

equivalent to uut + u2ux = 0, which can be cast in the form of a conservation law,

with R(u) = u2/2, S(u) = u3/3. But if we use this formulation, with the initial

data as in Example 8.2, then ξ′(y) = 2
3
. This examples shows that in dealing with

conservations laws, it’s important to work with the correct choise of R(u) and S(u).

Remark 8.2. If one denotes by [R(u)] and [S(u)] the jump of R(u) and S(u) re-

spectively across Γ: [R(u)] = R(u+(ξ(y), y)−R(u−(ξ(y), y, [S(u)] = S(u+(ξ(y), y))−
S(u−(ξ(y), y), then (8.10) has a geometric interpreation: ([R(u)], [S(u)])·(ξ′(y),−1) =

0, namely, the vector of jump ([R(u)], [S(u)]) must be tangential to Γ.

In order to justify that this is an appropriate notion of weak solution, one needs

to establish some kind of uniqueness and stability result for the weak solution. This

topic will be pursued later.

8.3 Fully Nonlinear First Order Scalar PDEs

We encountered first order linear and quasilinear scalar PDEs and used the method

of integrating along the characteristic ODEs to construct their solutions locally. We

now extend the method to deal with fully nonlinear first order scalar PDEs.
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A general nonlinear first order scalar PDE can be written in the form of

F (∇u(x), u(x), x) = 0,

where F (p, u, x) is some sufficiently differentiable functions in its arguments (p, u, x).

There seems no direct interpretation of the equation as describing the directional

derivative of u. However, if one differentiates the equation in the xi direction, the

resulting equation for pi(x) = uxi(x),

0 = Fxi + Fuuxi(x) +
n∑
j=1

Fpj∂xipj = Fxi + Fupi +
n∑
j=1

Fpj∂xjpi,

using ∂xipj = ∂xjpi = uxixj , has the geometric interpretation: along

dxj
dt

= Fpj(x(t), u(x(t)),∇u(x(t))),

we would have

dpi(x(t))

dt
=

n∑
j=1

Fpj∂xjpi

= −Fu(∇u(x(t)), u(x(t)), x(t))uxi(x)− Fxi(∇u(x(t)), u(x(t)), x(t))

= −Fu(∇u(x(t)), u(x(t)), x(t))pi(x(t))− Fxi(∇u(x(t)), u(x(t)), x(t)).

We now have 2n ODEs for (x(t), p(t)), where p(t) = ∇u(x(t)); but the system also

involves u(x(t)). To get a closed system, we derive an ODE for u(x(t)):

du(x(t))

dt
=

n∑
j=1

uxj(x(t))
dxj
dt

=
n∑
j=1

pj(t)Fpj(∇u(x(t), u(x(t)), x(t)).

We have now arrived at a closed system of ODEs for (x(t), u(t), p(t)):

dxj
dt

= Fpj(p(t), u(t), x(t)), j = 1, · · · , n,

dpj
dt

= −Fu(p(t), u(t), x(t))pj(t)− Fxj(p(t), u(t), x(t)), j = 1, · · · , n,

du

dt
=

n∑
j=1

pj(t)Fpj(p(t), u(t), x(t)).

(8.11)

(8.11) is called the characteristic ODEs for the nonlinear equation F (∇u(x), u(x), x) =

0.
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To use the characteristic ODEs (8.11) to construct a local solution of the Cauchy

problem {
F (∇u(x), u(x), x) = 0 near Σ,

u(x) = g(x) for x ∈ Σ,
(8.12)

we first need to use a parametric representation s ∈ Ω ⊂ Rn−1 7→ φ(s) ∈ Σ for Σ

near x∗ = φ(s∗) and the initial data g(x), together with the given PDE, to determine

the initial values u(0; s) = g(φ(s)) = g̃(s), pj(0; s) = uxj(φ(s)) for s near a given

parameter s∗ in terms of g̃(s) and φ(s). The pj(0; s) must first satisfy the compatibility

conditions:

∂g̃(s)

∂sj
=

n∑
i=1

∂u

∂xi
(φ(s))

∂φi(s)

∂sj
=

n∑
i=1

pi(0; s)
∂φi(s)

∂sj
, j = 1, · · · , n− 1.

They also need to satisfy F (φ(s), g̃(s), p(0; s)) = 0. Thus we need to find local,

differentiable solutions pi(0; s), i = 1, · · · , n, to
∂g̃(s)

∂sj
=

n∑
i=1

pi(0; s)
∂φi(s)

∂sj
, j = 1, · · · , n− 1

F (p(0; s), g̃(s), φ(s)) = 0,

(8.13)

for s near s∗.

Suppose that, at s∗, there is p∗ satisfying (8.13), and

Fp(p∗, g̃(s∗), φ(s∗)) is transversal to Tφ(s∗)(Σ), (8.14)

then, by the implicit function theorem, there is a local differentiable solution p =

p(0; s) to (8.13) for s near s∗, and p(0; s) near p∗. (8.14) is precisely the condition

that Σ is non-characteristic with respect to (8.12) on the initial data g at x = φ(s∗).

Under the same condition (8.14), we can construct the local solution x(τ ; s), p(τ ; s),

u(τ ; s) to (8.11) subject to the initial conditions x(0; s) = φ(s), p(0; s) as given above,

and u(0; s) = g̃(s), and prove that the map Φ : (τ ; s) 7→ x(τ ; s) is a local diffeomor-

phism near (0; s∗). This is because the differential of Φ at (0; s∗) is
Φs1(0; s∗)

...

Φsn−1(0; s∗)

Φτ (0; s∗)

 =


φs1(s∗)

...

φsn−1(s∗)

Fp(p∗, g̃(s∗), φ(s∗))

 ,
which is non-degenerate when (8.14) is assumed. We will follow the same proof as

in the proof for the linear and quasilinear case to prove that U(x) = u ◦ Φ−1(x) is a

local solution of (8.12).
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Theorem 8.2. Suppose that F (p, u, x) is a C1 functions of its arguments, that at

x∗ = φ(s∗), u∗ = g(x∗), there exists p∗ satisfying (8.13), and that (8.14) holds. Then

there exists a neighborhood U of x∗ and a C1 solution U(x) to (8.12).

Proof. The proof will consist of two steps: (a) Prove that F (p(τ ; s), u(τ ; s), x(τ ; s)) =

0 for (τ, s) in a neighborhood of (0, s∗); (b) Prove that Uxi(x(τ ; s)) = pi(τ ; s) for (τ, s)

in a neighborhood of (0, s∗), therefore F (∇U(x), U(x), x) = 0 for x in a neighborhood

of x∗ = φ(s∗).

For (a), first note that F (p(τ ; s), u(τ ; s), x(τ ; s)) = 0 for τ = 0 and s near s∗ by

the construction of the initial data. Next,

∂

∂τ
F (p(τ ; s), u(τ ; s), x(τ ; s))

=
n∑
i=1

{
Fxi(p(τ ; s), u(τ ; s), x(τ ; s))

dxi
dτ

+ Fpi(p(τ ; s), u(τ ; s), x(τ ; s))
dpi
dτ

}
+ Fu(p(τ ; s), u(τ ; s), x(τ ; s))

du

dτ

=
n∑
i=1

{Fxi(p(τ ; s), u(τ ; s), x(τ ; s))Fpi(p(τ ; s), u(τ ; s), x(τ ; s))

−Fpi(p(τ ; s), u(τ ; s), x(τ ; s)) [Fxi(p(τ ; s), u(τ ; s), x(τ ; s)) + Fu(p(τ ; s), u(τ ; s), x(τ ; s))pi(t)]}

+ Fu(p(τ ; s), u(τ ; s), x(τ ; s))
n∑
i=1

pi(τ, s)Fpi(p(τ ; s), u(τ ; s), x(τ ; s))

=0.

This proves (a).

For (b), we will prove that


∂u(τ ; s)

∂sj
=

n∑
i=1

pi(τ ; s)
∂xi(τ ; s)

∂sj
for j = 1, · · · , n− 1,

∂u(τ ; s)

∂τ
=

n∑
i=1

pi(τ ; s)
∂xi(τ ; s)

∂τ
.

(8.15)

The last equation above follows from (8.11) directly. For the first n− 1 equations, let

Gj(τ, s) = ∂u(τ ;s)
∂sj

−
∑n

i=1 pi(τ ; s)∂xi(τ ;s)
∂sj

, for j = 1, · · · , n − 1. Then Gj(0, s) = 0 by
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the compatibility of the initial data. We next compute

∂Gj(τ, s)

∂τ

=
∂

∂sj

(
∂u(τ ; s)

∂τ

)
−

n∑
i=1

{
pi(τ ; s)

∂

∂sj

(
∂xi(τ ; s)

∂τ

)
+
∂pi(τ ; s)

∂τ

∂xi(τ ; s)

∂sj

}

=
∂

∂sj

(
n∑
i=1

pi(τ, s)Fpi(p(τ ; s), u(τ ; s), x(τ ; s))

)

−
n∑
i=1

{
pi(τ ; s)

∂Fpi(p(τ ; s), u(τ ; s), x(τ ; s))

∂sj
+
∂pi(τ ; s)

∂τ

∂xi(τ ; s)

∂sj

}
=

n∑
i=1

{
∂pi(τ, s)

∂sj
Fpi(p(τ ; s), u(τ ; s), x(τ ; s))− ∂pi(τ ; s)

∂τ

∂xi(τ ; s)

∂sj

}
.

Since F (p(τ ; s), u(τ ; s), x(τ ; s)) = 0, we have, after differentiation in sj,

0 =
n∑
i=1

{
Fxi(p(τ ; s), u(τ ; s), x(τ ; s))

∂xi(τ ; s)

∂sj
+ Fpi(p(τ ; s), u(τ ; s), x(τ ; s))

∂pi(τ, s)

∂sj

}
+ Fu(p(τ ; s), u(τ ; s), x(τ ; s))

∂u(τ ; s)

∂sj
,

from which we get

∂Gj(τ, s)

∂τ

=−
n∑
i=1

Fxi(p(τ ; s), u(τ ; s), x(τ ; s))
∂xi(τ ; s)

∂sj
− Fu(p(τ ; s), u(τ ; s), x(τ ; s))

∂u(τ ; s)

∂sj

−
n∑
i=1

(−Fu(p(τ ; s), u(τ ; s), x(τ ; s))pi(τ, s)− Fxi(p(τ ; s), u(τ ; s), x(τ ; s)))
∂xi(τ ; s)

∂sj

=− Fu(p(τ ; s), u(τ ; s), x(τ ; s))

(
∂u(τ ; s)

∂sj
−

n∑
i=1

pi(τ, s)
∂xi(τ ; s)

∂sj

)
=− Fu(p(τ ; s), u(τ ; s), x(τ ; s))Gj(τ, s),

from which we conclude (8.15).

Since by the chain rule, we also have
∂u(τ ; s)

∂sj
=

n∑
i=1

∂U(x(τ ; s))

∂xi

∂xi(τ ; s)

∂sj
for j = 1, · · · , n− 1,

∂u(τ ; s)

∂τ
=

n∑
i=1

∂U(x(τ ; s))

∂xi

∂xi(τ ; s)

∂τ
,

(8.16)
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now noting that the coefficient matrix

∂x1(τ ;s)
∂s1

· · · ∂xn(τ ;s)
∂s1

∂x1(τ ;s)
∂s2

· · · ∂xn(τ ;s)
∂s2

... · · · ...
∂x1(τ ;s)
∂sn−1

· · · ∂xn(τ ;s)
∂sn−1

∂x1(τ ;s)
∂τ

· · · ∂xn(τ ;s)
∂τ


is non-degenerate near (τ, s) = (0, s∗), we conclude (b) by using (8.15) and (8.16).

Example 8.3. The initial curve s 7→ (s, φ(s)) is non-characteristic with respect to

the equation u2
t (x, t) + u2

x(x, t) = 1 on the initial data u(s, φ(s)) = h(s), iff we can

determine ux(s, φ(s)) and ut(s, φ(s)) as differentiable functions of s from the equations{
u2
t (s, φ(s)) + u2

x(s, φ(s)) = 1,

ux(s, φ(s)) + ut(s, φ(s))φ′(s) = h′(s).

This is equivalent to |h′(s)| <
√

1 + |φ′(s)|2 — this is the non-characteristic condition

for the initial data. In fact, we can determine ux(s, φ(s)) and ut(s, φ(s)) in terms of

φ(s) and h(s) as

ux(s, φ(s)) =
h′(s)− φ′(s)

√
1 + |φ′(s)|2 − |h′(s)|2

1 + |φ′(s)|2
def
= px(0, s),

ut(s, φ(s)) =
h′(s)φ′(s) +

√
1 + |φ′(s)|2 − |h′(s)|2

1 + |φ′(s)|2
def
= pt(0, s).

To use the characteristic ODEs to construct a local solution of the Cauchy problem{
u2
t (x, t) + u2

x(x, t) = 1,

u(s, φ(s)) = h(s),
(8.17)

we first write down the characteristic ODEs for the variables x(τ ; s), t(τ ; s), px(τ ; s), pt(τ ; s),

and u(τ ; s): with F = p2
t + p2

x − 1,

dx

dτ
= Fpx = 2px,

dt

dτ
= Fpt = 2pt,

dpx
dτ

= −Fx = 0,

dpt
dτ

= −Ft = 0,

du

dτ
= pxFpx + ptFpt = 2(p2

x + p2
t ).
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The initial conditions at τ = 0 are determined as above, so x(0; s) = s, t(0; s) = φ(s),

px(0; s) and pt(0; s) = p as given above, and u(0; s) = h(s). Thus px(τ ; s) = px(0; s),

pt(τ ; s) = pt(0; s), x(τ ; s) = s+2px(0, s)τ , t(τ ; s) = φ(s)+2pt(0, s)τ . Since px(τ, s)
2 +

pt(τ, s)
2 = px(0, s)

2 + pt(0, s)
2 = 1, we have u(τ ; s) = u(0; s) + 2τ = h(s) + 2τ .

Finally, we need to determine (τ, s) in terms of (x, t), at least when (x, t) is close

to (s, φ(s)). This is possible because the Jacobian determinant of the map (τ, s) 7→
(x, t) = (s+ 2px(0, s)τ, φ(s) + 2pt(0, s)τ) at (0, s) is(

2px(0, s) 2pt(0, s)

1 φ′(s)

)
= −

√
1 + |φ′(s)|2 − |h′(s)|2,

which is non-zero when the initial data is assumed to be non-characteristic. Two

special cases can be understood with more details: h′(s) ≡ 0 or φ′(s) ≡ 0. In the for-

mer case, the non-characteristic condition is always satisfied, and the transformation

Φ is (τ, s) 7→ (x, t) = (s − 2φ′(s)√
1+|φ′(s)|2

τ, φ(s) + 2√
1+|φ′(s)|2

τ), which has the geometric

interpretation that the straight line segment from (x, t) to (s, φ(s)) is normal to the

initial curve at (s, φ(s)), with a distance equal to 2τ . In other words, the initial curve

can be considered as a wave front with h ≡ a constant h0, and the level curves of the

solution u, u = h0 + 2τ , are at a distance 2τ away from the initial curve.

Example 8.4. When F = F (∇u) does not have explicit dependence on x or u,

(8.11) implies that
dpj
dt

= 0, so pj(t) = pj(0), and the system for xj(t) implies that
dxj
dt

= Fpj(p(0)), so the projected characteristic curves in the x-space are straight lines

x(t) = x(0) + Fp(p(0))t. A smooth solution can not exist on a region in which two

projected characteristic curves cross each other.

Example 8.5. When F = H(∇u, x) does not have explicit dependence on u, the

first 2n equations in (8.11) form a closed system of ODEs, which are the Hamilton’s

ODEs: 
dxj
dt

= Hpj(p(t), x(t)), j = 1, · · · , n,

dpj
dt

= −Hxj(p(t), x(t)), j = 1, · · · , n.
(8.18)

A property of the integral curves of Hamilton’s ODEs is that H(p(t), x(t)) ≡ a con-

stant along any integral curve.

When F (p, x) has the form 1
2

∑n
i,j=1 a

ij(x)pipj, where (aij(x)) is the inverse of

the positive definite (aij(x)) which defines a Riemannian metric g, then the integral

curves of the corresponding Hamilton’s ODEs are associated with the geodesics of
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the metric g, as the characteristic ODEs
dxj
dt

=
n∑
i=1

aij(x)pi,

dpj
dt

= −1

2

n∑
l,m=1

∂alm

∂xj
plpm.

imply

d2xj
dt2

=
n∑
i=1

(
n∑
k=1

∂aij(x)

∂xk

dxk
dt

pi + aij(x)
dpi
dt

)

=
n∑
i=1

(
n∑
k=1

∂aij(x)

∂xk

dxk
dt

pi −
n∑

l,m=1

aij(x)

2

∂alm

∂xi
plpm

)

Using ∂alm

∂xj
= −

∑n
k,h=1 a

lk ∂akh(x)
∂xi

ahm, and
∑n

m=1 a
hmpm = dxh

dt
,
∑n

l=1 a
lkpl = dxk

dt
, we

see that

d2xj
dt2

=
n∑
i=1

(
−

n∑
k,h,l=1

ail
∂alh(x)

∂xk
ahjpi

dxk
dt

+
n∑

k,h=1

aij(x)

2

∂akh(x)

∂xi

dxh
dt

dxk
dt

)

=
n∑

k,h,l=1

(
−∂alh(x)

∂xk
alj +

alj(x)

2

∂akh(x)

∂xl

)
dxk
dt

dxh
dt

= −
n∑

k,h=1

Γjkh
dxk
dt

dxh
dt

,

which are the ODEs for the geodesics in the metric g.

If we are to construct a solution u(x) to
∑n

i,j=1 a
ij(x)uxi(x)uxj(x) = c, then we

need to use an additional ODE in the characteristic ODEs: du(t)
dt

=
∑n

i pi(t)Fpi(p(t), x(t)) =∑n
i,j=1 a

ij(x(t))pi(t)pj(t). But along the solutions to the characteristic ODEs, F (p(t), x(t)) =

0, so du(t)
dt

= c. The solution u(x) here can represent the wave front in wave optics.

Exercises

Exercise 8.3.1. Construct a local solution of the Cauchy problem: uy(x, y)−u3
x(x, y) =

0, u(x, 0) = x3/2. Also show that if u is a C1 global solution of uy(x, y)− u3
x(x, y) = 0

on R2, then u(x, y) must be a linear function in x and y.

Exercise 8.3.2. Work out the equations for the characteristic curves of ut(x, t) +

|∇xu(x, t)|2 = 0 for (x, t) ∈ Rn × R, and u(x, 0) = g(x). Show that, if g ∈ C1(Rn),

then for any (x0, 0), a local solution exists for (x, t) in a neighborhood of (x0, 0), and
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that u(x, t) = g(y) + |∇yg(y)|2t, where y attains the (local) minimum of |x−ξ|
2

4
+ g(ξ)

for ξ near x0.

Exercise 8.3.3. Prove that the Cauchy problem{
a(x, y)(ux(x, y))2 + 2b(x, y)ux(x, y)uy(x, y) + c(x, y)(uy(x, y))2 = d(x, y)

u(x, φ(x)) = h(x)

is non-characteristic at (x, φ(x)) iff at (x, y) = (x, φ(x)),

(h′(x))2
[
b2 − ac

]
+ d

[
a(φ′(x))2 − 2bφ′(x) + c

]
> 0.

Note that (1, φ′(x)) is a tangent to the initial curve at (x, y) = (x, φ(x)), so (−φ′(x), 1)

is a normal to the curve there, and a(φ′(x))2− 2bφ′(x) + c = aν2
1 + 2bν1ν2 + cν2

2 , with

(ν1, ν2) = (−φ′(x), 1). Examine special cases when d(x, φ(x)) = 0, or c = 0, or

h′(x) = 0, or a(φ′(x))2 − 2bφ′(x) + c = 0 at (x, y) = (x, φ(x)).
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Chapter 9

CAUCHY-KOWALEVSKAYA

THEOREM

Cauchy-Kowalevskaya theorem gives local existence of analytic solutions to a non-

characteristic Cauchy problem of a partial differential equation (or system) that is

analytic in its arguments. Its predecessor is Cauchy’s 1842 theorem on the local

existence of analytic solutions to the initial value problem for ordinary differential

equations
du

dt
= f(u(t), t), u(0) = u0,

when f(u, t) is assumed to be analytic in a neighborhood of (u0, 0). A natural ap-

proach is to look for an analytic solution of the form u(t) =
∑∞

j=0 ajt
j and de-

termine the coefficients aj through the initial condition and repeatedly differen-

tiating the equation: a0 = u(0) = u0, a1 = u′(0) = f(u0, 0), a2 = 2u′′(0) =

2[fu(u0, 0)u′(0) + ft(u0, 0)], etc. Cauchy was able to show the convergence of the

obtained series through his method of majorants. This theorem was extended by

Cauchy, and later by Kowalevskaya, to the initial value problem for partial differen-

tial equations for the form:

∂u(x, t)

∂t
= f(∂xu(x, t), u(x, t), x, t), u(x, 0) = g(x), (9.1)

for (x, t) near (x0, 0), where ∂xu(x, t) stands for the gradient vector of u(x, t) in the

x-variables, and f(p, u, x, t) is analytic in (p, u, x, t) near (∂xg(x0), g(x0), x0, 0).

For the initial value problem for higher order partial differential equations, Cauchy

discussed a procedure to reduce the problem to a (larger) system of first order partial

differential equations of the form above. Kowalevskaya clarified the type of equations
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for which the method initiated by Cauchy would work (Kowalevskaya in fact was not

aware of Cauchy’s work).

Kowalevskaya pointed out that although a formal power series solution can be

determined for the initial value problem of the heat equation

∂tu(x, t) = ∂2
xu(x, t), u(x, 0) = g(x),

the power series does not need to converge. In fact, for g(x) = 1
1−x , the formal power

series for a solution u(x, t) at (x, 0) would be

∞∑
j=0

g(2j)(x)

j!
tj =

∞∑
j=0

(2j)!

j!(1− x)2j+1
tj,

which is not convergent for any t 6= 0 ! Thus Cauchy’s theorem is not valid if one

allows terms of the kind ∂αxu(x, t) for |α| > 1 in the right hand side of (9.1).

In the following we will formulate several versions of the Cauchy-Kowalevskaya’s

theorem so that we can conclude the existence of local analytic solutions without

having to go through the reduction process to check whether the given problem can

be reduced to one of the form (9.1). We will explain Cauchy-Kowalevskaya’s theorem

first in the context of the initial value problem for linear partial differential equations

and the initial value is prescribed with respect to a distinguished variable t; then we

will discuss how to formulate the Cauchy-Kowalevskaya’s theorem when the initial

surface is a general non-characteristic surface; and finally we describe the theorem

for nonlinear partial differential equations.

9.1 Cauchy-Kowalevskaya Theorem: Linear Case

with Special Non-characteristic Initial Surface

Let’s first examine the case of a linear differential operator in the form

P = ∂mt +
∑

j<m, j+|α|≤m

cj,α(x, t)∂jt ∂
α
x ,

where the coefficients cj,α(x, t) are analytic in (x, t) around a point (x0, 0) on the

initial surface t = 0. We seek to solve{
Pu = f(x, t), near (x0, 0),

∂jtu(x, 0) = gj(x), j = 0, · · · ,m− 1, near x0,
(9.2)

where f(x, t), and gj(x) are analytic functions around (x0, 0) and x0 respectively.
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9.1. CAUCHY-KOWALEVSKAYA THEOREM: LINEAR CASE

Theorem 9.1 (Linear case with special non-characteristic initial surface). Suppose

that cj,α(x, t) are analytic in a neighborhood V around (x0, 0). Then there is a neigh-

borhood U ⊂ V of (x0, 0), such that for any f(x, t) analytic in U1 around (x0, 0), and

any gj(x) analytic in W around x0, there is a unique analytic solution to (9.2) in

U ∩ U1 ∩ (W × R).

Remark 9.1. This local existence of analytic solution does not imply the wellposed-

ness of the Cauchy problem in the usual sense. For example, the above theorem

applies to both P1 = ∂2
t − ∂2

x and P2 = ∂2
t + ∂2

x with {t = 0} as initial surface, yet the

Cauchy problem (with respect to t) is wellposed for P1, but not for P2.

Remark 9.2. Although the Cauchy-Kowalevskaya theorem can not be applied to the

initial value problem{
ut(x, t)− uxx(x, t) = 0 for (x, t) ∈ R× (0, T ),

u(x, 0) = g(x) for x ∈ V ⊂ R,

it can be applied to
ut(x, t)− uxx(x, t) = 0 for (x, t) ∈ V ⊂ R× R,

u(0, t) = h0(t) for t ∈ W ⊂ R,

ux(0, t) = h1(t) for t ∈ W ⊂ R,

in a neighborhood V of (0, t0) for any t0 ∈ R, even though this Cauchy problem is

not well-posed. In fact, one can choose analytic h0 and h1 ≡ 0 such that the formal

solution u(x, t) =
∑∞

k=0
h

(k)
0 (t)

(2k)!
x2k is convergent for all (x, t) ∈ R × R and smooth in

R × R; in addition, u(x, t) ≡ 0 for (x, t) ∈ R × (−∞, 0]! — see the text of either F.

John or J. Rauch for details.

Remark 9.3. There is no general local existence result when the analyticity as-

sumptions are dropped. In 1956 H. Lewy constructed the first example of a linear

differential equation that has smooth coefficients but has no solution anywhere.

Example 9.1 (Application to local existence of isothermal coordinates on a surface

with analytic metric). Given a local Riemannian metric on a surface M near a point

z0 ∈M :

ds2 = E(x, y)dx2 + 2F (x, y)dxdy +G(x, y)dy2,

one is interested in knowing whether there exists a local change of coordinates,

(x, y) 7→ (u, v) and a conformal factor Λ(x, y) > 0 such that in the new local co-

ordinates (u, v)

Λ(x, y)ds2 = du2 + dv2. (9.3)
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CHAPTER 9. CAUCHY-KOWALEVSKAYA THEOREM

When the metric coefficients E(x, y), F (x, y), G(x, y) are real analytic functions of

(x, y) near z0, the answer is affirmative and can be proved via the help of Cauchy-

Kowalevskaya Theorem as follows.

ds2 being a Riemannian metric implies that E(x, y), G(x, y) > 0 and

J = E(x, y)G(x, y)− F (x, y)2 > 0, so we can “complete squre” and write

ds2 =

(
E(x, y)dx+ (F (x, y) + i

√
J(x, y))dy

)(
E(x, y)dx+ (F (x, y)− i

√
J(x, y))dy

)
E(x, y)

.

As a consequence, if suffices to find a W (x, y) such that

W (x, y)
(
E(x, y)dx+ (F (x, y) + i

√
J(x, y))dy

)
= dw = du+ idv (9.4)

for some function w(x, y) = u(x, y) + iv(x, y), for then,

W (x, y)
(
E(x, y)dx+ (F (x, y)− i

√
J(x, y))dy

)
= dw̄ = du− idv,

and

E(x, y)|W (x, y)|2ds2 = (du+ idv)(du− idv) = du2 + dv2.

(9.4) amounts to

W (x, y)E(x, y) = wx(x, y) and W (x, y)(F (x, y) + i
√
J(x, y)) = wy(x, y),

which has a local solution (W (x, y), w(x, y)) iff there is a solution W (x, y) to

[W (x, y)E(x, y)]y =
[
W (x, y)(F (x, y) + i

√
J(x, y))

]
x

(9.5)

When ds2 is an analytic metric, we can apply the Cauchy-Kowalevskaya Theorem

to (9.5) near any given point, with a segment parallel to either the x-axis or y-axis

as initial curve, to obtain the existence of a local analytic solution W (x, y), which

would then provide the corresponding w(x, y) = (u(x, y), v(x, y)) as local isothermal

coordinates.

W (x, y) in the context of (9.4) would be called an integrating factor. If the coeffi-

cients of the differential E(x, y)dx+(F (x, y)+i
√
J(x, y))dy were real, the existence of

an integral factor would be available from elementary ODE even when the coefficients

are only C1 functions—we will review this below.

In the context of (9.5), if we write out (9.5) in terms of the real and imaginary

parts of W (x, y) = U(x, y) + iV (x, y), we would have

E

(
U

V

)
y

=

(
F −

√
J√

J F

)(
U

V

)
x

+

(
Fx − Ey −(

√
J)x

(
√
J)x Fx − Ey

)(
U

V

)
. (9.6)
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9.1. CAUCHY-KOWALEVSKAYA THEOREM: LINEAR CASE

When the analyticity assumption on the coefficientsE(x, y), F (x, y), G(x, y) is dropped,

none of the theorems we have learned so far can be applied to prove the existence of

a local solution to (9.6).

The first ingredient of Cauchy’s method is the (formal) determination of the Taylor

series of a possible analytic solution u(x, t) around (x0, 0). This is relatively straight

forward in this set up: first note that any derivatives of u at (x0, 0) whose order in t

is m− 1 or less along t = 0 can be determined by the initial data alone: ∂αxu(x, 0) =

∂αx g0(x) (in fact for all α), and for any 1 ≤ j < m,

∂jt ∂
α
xu(x, 0) = ∂αx gj(x).

Also

∂mt ∂
β
xu(x, 0) = ∂βx∂

m
t u(x, 0)

=∂βx

− ∑
j<m, j+|α|≤m

cj,α(x, 0)∂jt ∂
α
xu(x, 0) + f(x, 0)


=∂βx

− ∑
j<m, j+|α|≤m

cj,α(x, 0)∂αx gj(x) + f(x, 0)

 .

Next we simply differentiate the equation in t and differentiate the initial conditions

in x inductively to represent all ∂jt ∂
α
xu(x0, 0) in terms of given Cauchy data, the right

hand side, and lower order derivatives.

The second ingredient is to prove the convergence of the constructed power series.

This was done by Cauchy and Kowalevskaya by the so called majorant method

for power series, and it is here that the non-characteristic assumption of {t = 0} is

crucially used.

Here we will not provide a full proof as given by Cauchy-Kowalevskaya. Instead,

we will describe a reduction procedure which is often used to reduce the general case

to a first order system. This is done by introducing new variables and using the

compatibility conditions as new equations: set U = (u, Uj,α = ∂jt ∂
α
xu| j + |α| < m).

Then for any j + |α| < m− 1,

∂tUj,α = ∂j+1
t ∂αxu = Uj+1,α,

and for any j + |α| = m− 1 with α 6= 0,

∂tUj,α = ∂1+j
t ∂αxu = ∂xα1

U1+j,α−α1 ,
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where α1 is the first component of α that is not zero. Finally

∂tUm−1,0 = ∂mt u = −
∑

j<m, j+|α|≤m

cj,α(x, t)∂jt ∂
α
xu(x, t) + f(x, t),

where terms with j + |α| ≤ m − 1 are linear combinations of Uj,α, and terms with

j + |α| = m and j < m can be written as linear combinations of ∂xα1
Uj,α−α1 . So we

are led to studying a system of the form
∂tui =

N∑
j=0

n∑
α=1

cαij(x, t)∂αuj(x, t) +
N∑
j=0

dij(x, t)uj(x, t) + fi(x, t), for i = 0, · · · , N

ui(x, 0) = gi(x), for i = 0, · · · , N,

or using vector notation u = (u0, u1, · · · , uN)T ,
∂tu =

n∑
α=1

Cα(x, t)∂αu(x, t) +D(x, t)u(x, t) + F (x, t),

u(x, 0) = G(x).

(9.7)

9.2 Notion of a Non-characteristic Initial Manifold

Recall that the notion of a characteristic initial manifold (hypersurface) arose in the

discussion for the Hadamard-Petrovsky well-posedness for the Cauchy problems, and

was formulated as follows.

We represent an initial surface Σ as the level set of a defining functions σ: Σ =

{x : σ(x) = 0}, where ∇xσ(x) 6= 0 along Σ. One idea in defining the the notion

of a non-characteristic initial surface with respect to a linear differential operator

P =
∑
|α|≤m cα(x)∂αx is to make a change of variables, locally, to “flatten” Σ. For

instance, if x0 ∈ Σ is such that ∂xnσ(x0) 6= 0, then in a neighborhood of x0, Σ can

be represented as a graph xn in terms of x1, · · · , xn−1. In fact, x = (x′, xn) 7→ (y′, τ),

with y′ = x′, and τ = σ(x) is a local diffeomorphism. If we adopt (y′, τ) as new

coordinates and set v(y′, τ) = u(x′, xn), then Pu is expressed as a linear differential

operator P̃ v of the same order m, and the coefficient of ∂mτ v at (y′, 0) is given by∑
|α|=m cα(x)(∇σ(x))α, where x = (x′, xn) 7→ (y′, 0). This is from the chain rule

for 1 ≤ j ≤ n− 1, ∂xj = ∂yj + σxj∂τ , ∂xn = σxn∂τ .

So for any |α| = k,

∂αxu(x) = (∇σ(x))α∂kτ v +R (9.8)

where R stands for terms of differentiation order not higher than k and with k− 1 or

fewer derivatives in τ .
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9.2. NOTION OF A NON-CHARACTERISTIC INITIAL MANIFOLD

Definition. Σ = {x : σ(x) = 0} is called non-characteristic with respect to P at

x0 ∈ Σ if
∑
|α|=m cα(x0)(∇σ(x0))α is non-degenerate. Σ = {x : σ(x) = 0} is called

non-characteristic with respect to P if it is non-characteristic at every point on it.

The level surface {σ = 0} is called characteristic with respect to P if∑
|α|=m cα(x)(∇σ(x))α is degenerate and ∇σ 6= 0 for every point on the surface.

Remark 9.4. The definition above used non-degeneracy of
∑
|α|=m cα(x0)(∇σ(x0))α

as a definition for non-characteristic, as this notion also works if we are dealing with

an N ×N system, in which each cα(x0) would be an N ×N matrix.

Since σ is not uniquely determined from Σ, this freedom is also reflected in∑
|α|=m cα(x)(∇σ(x))α, which is homogeneous in ∇σ. Thus whether a hypersurface is

non-characteristic with respect to P is independent of parametrization for the surface.

Definition. A (co-)vector ξ 6= 0 ∈ Rn is called a characteristic direction for P at x0

if ∑
|α|=m

cα(x0)ξα = 0(or degenerate when dealing with an N ×N system.)

(the covector nature of ξ becomes clear when the differential operator is given on

a manifold, and one needs to work with its representations in different coordinate

patches.)

P is called elliptic at x0 if it has no characteristic direction at x0, i.e., for any

ξ ∈ Rn, ∑
|α|=m

cα(x0)ξα = 0 =⇒ ξ = 0.

P is called elliptic in a region if it is elliptic at every point in this region.

Remark 9.5. When dealing with a system, the coefficients cα are interpreted as

matrices, a (co-)vector ξ 6= 0 ∈ Rn is called a characteristic direction for P at x0 if

the matrix ∑
|α|=m

cα(x0)ξα

is singular. Thus a level surface of σ is called characteristic with respect to P if

∇σ 6= 0 and

det

∑
|α|=m

cα(x)(∇σ(x))α

 = 0,

for every point on it.

Since the equation for a characteristic direction ξ is a homogeneous equation in ξ,

only in dimension 2, do we expect to get a finite number of characteristic directions,

up to the homogenuity scaling,
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CHAPTER 9. CAUCHY-KOWALEVSKAYA THEOREM

Exercise 9.2.1. Prove that the system (9.6) is elliptic at every point.

Example 9.2. For a first order linear partial differential operator

P = a0(x, t)∂t +
n∑
i=1

ai(x, t)∂xi ,

the initial surface σ(x, t) = 0 is characteristic if

a0(x, t)∂tσ(x, t) +
n∑
i=1

ai(x, t)∂xiσ(x, t) = 0, for (x, t) on σ(x, t) = 0,

which means geometrically, when σ(x, t) = 0 is a non-degenerate surface, that the

vector field

(x, t) 7→ (a0(x, t), a1(x, t), · · · , an(x, t))

is tangential to the surface σ(x, t) = 0, when (x, t) is on σ(x, t) = 0.

In the case n = 1, the initial surface is simply a curve. It is characteristic iff it

is an integral curve of the vector field (x, t) 7→ (a0(x, t), a1(x, t)). But when n > 1,

the notion of a characteristic (initial) surface is different from that of characteristic

curves for a first order scalar PDE; they are, however, related: an initial surface is

characteristic with respect to P iff it consists of union of characteristic curves of P .

Example 9.3. For a second order linear partial differential operator

P =
n∑

i,j=0

aij(x)∂2
xixj

+
n∑
i=0

bi(x)∂xi + c(x),

the level surfaces of σ are characteristic with respect to P if σ is a non-trivial solution

(∇σ 6= 0) to
n∑

i,j=0

aij(x)∂xiσ(x)∂xjσ(x) = 0,

which is a nonlinear first order PDE for σ(x)—again, compare with the notion of

characteristic curves and of a non-characteristic Cauchy problem for a scalar first

order PDE.

For P = ∂2
t−∆x, this equation becomes |∂tσ(t, x)|2−|∇xσ(t, x)|2 = 0. If we further

assume that σ(t, x) has the form t − φ(x), then φ(x) must satisfy |∇xφ(x)| = 1. At

the same time the surface t = φ(x) is non-characteristic with respect to this P , if

|∇xφ(x)| 6= 1 on {(x, t) : t = φ(x)}.
In the case when the initial surface Σ is a hyperplane given by ν0t+

∑n
j=1 νjxj = 0,

Σ is non-characteristic with respect to P = ∂2
t − ∆x, iff ν2

0 −
∑n

j=1 ν
2
j 6= 0. If one
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needs the examine the well-posedness of the Cauchy problem corresponding to the

operator P = ∂2
t − ∆x with Σ as the initial surface, then the Hadamard-Petrovsky

condition amounts to examining dependence of Im(τ) on ξ, where

(ξ0 + ν0τ)2 −
n∑
j=1

(ξj + νjτ)2 = 0,

which comes from examining solutions to Pu = 0 of the form

u(x, t) = ei[(ξ0+ν0τ)t+
∑n
j=1(ξj+νjτ)xj ].

Example 9.4. For the same operator P as in the previous example, recall that

if we make a change of variables x = (x1, . . . , xn) 7→ u = (y1, . . . , yn), and de-

fine w(y) = z(x) under this change of variables, then Pz = P̃w, where the sec-

ond order differentiation terms on w is given by
∑n

k,l=1 ãkl∂
2
klw(y), where ãkl(y) =∑n

i,j=1 aij(x)∂xiyk(x)∂xjyl(x). When n = 2, it is reasonable to impose two conditions

on the three coefficients ãkl(y) to simplify them — this amounts to two conditions on

the two unknowns y1(x), y2(x). One possibility to consider is to impose ã11 = ã22 = 0,

which amounts to

2∑
i,j=1

aij(x)∂xiy1(x)∂xjy1(x) = 0 and
2∑

i,j=1

aij(x)∂xiy2(x)∂xjy2(x) = 0.

This means that both y1(x) and y2(x) need to solve the characteristic equation for

P ! In order for x = (x1, x2) 7→ y = (y1, y2) to form a (local) change of variables,

we need {∇y1(x),∇y2(x)} be linearly independent, i.e., we need to have a pair of

linearly independent characteristic directions for P near x. This can be done iff the

quadratic characteristic equation a11(x)λ2 + 2a12(x)λ + a22(x) = 0 has a pair of real

distinct solutions (assuming a11(x) 6= 0 for simplicity). This can be characterized

algebraically: when the matrix (
a11(x) a12(x)

a12(x) a22(x)

)

has a pair of real distinct eigenvalues λi(x), i = 1, 2, we can find a pair ui(x) solving

∂x1ui(x)− λi(x)∂x2ui(x) = 0, and make the local change of variables x = (x1, x2) 7→
y = (y1, y2) so that in the (y1, y2) coordinates, P̃w has the form w̃y1y2+ lower order

terms = 0.

When P fails to have any characteristic direction at x—this means that P is

elliptic, we won’t be able to find any nontrivial solution to its characteristic equation,
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but we could look for (y1(x), y2(x)) such that

2∑
i,j=1

aij(x)∂xiy1(x)∂xjy1(x) =
2∑

i,j=1

aij(x)∂xiy2(x)∂xjy2(x)

2∑
i,j=1

aij(x)∂xiy1(x)∂xjy2(x) = 0.

(9.9)

If such a pair of solutions can be found, let Λ(x) =
∑2

i,j=1 aij(x)∂xiy1(x)∂xjy1(x),

which is non-zero, then P̃w would have the form Λ(x) (wy1y1 + wy2y2) + lower order

terms = 0.

The system of quadratic equations (9.9) for (y1(x), y2(x)) can be reduced to a

simplified form as follows. From the second equation, written as

(a11∂x1y1 + a21∂x2y1) ∂x1y2 + (a12∂x1y1 + a22∂x2y1) ∂x2y2 = 0,

we see that {
∂x1y2 = −W (a12∂x1y1 + a22∂x2y1)

∂x2y2 = W (a11∂x1y1 + a21∂x2y1) .
(9.10)

for some W . Combining these with the first equation in (9.9), we see that

W = 1/
√
a11(x)a22(x)− a2

12(x)— W is real in this case.

Thus (9.10) becomes 
∂x1y2 = − a12∂x1y1 + a22∂x2y1√

a11(x)a22(x)− a2
12(x)

∂x2y2 =
a11∂x1y1 + a21∂x2y1√
a11(x)a22(x)− a2

12(x)

(9.11)

When the coefficients aij(x) are analytic functions of x, one could use Cauchy-

Kowalevskaya Theorem to find local solutions to (9.11). Without the analyticity

assumptions, one has to find other ways to solve (9.11). One can eliminate y2 from

above to obtain an equation for y1(x):(
a11∂x1y1 + a12∂x2y1√
a11(x)a22(x)− a2

12(x)

)
x1

+

(
a12∂x1y1 + a22∂x2y1√
a11(x)a22(x)− a2

12(x)

)
x2

= 0. (9.12)

A similar equation can be obtained for y2(x). It turns out that the operator on

the left hand side of (9.12) is the Beltrami-Laplace operator associated with the

Riemannian metric constructed using (aij(x)). The variational theory we learned
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earlier this semester on divergence form elliptic equations can be applied to show

existence of solutions with appropriate regularities to (9.12) with prescribed boundary

values under appropriate regularity assumptions on (aij(x)).

In Example 1, we proved local existence of isothermal coordiantes for an analytic

Riemannian metric on a surface. When the analyticity assumption is dropped, the

local existence of isothermal coordiantes can be formulated in terms of existence of

local solutions to a Beltrami-Laplace equation similar to (9.12). We identify E(x, y) =

a11(x, y), F (x, y) = a12(x, y), and G(x, y) = a22(x, y), and look for u = u(x, y),

v = v(x, y) such that

a11(x, y)dx2 + 2a12(x, y)dxdy + a22(x, y)dy2 = Λ(x, y)(du2 + dv2)

holds, which, using du = uxdx + uydy and dv = vxdx + vydy, is equivalent to the

system 
Λ(x, y)

(
u2
x(x, y) + v2

x(x, y)
)

= a11(x, y),

Λ(x, y) (ux(x, y)uy(x, y) + vx(x, y)vy(x, y)) = a12(x, y),

Λ(x, y)
(
u2
y(x, y) + v2

y(x, y)
)

= a22(x, y),

(9.13)

The system (9.13) can be simplified as follows.

Exercise 9.2.2. (i). Prove that
√
J(x, y) = Λ(x, y) [ux(x, y)vy(x, y)− uy(x, y)vx(x, y)],

where J(x, y) = a11(x, y)a22(x, y)− a12(x, y)2.

(ii). Prove that

vx(x, y) = −a11(x, y)uy(x, y)− a12(x, y)ux(x, y)√
J(x, y)

,

vy(x, y) =
a22(x, y)ux(x, y)− a12(x, y)uy(x, y)√

J(x, y)
.

Hint: Interpret ux(x, y)uy(x, y)+vx(x, y)vy(x, y) = (ux(x, y), vx(x, y))·(uy(x, y), vy(x, y)),

and ux(x, y)vy(x, y)− uy(x, y)vx(x, y) = (ux(x, y), vx(x, y)) · (vy(x, y),−uy(x, y)) geo-

metrically as related to orthogonal projections.

(iii). Prove that(
a11(x, y)uy(x, y)− a12(x, y)ux(x, y)√

J(x, y)

)
y

+

(
a22(x, y)ux(x, y)− a12(x, y)uy(x, y)√

J(x, y)

)
x

= 0,

and(
a11(x, y)vy(x, y)− a12(x, y)vx(x, y)√

J(x, y)

)
y

+

(
a22(x, y)vx(x, y)− a12(x, y)vy(x, y)√

J(x, y)

)
x

= 0.

Compare with (9.12).
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In setting up an initial value problem along a general surface Σ, one can prescribe

the initial data in two ways. One way is to prescribe u(x) restricted to Σ as g0(x),

and normal derivatives of u(x) along Σ up to order m− 1:

∂ju(x)

∂νj
= gj(x), for x ∈ Σ and j = 1, . . . ,m− 1.

Here ∂ju(x)
∂νj

can be defined through

∂ju(x)

∂νj
=
dju(x+ sν(x))

dsj
|s=0 =

∑
|α|=j

να1
1 · · · ναnn

∂ju(x)

∂α1
x1 · · · ∂αnxn

.

So this can also be interpreted as prescribing these specific linear combinations of

the mixed partial derivatives ∂ju(x)

∂
α1
x1
···∂αnxn

of u. J. Rauch has some criticism for this

formulation. But the main issue seems the difficulty of using this formulation on a

manifold setting. Given u(x) = g0(x) for x ∈ Σ, tangential derivatives along Σ of u(x)

of any order can be computed through those of g0(x) and normal derivatives of u(x)

along Σ up to order one less. Together with the prescribed normal derivatives of u(x)

along Σ up to order m− 1, one can determine all partial derivatives of u(x) of order

m− 1 or lower along Σ. These partial derivatives satisfy the compatibility conditions

of mixed derivatives along Σ. Σ is non-characteristic for P iff all partial derivatives

of u(x) of order m (and therefore higher order derivatives as well) restricted to Σ can

be determined through the equation and the initial data.

Here are some more details on the implementation of this formulation. According

to (9.8) in locally flattening Σ under the change of variables x = (x′, xn) 7→ y = (y′, τ),

v(y′, τ) = u(x′, xn), where τ = σ(x), and Σ is locally described by σ(x) = 0, for each

x ∈ Σ, ∂αxu(x) for |α| ≤ k is determined by ∂βy ∂
j
τv(y′, 0) for 0 ≤ |β|+ j ≤ k. It suffices

to verify that each ∂jτv(y′, 0) is determined by ∂lu(x)
∂νl

for 0 ≤ l ≤ j. But this follows

from (9.8):

∂lu(x)

∂ν l
=
∑
|α|=l

να1
1 · · · ναnn

∂lu(x)

∂α1
x1 · · · ∂αnxn

=
∑
|α|=l

να(∇σ(x))α∂lτv(y′, 0) +R

= |∇σ(x)|l∂lτv(y′, 0) +R

as ∇σ(x) = |∇σ(x)|ν(x),
∑
|α|=l ν

2α = (ν2
1 + · · · + ν2

n)l = 1, so
∑
|α|=l ν

α(∇σ(x))α =

|∇σ(x)|l, where R stands for terms of differentiation order l or less and with at most

l−1 derivatives in τ . So we can see inductively that ∂jτv(y′, 0) is determined by ∂lu(x)
∂νl

for 0 ≤ l ≤ j.
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Another way to prescribe the initial data is to prescribe all partial derivatives of

u(x) of order m−1 or lower along Σ, subject to the natural compatibility conditions.

An easy way to do this is to give a function g(x), Cm or analytic near Σ, such that

∂βu = ∂βg(x), along Σ for all |β| ≤ m− 1.

Remark 9.6. The notion of non-characteristic initial surface implies the following

consequence: Suppose P is an m-th order linear differential operator, and u, v are two

Cm functions in a neighborhood U such that Pu ≡ Pv in U . If Σ is a hypersurface

which is non-characteristic with respect to P and ∂αu = ∂αv in U ∩ Σ, for all |α| ≤
m−1, then ∂αu = ∂αv in U ∩Σ, for all |α| = m; and if the coefficients of P and the u

and v here are assumed to be C∞ to begin with, then ∂αu = ∂αv in U ∩Σ, for all α.

Thus if a piecewise smooth solution to an m-th order linear differential equation has

continuous derivatives of order up to and including m − 1 across the hypersurface,

but has discontinuity across a hypersurface in its m-th order derivatives, then the

hypersurface must be characteristic.

Remark 9.7. When the initial surface is characteristic, one may still be able to de-

termine the formal power series expansion of a potential solution from the equation

and initial data, as in the case for the heat equation ut − uxx = 0 along the charac-

teristic initial surface {t = 0}, but the convergence of this constructed series is not

guaranteed. Furthermore, one may not be able to prescribe freely all Cauchy data

along the initial surface. For the case of the heat equation here, Cauchy data in the

general sense would mean g(x) = u(x, 0) and h(x) = ut(x, 0), but we can’t prescribe

h(x) freely, as it has to satisfy h(x) = g′′(x).

Here is another example. Consider the Cauchy problem for Pu = ∂2
xyu + a∂xu +

b∂yu+ cu = 0, where the initial data is given on Σ = {(x, y) : y = 0}. Presumably we

should prescribe u(x, 0) = g(x) and uy(x, 0) = h(x) as Cauchy data. However, if a C2

solution exists whose domain includes the line on which the initial data is given, then

h′(x) + ag′(x) + bh(x) + cg(x) = 0. This means that we can’t prescribe h(x) freely,

and this is due the Σ being characteristic with respect to P . Furthermore, we will

face the same difficulty when trying to determine higher order derivatives of u(x, y)

along y = 0.

355



CHAPTER 9. CAUCHY-KOWALEVSKAYA THEOREM

9.3 Notion of Non-characteristic Initial Data for

Quasilinear Equations

An operator of the form P =
∑
|α|=m cα(x, ∂βxu)∂αxu(x)+D(x, ∂βxu) is called a quasilin-

ear operator if the β’s in cα(x, ∂βxu) and D(x, ∂βxu) satisfy |β| ≤ m−1. In considering

a Cauchy problem for a quasilinear operator P , the notion of non-characteristic ini-

tial data depends not only on the operator and the initial surface, but also on the

prescribed initial data.

Definition. Σ = {x : σ(x) = 0} is called non-characteristic with respect to P at

x0 ∈ Σ on the initial data g if
∑
|α|=m cα(x0, ∂

β
xg(x0))(∇σ(x0))α is non-degenerate.

Σ = {x : σ(x) = 0} is called non-characteristic with respect to P and the initial data

g if it is non-characteristic at every point on it.

Example 9.5. Consider the quasilinear problem{
ut(x, t) + u(x, t)ux(x, t) = 0,

u(x, 0) = g(x).

The initial curve {(x, t) : t = 0} is non-characteristic for any initial data g. However,

for the quasilinear problem{
ut(x, t) + u(x, t)ux(x, t) = 0,

u(0, t) = h(t),

the initial curve {(x, t) : x = 0} is non-characteristic at (0, t) for the given data h iff

h(t) 6= 0.

Example 9.6. Recall that for the quasilinear problem (8.1),
n∑
i=1

ai(x, u(x))∂xiu(x) = c(x, u(x)),

u(x) = g(x), for x ∈ Σ,

The initial data Σ and g are non-characteristic at x̄ ∈ Σ, iff

the vector (a1(x̄, g(x̄)), · · · , an(x̄, g(x̄))) is transversal to Σ at x̄.

(8.1) is a first order PDE for a scalar unknown u, for which we have a different, but

related concept of characteristic curves, discussed in the precious chapter.
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Remark 9.8. Since the notion of non-characteristic also depends on the initial data,

it does not make sense to seek a (non-)characteristic initial surface in the absence of

providing initial data. However, certain equations have no characteristic directions

for any initial data. E.g. the mean curvature equation in the Euclidean space Rn:

∇

(
∇u√

1 + |∇u|2

)
= H(x).

At any point x ∈ Rn, for any hypersurface Σ = {x ∈ Rn : σ(x) = 0}, and any

prescribed initial data on Σ, u(x),∇u(x) would be given. A characteristic direction

ξ at x would have to satisfy

|ξ|2√
1 + |∇u|2

− (ξ · ∇u(x))2

(1 + |∇u|2)3/2
= 0.

But by the Cauchy-Schwarz inequality, (ξ·∇u(x))2

(1+|∇u|2)3/2 ≤ |∇u(x)|2
(1+|∇u|2)3/2 |ξ|2 < |ξ|2√

1+|∇u|2
, so no

characteristic direction exists.

A quasilinear operator is called elliptic at u at x if it has no characteristic direction

at x.

Exercise 9.3.1. The velocity potential φ(x, y) of a steady, isentropic, irrotational

2-dimensional flow satisfies the quasilinear PDE

(c2 − φ2
x)φxx − 2φxφyφxy + (c2 − φ2

y)φyy = 0. (9.14)

Here c is the speed of sound, and (φx(x, y), φy(x, y)) is the velocity at (x, y). Prove

that (9.14) is ellptic at φ(x, y) iff φ2
x + φ2

y < c2.

9.4 Cauchy-Kowalevskaya Theorem: Linear and

Quasilinear Case with General Non-characteristic

Initial Data

We first still take P to be the linear differential operator as in Section 2.

Theorem 9.2 (Linear case with general non-characteristic initial surface). Suppose

that there exists a neighborhood V of x0 ∈ Σ such that cα(x) are analytic in V , that Σ

is analytic and non-characteristic with respect to P in V . Then there is a neighborhood

357



CHAPTER 9. CAUCHY-KOWALEVSKAYA THEOREM

U of x0, such that for any analytic functions f(x) and g(x) in a neighborhood U1

around x0, there is a unique analytic solution in U ∩ U1 to{
Pu = f(x), near x0,

∂βu = ∂βg(x), along Σ for all |β| ≤ m− 1.

Example 9.7. For P1 = ∂t + i∂x in R2, a characteristic direction ξ = (ζ, η) ∈ R2

would have to satisfy ζ + iη = 0, which would force ζ = η = 0. Thus any regular

curve in R2 in non-characteristic for P1, and for any such analytic curve γ and analytic

initial data g along γ, Cauchy-Kowalevskaya theorem can be applied.

For P2 = ∂t + ∂x in R2, a characteristic direction ξ = (ζ, η) ∈ R2 would have to

satisfy ζ + η = 0. Thus a regular curve of the form t− φ(x) = 0 is non-characteristic

for P2 iff 1− φ′(x) 6= 0; while {(x, t) : t = x} would be a characteristic curve for P2.

One can not apply the Cauchy-Kowalevskaya theorem to{
(∂t + ∂x)u(x, t) = 0,

u(x, x) = g(x).

For one thing, if a solution existed, it would have forced g to be a constant; secondly,

no derivative of u in the direction transversal to the initial curve {(x, t) : t = x} can

be determined from the equation and the initial condition.

Example 9.8. The initial curve {(x, t) : t = x3} is non-characteristic with respect

to the operator P = ∂x everywhere except at (0, 0). The initial value problem{
∂xu(x, t) = 0,

u(x, x3) = x

has no analytic solution near (0, 0), for, a solution would have to be a function of t

which takes value x = t1/3 along {(x, t) : t = x3}, thus would have to equal to t1/3.

One important application of the Cauchy-Kowalevskaya theorem is its use in

Holmgren’s proof for the uniqueness of a solution to the Cauchy problem for a linear

equation with analytic coefficients and for data (not necessarily analytic) prescribed

on an analytic non-characteristic initial surface Σ — recall that the uniqueness of

an analytic solution to the same Cauchy problem would follow from the Cauchy-

Kowalevskaya theorem, if the initial data is also analytic. Another ingredient in

Holmgren’s proof is the use of the Lagrange-Green’s identity, which is used to reduce

the proof for the uniqueness of a solution to the existence of a solution to a dual
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problem with a dense set of initial data. See either F. John or J. Rauch’s text for

details.

The reduction process described above works almost identically for quasilinear

operator

P =
∑
|α|=m

cα(x, ∂βxu)∂αxu(x) +D(x, ∂βxu),

where ∂βxu denotes generic terms of differentiation of order |β| ≤ m − 1. By this we

mean the “flattening” process and the determination of the power series expansion

based on the Cauchy data (of order m−1 or less) and the equation. We may add that

the process of reducing a higher order equation to a system of first order equation also

works almost identically for higher order quasilinear operator, with one difference: the

reduced system is quasilinear, instead of linear.

Theorem 9.3 (Quasilinear case with general non-characteristic initial surface). Sup-

pose that cα(x, ∂βxu) are analytic in its arguments around (x0, ∂
β
xg(x0)), that the ini-

tial data g is analytic around x0 ∈ Σ, and that Σ is analytic around x0 and non-

characteristic with respect to P on the initial data g. Then there is a neighborhood of

x0, with a unique analytic solution to{
Pu = 0, near x0,

∂βu = ∂βg(x), along Σ for all |β| ≤ m− 1.

9.5 Cauchy-Kowalevskaya Theorem: Fully Non-

linear Case

To understand the fully nonlinear version better, it is instructive to first examine the

case with the special initial surface {t = 0}. Given a fully nonlinear operator

F = F (x, t, ∂jt ∂
α
xu(x, t)| j + |α| ≤ m),

where F is analytic in its arguments. Also given is initial data in the form of

∂jtu(x, 0) = gj(x), for 0 ≤ j ≤ m− 1.

Then all the terms ∂jt ∂
α
xu(x, 0)| j+|α| ≤ m in F along (x, 0) are determined by gj(x)’s

and their derivatives in x with the exception of one term: ∂mt u(x, 0). We require that

(i) algebraically we can solve for ∂mt u(x0, 0) = ũm from F (x0, 0, ∂
α
x gj(x0)| (j + |α| ≤
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m, j < m), ∂mt u(x0, 0)) = 0 at this one point x0, and (ii) we can locally solve for

∂mt u(x, t) in terms of the other arguments, from

F (x, t, ∂jt ∂
α
xu(x, t)|j+|α|≤m,j<m, ∂mt u(x, t)) = 0.

Here, locally means that ∂mt u(x, t) is near ũm, ∂jt ∂
α
xu(x, t), for j + |α| ≤ m, j < m,

are near ∂αx gj(x0), and (x, t) is near (x0, 0).

By the implicit function theorem, this can be done if we assume

∂

∂ (∂mt u)
F (x0, 0, ∂

α
x gj(x0)| (j + |α| ≤ m, j < m), ũm) 6= 0. (9.15)

Theorem 9.4 (Fully nonlinear case with special non-characteristic initial surface).

Suppose that the initial data gj(x) are analytic around x0, that F (x0, 0, ∂
α
x gj(x0)| (j+

|α| ≤ m, j < m), ũm) = 0 has a solution ũm, that F (x, t, ∂jt ∂
α
xu(x, t)| j + |α| ≤ m) is

analytic in its arguments around (x0, 0, ∂
α
x gj(x0)| (j + |α| ≤ m, j < m), ũm), and that

(9.15) holds. Then there is a neighborhood of (x0, 0), with a unique analytic solution

to {
F = 0, near (x0, 0),

∂βu = ∂βg(x), along Σ for all |β| ≤ m− 1.

Example 9.9. Consider the problem{
u2
t (x, t) + u2

x(x, t) = 1,

u(x, 0) = g(x).

In the case here, we need to be able to (i) solve ut(x0, 0) algebraically from the initial

condition and equation at (x0, 0) — this is possible as ut(x0, 0) = ±
√

1− |g′(x0)|2

provided |g′(x0)| ≤ 1; and (ii) solve ut(x, t) as an analytic function in terms of

other arguments such as u(x, t) and ux(x, t) for (x, t) near (x0, 0) and ut(x, t) near

±
√

1− |g′(x0)|2 — whichever choice one makes. This can be done if |g′(x0)| < 1. In

fact we can solve ut(x, t) explicitly to recast the equation as

ut(x, t) = ±
√

1− u2
x(x, t),

when |ux(x, t)| < 1. We can choose to work with either branch of the square root.

This corresponds to two possible choices for ut(x0, 0) = ±
√

1− |g′(x0)|2. In such

cases, the initial data along the curve {(x, 0)} is non-characteristic near (x0, 0).

With this version in hand, the fully nonlinear case with general non-characteristic

initial surface can be formulated in the same spirit as we did in the case for lin-

ear/quasilinear case. In fact, the easiest approach is to solve the differentiated equa-

tion ∂F = 0 first. This is a quasilinear equation of order m + 1, the coefficient in
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front of the highest order term ∂γx∂u with |γ| = m is

∂

∂ (∂γxu)
F (x, ∂αxu(x)| |α| ≤ m).

There are some issues to be dealt with. First, from the given Cauchy data

∂βxu(x) = ∂βxg(x), along Σ for all |β| ≤ m− 1,

we still need to determine the terms ∂αxu along Σ for |α| = m. They have to satisfy

some compatibility conditions along Σ. One way to resolve this issue is to assume that

at the point x0 ∈ Σ, we can find ∂αxu(x0) = ũα for |α| = m satisfying the compatibility

conditions (will be illustrated later in a simple case) and F (x0, ∂
α
xu(x0)) = 0. We

may assume σxn(x0) 6= 0, so can take the ∂ above to be ∂xn . We have discussed that

Σ = {σ = 0} is non-characteristic with respect to the equation ∂xnF = 0 on the

initial data g (and ũα) if∑
|γ|=m

∂

∂ (∂γxu)
F (x0, ∂

α
xu(x0)| |α| ≤ m) (∇xσ(x0))γ σxn(x0) is non-degenerate,

which is now equivalent to∑
|γ|=m

∂

∂ (∂γxu)
F (x0, ∂

α
xu(x0)| |α| ≤ m) (∇xσ(x0))γ is non-degenerate. (9.16)

The remaining issue to solve the Cauchy problem for the quasilinear system ∂xnF = 0

is the the appropriate determination of the Cauchy data along Σ—we have data up to

order m− 1 prescribed along Σ and have assumed the determination of data of order

m at x0. It turns out the this, together with (9.16), allows to extend the Cauchy data

to a neighborhood of x0 along Σ by the implicit function theorem.

Theorem 9.5 (Fully nonlinear case with general non-characteristic initial surface).

Suppose that the initial surface Σ and the initial data g(x) are analytic around x0,

that, with ũα = ∂αx g(x0) for |α| ≤ m − 1, F (x0, ũα) = 0 has a solution ũα for |α| =

m which also satisfies the compatibility conditions for m-th order partial derivatives

along Σ at x0 with the partial derivatives of order up to m of the g(x) at x0, that

F (x, ∂αxu(x)| |α| ≤ m) is analytic in its arguments around (x0, ũα), and that (9.16)

holds. Then there is a neighborhood of x0, with a unique analytic solution to{
F (x, ∂αxu(x)| |α| ≤ m) = 0, near x0,

∂βu = ∂βg(x), along Σ for all |β| ≤ m− 1.
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Example 9.10. For the problem{
u2
t (x, t) + u2

x(x, t) = 1,

u(x, φ(x)) = h(x),
(9.17)

the initial curve is γ : t = φ(x). Here, the initial data is given in terms of the function

h(x) along γ, rather than in terms of a local function in (x, t) near γ. It follows that

the compatibility equation

ut(x, φ(x))φ′(x) + ux(x, φ(x)) = h′(x)

must hold. We must first determine ut(x, φ(x)) and ux(x, φ(x)) from{
u2
t (x, t) + u2

x(x, t) = 1,

ut(x, φ(x))φ′(x) + ux(x, φ(x)) = h′(x).
(9.18)

This system of algebraic equations in ut(x, φ(x)) and ux(x, φ(x)) has a solution iff

|h′(x)| ≤
√

1 + |φ′(x)|2.

The initial curve γ : t = φ(x) is non-characteristic at (x, φ(x)) iff it is non-characteristic

with respect to the differentiated problem:

ut(x, t)utt(x, t) + ux(x, t)uxt(x, t) = 0,

where the initial data ut(x, φ(x)) and ux(x, φ(x)) are determined from the steps above.

In other words, at (x, φ(x)), if ut(x, φ(x)) and ux(x, φ(x)) are determined from (9.18),

then γ : t = φ(x) is non-characteristic at (x, φ(x)) iff ut(x, t)− ux(x, t)φ′(x) 6= 0—by

taking σ(x, t) = t−φ(x) in the characteristic equation for the differentiated problem.

When |h′(x)| ≤
√

1 + |φ′(x)|2 holds, (9.18) does have a solution ut(x, φ(x)) and

ux(x, φ(x)), and we will see that ut(x, t) − ux(x, t)φ
′(x) 6= 0 holds iff |h′(x)| <√

1 + |φ′(x)|2. This can be seen by studying the joint solution to
ut(x, φ(x))− ux(x, φ(x))φ′(x) = 0,

u2
t (x, φ(x)) + u2

x(x, φ(x)) = 1,

ut(x, φ(x))φ′(x) + ux(x, φ(x)) = h′(x).

Substituting the first equation into the remaining two, we would find

|h′(x)|2 = 1 + |φ′(x)|2.

Thus, if h and φ are analytic near x0 and |h′(x0))|2 < 1 + |φ′(x0)|2, then (9.17)

is non-characteristic at x0 on the initial data, and thus has a unique local analytic

solution.
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Remark 9.9. In Examples 9 and 10, we used two scalar first order PDEs to illus-

trate Cauchy-Kowalevskaya Theorem. In fact, these equations can be studied using

the method of characteristic curves even in the absence of any analyticity assumption.

Exercise 9.5.1. The Gaussian curvature of a two dimensional graph u = u(x, y) is

given by
uxxuyy − u2

xy

(1 + |∇u|2)2
= K(x, y). (9.19)

(i). Derive a differentiated equation for (9.19) and use it to confirm that any charac-

teristic direction (ζ, η) at (x, y) would have to satisfy uxxη
2−2uxyζη+uyyζ

2 = 0.

(ii). Prove that (9.19) has no characteristic direction at (x, y) iff K(x, y) > 0.

(iii). Derive the linearization of (9.19) at u(x, y), and prove that the linearization is

elliptic at u(x, y) iff K(x, y) > 0.
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Chapter 10

Maximum Principle and

Applications

From our earlier discussions we have seen the power of the maximum principle

in establishing the uniqueness, estimation, convergence theorems, and existence of

solutions. It turns out that the maximum principle has extensions to second order

variable coefficient elliptic and parabolic operators, and the proofs can be given by

fairly elementary means–along similar lines as the proofs for the Laplace operator.

So we will present some of these generalizations, together with some applications.

10.1 Maximum Principle for Second Order Elliptic

Equations

Definition. L[u] = −
∑n

i,j=1 aij(x)∂2
iju(x) +

∑n
i=1 bi(x)∂iu(x) + c(x)u(x) is called

elliptic at x ∈ U if the symmetric matrix (aij(x)) is positive definite at x; L is called

elliptic in U if it is elliptic at every x ∈ U . L is called uniformly elliptic in U if

sup
U

[
Λ(x)λ−1(x)

]
<∞ in U ,

where Λ(x) and λ(x) are the largest and smallest eigenvalue of (aij(x)), respectively.

We will often need to assume

|bi(x)|λ−1(x) to be bounded in U or in any compact subdomain of U , (10.1)

© 2023, by Zheng-Chao Han. Please do not distribute these notes at this point, as they have

not been thoroughly revised.
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where λ(x) is the smallest eigenvalue of (aij(x)).

We will often employ the summation convention, and will denote −aij(x)∂2
iju(x)+

bi(x)∂iu(x) by M [u]. Unless otherwise noted, U always stands for a bounded domain.

Theorem 10.1 (Weak Maximum Principle). (i) Suppose M is elliptic in U and (10.1)

holds on any compact subset of U . Assume u ∈ C2(U) ∩ C(U) satisfies M [u] ≤ 0 in

U . Then maxU u = max∂U u.

(ii) Suppose L is elliptic in U , (10.1) holds on any compact subset of U and c(x) ≥
0. If u ∈ C2(U) ∩ C(U) satisfies L[u] ≤ 0 in U , then maxU u ≤ max (max∂U u, 0) :=

max∂U u
+.

Proof. (i) First, we assume that M [u] < 0 in U . Then if maxU u > max∂U u, maxU u

must be attained at some interior point x0 ∈ U . This implies that ∇u(x0) = 0 and(
∇2
iju(x0)

)
is a non-positive definite matrix. Since (aij(x0)) is assumed to be positive

definite, we see that
∑

i,j aij(x0)∇2
iju(x0) ≤ 0, which implies that M [u](x0) ≥ 0,

contradicting our assumption that M [u] < 0 in U . Thus we have proved maxU u =

max∂U u under the assumption M [u] < 0 in U .

For the general case, for any compact domain V ⊂⊂ U , we will construct a

function v on V such that M [v] < 0 in V ; and then apply the above argument to

u+ εv on V for any ε > 0 to conclude that

max
V

(u+ εv) = max
∂V

(u+ εv).

Since this equality holds for any ε > 0, by sending ε→ 0, we obtain

max
V

u = max
∂V

u.

Finally, if maxU u > max∂U u, then we can easily construct a compact domain

V ⊂⊂ U such that maxV u = maxU u > max∂V u, contradicting our argument in

the paragraph above. This would conclude that maxU u = max∂U u.

The construction of v can be made in the simple form of v(x) = eγx1 for some

γ > 0 large, as M [eγx1 ] = (−a11(x)γ2 + b1(x)γ) eγx1 , and a11(x) ≥ λ(x), thus

M [eγx1 ] ≤ γλ(x)

(
−γ +

b1(x)

λ(x)

)
eγx1 < 0

if γ is chosen to be larger than the bound of | b1(x)
λ(x)
| on V .

For (ii), since L[u] ≤ 0 in U , it follows that M [u] = L[u]−c(x)u(x) ≤ −c(x)u(x) ≤
0 in the subdomain U+ := {x ∈ U : u(x) > 0}. Applying the argument in (i) to u

on U+, we have maxU+
u = max∂U+ u. But maxU u ≤ maxU+

u, and max∂U+ u =

max∂U u
+, thus we have proved (ii).
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Theorem 10.2 (Uniqueness). Suppose L is elliptic in U , (10.1) holds on any compact

subset of U and c(x) ≥ 0. If u ∈ C2(U)∩C(U) satisfies L[u] = 0 in U , u = 0 on ∂U ,

then u ≡ 0 in U .

Remark 10.1. The conclusion maxU u ≤ max (max∂U u, 0) in (ii) of Theorem 1 can

not be improved, as one can see from the case of U = (−1, 1), u(x) = − cosh(x)

satisfying −u′′ + u = 0, u(−1) = u(1) = − cosh(1) = max∂U u < u(0) = maxU u ≤ 0.

The condition c(x) ≥ 0 in both (ii) of Theorem 1 and Theorem 2 can not be dropped.

For U = (0, π), u(x) = sin x is a nonzero solution of u′′ + u = 0 in U and u(0) =

u(π) = 0. However, we have the following

Theorem 10.3. Suppose L is uniformly elliptic in U , (10.1) holds on any compact

subset of U and there exists w ∈ C2(U) ∩ C(U) satisfies L[w] ≥ 0 in U , w > 0 in U .

Let u ∈ C2(U) ∩ C(U) satisfy L[u] ≤ 0 in U , and u ≤ 0 on ∂U . Then u ≤ 0 in U .

Proof. Set u(x) = w(x)v(x). Then L[u] = w(x)M̃ [v] + v(x)L[w], where

M̃ [v] = −
n∑

i,j=1

aij(x)∂2
ijv +

n∑
i=1

(
bi(x) + 2

n∑
j=1

aij(x)∂jw(x)/w(x)

)
∂iv(x).

So M̃ [v] + v(x)L[w]/w ≤ 0, with L[w]/w ≥ 0 in U , and v ≤ 0 on ∂U . We can apply

(ii) of the Weak Maximum Principle to conclude v ≤ 0 in U . Therefore u ≤ 0 in U .

Corollary 10.4. Under the assumptions on L and w as in the Theorem above, if

u ∈ C2(U) ∩ C(U) satisfy L[u] = 0 in U , and u = 0 on ∂U . Then u = 0 in U .

Example 10.1. Consider L[u] = −u′′(x) − u(x) over U = (0, l), 0 < l < π, then

for 0 < δ < π − l, w(x) = sin(x + δ) satisfies L[w] = 0, and w(x) > 0 for x ∈ U ,

so, if −u′′(x) − u(x) ≤ 0 on (0, l), and u(0), u(l) ≤ 0, then u(x) ≤ 0 in (0, l). As a

consequence of the uniqueness, the problem −u′′(x)− u(x) = f(x) for x ∈ (0, l) and

with u(0), u(l) prescribed, has at most one solution in such a case. The existence

of a solution can be established using elementary means such as the variation of

parameters method for constructing solutions to linear ODEs. Both conclusions fail

when l = π.

The maximum principle does not hold on unbounded domains without requiring

some conditions on the solution’s behavior at infinity. For example, if U = Rn
+, then

u(x) = xn is a harmonic function in U such that u = 0 on ∂U , yet u is not ≡ 0 in

U . Some extension of the maximum principle to unbounded domains appear in the

problems.

Maximum principle can also be used to estimate the solution.
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Theorem 10.5 (Estimation). Suppose L is elliptic in U , (10.1) is satisfied in U , and

c(x) ≥ 0 in U . Suppose u ∈ C2(U) ∩ C(U) satisfies{
L[u] = f(x) in U ,

u = g(x) on ∂U .

Then

max
U
|u| ≤ max

∂U
|g|+ C max

U
[|f(x)|/λ(x)] ,

where C > 0 depends only the diameter of U and the bound maxU [|bi(x)|λ−1(x)], and

λ(x) is the smallest eigenvalue of (aij(x)).

Proof. The key is to construct a function v > 0 in U satisfying M [v] ≥ λ(x) in U .

Then w =
(

supU
|f(x)|
λ(x)

)
v(x) + sup∂U |g| satisfies L[w] ≥ M [w] ≥ |f(x)| in U . So

L[w ± u] ≥ 0 in U , and w ± u ≥ 0 on ∂U . By (ii) of the Weak Maximum Principle,

w ± u ≥ 0 in U . Thus

|u| ≤ w ≤
(

sup
U

|f(x)|
λ(x)

)
max
U

v(x) + sup
∂U
|g|,

in U . Such a desired v can be found in the form of v(x) = eγd − eγx1 for some γ > 0

depending on maxU [|bi(x)|λ−1(x)], where we assume U lie in the slab 0 < x1 < d.

Remark 10.2. A small modification of the above proof can be used to give one-sided

estimate. For example, if {
L[u] ≤ f+(x) in U ,

u ≤ g+(x) on ∂U .

for some f+(x), g+(x) ≥ 0, then maxU u ≤ max∂U g
+ + C maxU [f+(x)/λ(x)].

Notice also that the weak maximum principle and the uniqueness statements do

not require any quantitative bound on the coefficients of L, but the estimation does

require quantitative bound on the coefficients of L.

For some purposes the following Strong Maximum Principle is very useful.

Theorem 10.6 (Strong Maximum Principle). (i) Suppose M is uniformly elliptic on

any compact subset of U , (10.1) holds, and u ∈ C2(U) ∩ C(U) satisfies M [u] ≤ 0 in

U . Suppose U is connected and u attains its maximum maxU u at a point in U , then

u ≡ a constant in U .

(ii) Suppose L is uniformly elliptic on any compact subset of U , c(x) ≥ 0 in U

and

|bi(x)|/λ(x), |c(x)|/λ(x) are bounded on any compact subset of U . (10.2)
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Suppose U is connected and u ∈ C2(U) ∩ C(U) satisfies L[u] ≤ 0 in U , and has a

nonnegative maximum in U , then u ≡ a constant in U .

(iii) Suppose L is uniformly elliptic on any compact subset of U and satisfies

(10.2). Suppose U is connected and u ∈ C2(U) ∩ C(U) satisfies L[u] ≤ 0 in U . If

u ≤ 0 in U with u(x̄) = 0 for some x̄ ∈ U . Then u ≡ 0 in U—this is no sign condition

on c(x) in this situation.

Remark 10.3. The condition in (ii) that u has a nonnegative maximum in U can

not be dropped, as one can see through the example U = (−1, 1), u(x) = − cosh(x)

satisfying −u′′ + u = 0, u(−1) = u(1) = − cosh(1) < u(0) = maxU u.

Corollary 10.7. Suppose u ≤ v in a connected domain U and

F (x, u, ui, ujk) ≥ F (x, v, vi, vjk) in U,

where F is of class C1 in its argument and is elliptic everywhere, i.e.,

∂F

∂zjk
(x, z, zi, zjk) is positive definite for any C2 function z in U.

Then either u < v in U or u ≡ v in U .

Proof. Note that

− F (x, u, ui, ujk) + F (x, v, vi, vjk)

=

∫ 1

0

d

dt
F (x, tv + (1− t)u, (tv + (1− t)u)xi , (tv + (1− t)u)xjxk) dt

=−
∫ 1

0

∂F

∂zjk
(x, tv + (1− t)u, (tv + (1− t)u)xi , (tv + (1− t)u)xjxk)wxjxk(x) dt

−
∫ 1

0

∂F

∂zi
(x, tv + (1− t)u, (tv + (1− t)u)xi , (tv + (1− t)u)xjxk)wxi(x) dt

−
∫ 1

0

∂F

∂z
(x, tv + (1− t)u, (tv + (1− t)u)xi , (tv + (1− t)u)xjxk)w(x) dt

where w(x) = u(x)− v(x). Setting

ajk(x) =

∫ 1

0

∂F

∂zjk
(x, tv + (1− t)u, (tv + (1− t)u)xi , (tv + (1− t)u)xjxk) dt,

bi(x) =

∫ 1

0

∂F

∂zi
(x, tv + (1− t)u, (tv + (1− t)u)xi , (tv + (1− t)u)xjxk) dt,

c(x) =

∫ 1

0

∂F

∂z
(x, tv + (1− t)u, (tv + (1− t)u)xi , (tv + (1− t)u)xjxk) dt,
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we see that w(x) = u(x)− v(x) satisfies
−
∑
j,k

ajk(x)wxjxk −
∑
i

bi(x)wxi − c(x)w(x) ≤ 0, in U ,

w(x) ≤ 0 on ∂U ,

and the condition on F implies that the strong maximum principle can be applied to

w(x), so we can conclude that either u < v in U or u ≡ v in U .

As an application of this corollary, two minimal surfaces can never touch each

other, unless they are identical. The proof of the Strong Maximum Principle depends

on the Hopf boundary Lemma as given below.

Lemma 10.8 (Hopf Lemma). Suppose L is uniformly elliptic in a closed ball B

and satisfies (10.1) in B. Let x0 ∈ ∂B and u ∈ C2(B) ∩ C(B) satisfies u(x) < u(x0)

for all x ∈ B.

(i) If M [u] ≤ 0 in B, then

∂u

∂ν
(x0) > 0 in the sense lim inf

ε→0+

u(x0)− u(x0 − εν)

ε
> 0. (10.3)

(ii) If L[u] ≤ 0 in B, c(x) ≥ 0 in B and satisfies (10.2), and u(x0) ≥ 0, then

(10.3) also holds; furthermore, if u(x0) = 0, then (10.3) continues to hold regardless

of the sign on c(x).

Remark 10.4. The assumption u(x0) ≥ 0 in (ii) above can not be dropped, as in

the case U = (0, 1), u(x) = − cosh(x) satisfies −u′′(x) + u(x) = 0, yet u′(0) = 0.

The Strong Maximum Principle and the Hopf Lemma give the uniqueness to the

Neumann boundary value problem.

Theorem 10.9. Assume L is uniformly elliptic in U and satisfies (10.2), and c(x) ≥
0 in U . Assume U is connected and ∂U is C2, and u ∈ C2(U) ∩ C1(U) satisfiesL[u] = 0 in U ,

∂u

∂ν
= 0 on ∂U .

Then u ≡ a constant in U (in fact u ≡ 0 unless c(x) ≡ 0).

Proof. Suppose u is not identically a constant, then by considering −u if necessary,

we may assume that maxU u > 0. By (ii) of Strong Maximum Principle, since u is

not a constant in U , maxU u can not be attained in the interior of U , thus must be
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attained at a boundary point x0, and u(x) < u(x0) for all x ∈ U . But we can apply

the Hopf Lemma on a small ball contained in U and touching U at x0 to conclude

that ∂u
∂ν

(x0) > 0, contradicting the boundary condition at x0. Therefore, u must be a

constant in U .

Remark 10.5. In the simple case L[u] = −∆u+c(x)u, one can prove the uniqueness

(up to a constant) to the Neumann boundary value problem by the energy method.

But that method is not very suitable for general variable coefficient case.

Proof of Strong Maximum Principle. The set V = {x ∈ U : u(x) = maxU u} is

(relatively) closed in U . We will prove that, under the assumptions for the Strong

Maximum Principle, it is also open, therefore conclude that V = U , and u ≡ a

constant in U . Suppose V is not open, then there exists a point x̄ ∈ V , and a

sequence of points xi ∈ U such that xi → x̄ as i → ∞, and u(xi) < u(x̄). For i

sufficiently large, the distance from xi to ∂U is obviously greater than its distance to

V , thus we can construct a ball B centered at xi such that B̄ ⊂ U and B̄∩ V̄ is a non

empty subset of ∂B. We can now apply the appropriate form of the Hopf lemma on a

perhaps smaller ball B′ tangent to B and B̄′ ∩ V̄ = {x′} to conclude that ∂u
∂ν

(x′) 6= 0.

But x′ is an interior maximum point of u, so we are supposed to have ∇u(x′) = 0.

This contradiction shows that the Strong Maximum Principle holds.

Proof of the Hopf Lemma. The key idea is to construct a function v on the annulus

region A := B \B′, where B′ is a strictly smaller concentric ball to B, satisfying

L[v] ≤ 0 in A,

v = 0 on ∂B,

v ≥ 0 in A,

∂v

∂ν
< 0 on ∂B,

Then for ε > 0 small, max∂B′(u+ εv) ≤ u(x0) = max∂B(u+ εv), which is ≥ 0, and{
L[u+ εv] ≤ 0 in A,

u+ εv ≤ u(x0) on ∂A.

In the case (i) or case (ii) with c(x) ≥ 0, we can apply the weak maximum principle

directly to conclude that maxA(u+εv) ≤ max∂A(u+εv) = u(x0), and in fact, x0 ∈ ∂B
must be a maximum point. Thus ∂(u+εv)

∂ν
(x0) ≥ 0. It follows now ∂u

∂ν
(x0) ≥ −ε∂v

∂ν
(x0) >

0. In the case (ii) where u(x0) = 0 and no sign condition is imposed on c(x), note

that

0 ≥ L[u] = M [u] + c+(x)(u)− c−(x)(u) ≥M [u] + c+(x)(u) in A,
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as u ≤ 0 in this case. So u is a subsolution of M + c+(x), and we can repeat the

argument replacing L by M + c+(x) to draw the same conclusion.. A choice of v

satisfying all the requirements can be found in the form of v = e−α|x|
2 − e−αR

2
for

sufficiently large α, if B = BR(0). We only need to check L[v] ≤ 0 in BR(0)\B(R
′)(0)

if 0 < R′ < R and α > 0 is sufficiently large. Since vxi = −2αxie
−α|x|2 and vxixj =

[−2αδij + 4α2xixj]e
−α|x|2 , we see that

M [v] =

{
−
∑
i,j

aij(x)[−2αδij + 4α2xixj]−
∑
i

2αbi(x)xi

}
e−α|x|

2

≤

{
−4α2λ(x)|x|2 + 2αnΛ(x) + 2α(

∑
i

|bi(x)|2)
1
2 |x|

}
e−α|x|

2

≤ −2αλ(x)

2αR′2 − nΛ(x)

λ(x)
+

[∑
i

(
bi(x)

λ(x)

)2
] 1

2

R

 e−α|x|
2

< 0,

for R′ ≤ |x| ≤ R if α > 0 is chosen to make 2αR′2−nΛ(x)
λ(x)

+

[∑
i

(
bi(x)
λ(x)

)2
] 1

2

R > 0.

Maximum principle is not valid on unbounded domains without some growth

restrictions on the solution, as illustrated by the harmonic function u(x) = xn over

U = Rn
+ = {x ∈ Rn : xn > 0}, which satisfies u(x) = 0 for u ∈ ∂U . However,

maximum principle is still valid for solutions on unbounded domains with appropriate

growth restrictions which depend on the domain, as illustrated by the Phragmen-

Linderlöf Theorem for holomorphic functions on sectors or strips. Similar comments

apply to solutions which may be singular on a subset of the domain. We will next

formulate and prove such a theorem for subharmonic functions on a sector.

The strategy is to first understand how the maximum principle may fail and to

try to see whether there is a threshold growth rate for the failure. Let’s start with

considering harmonic functions u in the two-dimensional sector Σθ0 = {z ∈ C : 0 <

arg(z) < θ0} which vanish on ∂Σθ0 . Since both the sector Σθ0 and the Laplace operator

∆ have scaling invariance z = (x, y) 7→ tz for t > 0, it’s natural to try to understand

how separable solutions in polar coordinates u = Φ(r)Ψ(θ) behave—we could have

relied on knowledge of holomorphic functions and their relations to harmonic functions

in this setting, but we want to illustrate the general approach, which is applicable in

other settings. Since the Laplace operator ∆ = ∂2
r +r−1∂r+r

−2∂2
θ in polar coordinates

dimension 2, we have{[
Φ′′(r) + r−1Φ′(r)

]
Ψ(θ) + r−2Φ(r)Ψ′′(θ) = 0 r > 0, 0 < θ < θ0

Φ(r)Ψ(θ) = 0 when θ = 0, θ0.
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Separating variables, we obtain, for some constant λ,{
Ψ′′(θ) + λΨ(θ) = 0, 0 < θ < θ0

Ψ(0) = Ψ(θ0) = 0,
(10.4)

and

r2Φ′′(r) + rΦ′(r)− λΦ(r) = 0 for r > 0. (10.5)

We know that (10.4) has non-trivial solutions only when λ =
(
kπ
θ0

)2

for k ∈ N, with

Ψk(θ) = sin
(
kπθ
θ0

)
. Setting λ1 =

(
π
θ0

)2

, we see that the corresponding solutions

to (10.5) are Φk(r) = r±kλ1 . Thus both rkλ1 sin
(
kπθ
θ0

)
and r−kλ1 sin

(
kπθ
θ0

)
are har-

monic functions in Σθ0 with vanishing boundary value on ∂Σθ0 , which are non-trivial

and exhibit some growth either at ∞ or near 0; note also that the threshold growth

rate seems to be r±λ1 , and that the harmonic function in such a case, r±λ1 sin (λ1θ),

which is the imaginary part of z±λ1 respectively, does not change sign in Σθ0 . This

feature—a positive solution with homogeneous boundary data which fails the maxi-

mum principle—is often a hallmark of solutions failing the maximum principle at a

threshold rate. We now formulate

Theorem 10.10. Suppose that u ∈ C(Σθ0) ∩ C2(Σθ0) satisfies, for some constants

0 < λ < λ1 and C > 0, 
∆u ≥ 0 in Σθ0,

u ≤ 0 on ∂Σθ0,

u(z) ≤ C|z|λ in Σθ0,

then u ≤ 0 in Σθ0

The generalization of this kind of maximum principle to a higher dimensional

sector will appear in a problem.

Proof. The idea is to prove that for any ε > 0, u(z) ≤ εrλ
′
1 sin (λ′1θ + δ) for any

z ∈ Σθ0 , where λ < λ′1 < λ1 and δ > 0 have been chosen such that λ′1θ0 + δ < π. We

made the adjustment from rλ1 sin (λ1θ) to rλ
′
1 sin (λ′1θ + δ) so as to obtain a uniform

lower bound of growth rλ
′
1 sin (λ′1θ + δ) ≥ crλ

′
1 for some c > 0 and all z ∈ Σθ0 . Once

we have established u(z) ≤ εrλ
′
1 sin (λ′1θ + δ) for any z ∈ Σθ0 , since ε > 0 is arbitrary

in this inequality, we conclude that u(z) ≤ 0.

Note that v(z) = rλ
′
1 sin (λ′1θ + δ) satisfies ∆v = 0 in Σθ0 , and is positive in

Σθ0 ; moreover, due to u(z) ≤ C|z|λ in Σθ0 , there exists R > 0 depending on ε > 0

such that for |z| ≥ R, u(z) ≤ εv(z). We can now apply the maximum principle to
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u(z)− εv(z) on the bounded domain Σθ0 ∩B(0, R) to conclude that u(z)− εv(z) ≤ 0

in Σθ0 ∩B(0, R).

Note that the choice of R may depend on ε, but a fixed z0 ∈ Σθ0 ∩B(0, R) for all

small ε > 0, so u(z0) ≤ εv(z0) for all small ε > 0, which is what we set out to prove.

Exercises

Exercise 10.1.1. Prove that under the assumption that U satisfies the interior sphere

condition, and that c(x) ≤ 0 for x ∈ U and α(x) ≥ 0 for x ∈ ∂U , there exists at most

one solution (up to a constant) u to ∆u+ c(x)u = f in U ,

∂u

∂ν
+ α(x)u(x) = g(x) on ∂U ,

in the class C2(U) ∩ C1(U). Give an example of the failure of the uniqueness when

the condition on c(x) or α is not satisfied.

Exercise 10.1.2. Suppose that in the two-dimensional truncated sector Σθ0∩B(0, R),

u ∈ C(Σθ0 ∩B(0, R) \ {0}) ∩C2(Σθ0 ∩B(0, R)) satisfies, for some constants 0 < λ <

λ1 = π
θ1

and C > 0, 
∆u = 0 in Σθ0 ∩B(0, R),

u = 0 on ∂ (Σθ0 ∩B(0, R)),

|u(z)| ≤ C

|z|λ
in Σθ0 ∩B(0, R),

then u = 0 in Σθ0 ∩B(0, R).

Exercise 10.1.3. In this problem we extend the maximum principle to higher di-

mensional sectors. Let Ω ⊂ Sn−1 be an open domain whose boundary ∂Ω consists of

piecewise C1 hypersurfaces, and in a neighborhood of any boundary point, Ω stays

on one side of ∂Ω. A differentiable function Ψ(ωωω) for ωωω ∈ Ω has a naturally defined

gradient ∇Ψ(ωωω), |∇Ψ(ωωω)|2, and the associated (spherical) Laplacian ∆ωωωΨ(ωωω). Recall

that

∆ωωωΨ(ωωω) =
1

sin(θ)
(sin(θ)Ψθ(θ, φ))θ +

1

sin2(θ)
∆φΨ(θ, φ),

where ωωω = (cos θ, sin θ φ), φ ∈ Sn−2 are geodesic polar coordinates for Sn−1, and for

a function u = u(rωωω) defined in the sector ΣΩ = {x = rωωω : r > 0,ωωω ∈ Ω},

∆u(rωωω) = urr +
n− 1

r
ur +

1

r2
∆ωωωu.
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(i). Look for a separable solution u = Φ(r)Ψ(ωωω) in the sector ΣΩ to{
∆ (Φ(r)Ψ(ωωω)) = 0 in ΣΩ,

Φ(r)Ψ(ωωω) = 0 on ∂ΣΩ.

Deduce the eigenvalue problem that Ψ has to satisfy on Ω and verify that the

corresponding equation for Φ is r2Φrr+(n−1)rΦr+λΦ = 0, and that its solution

space is spanned by {rα+ , rα−}, where α± are the roots to α(α + n− 2) = λ.

(ii). It is known that the eigenvalues in the part above are all real and ordered as

λ1 < λ2 ≤ · · · , with λk → ∞ as k → ∞, and that the eigenspace associated

with λ1 is one dimensional and is spanned by an eigenfunction which is positive

in Ω. It is further known that λ1 depends on Ω in a continuous way, and

that λ1(Ω) > λ1(Ω′) when Ω ⊂⊂ Ω′. Use such information to prove that if

u ∈ C(ΣΩ)∩C2(ΣΩ) satisfies, for some 0 ≤ α < α+ and C > 0, where α+ is the

positive root to α(α + n− 2) = λ1(Ω),
∆u ≥ 0 in ΣΩ,

u ≤ 0 on ∂ΣΩ,

u(x) ≤ C|x|α in ΣΩ,

then u ≤ 0 in ΣΩ. (No explicit information on the eigenfunction Ψ associated

with λ1(Ω), other than those summarized above, is needed for this part.)

Exercise 10.1.4. Suppose that 0 is an interior point of the domain U in Rn, n ≥ 3,

and u(x) is a nonnegative harmonic function on U \ {0}. Prove that there exists a

constant A ≥ 0 and a smooth harmonic function h(x) in U such that

u(x) = A|x|2−n + h(x), for all x ∈ U .

(Hint: Let ū(r) denote the average of u over the sphere |x| = r. First establish that

ū′′(r) + n−1
r
ū′(r) = 0 for small r > 0. Thus ū(r) = Ar2−n +B for some A ≥ 0 and B.

Next try to use Harnack/Green’s identify or Maximum principle.)

Exercise 10.1.5. Suppose U is a bounded domain and x0 ∈ ∂U . Let u ∈ C(U \{x0})
be a bounded harmonic function in U such that u ≡ 0 on ∂U \{x0}. Prove that u ≡ 0

in U .

Exercise 10.1.6. Suppose U is a bounded domain in R2 with C1 boundary, g is a

C0 function on ∂U that is locally Hölder at x0 ∈ ∂U : |g(x)− g(x0)| ≤ A|x− x0|α for
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x ∈ ∂U in a neighborhood of x0 and some 0 < α < 1, A > 0. Let u be the harmonic

function in U with g as boundary value. Prove that u is locally Hölder at x0, i.e., for

some B > 0, |u(x)− u(x0)| ≤ B|x− x0|α for x ∈ U in a neighborhood of x0 . (Hint:

Try to modify the construction of the barrier function in the barrier argument in the

form of rβf(θ), where r = |x− x0|, and θ is the polar angle with respect to x0.)

Exercise 10.1.7. (a). Let u be a bounded harmonic function on U = {x = (x′, xn) :

0 < xn < h}. Prove that

sup
U

|u| = sup
∂U
|u|.

(b). Let u be a bounded harmonic function on Rn
+ = {x = (x′, xn) : xn > 0}. Prove

that

sup
Rn+

|u| = sup
∂Rn+
|u|.

Exercise 10.1.8. Let B+ denote the half disk {(x, y) ∈ R2 : x2 + y2 < 1, y > 0}.
Suppose u ∈ C2(B+) ∩ C(B

+
) is a solution of{

∂2
xu+ y∂2

yu+ c(x, y)u = f(x, y) in B+,

u(x, y) = g(x, y) on ∂B+.
(*)

(a). There is at most one solution of (*) under the assumption c(x, y) ≤ 0.

(b). Assume −c0 ≤ c(x, y) ≤ 0 in B+. Then there exists a constant C > 0 depending

only on c0 such that for any solution u to (*)

max
B+
|u| ≤ C

[
max
B+
|f |+ max

∂B+
|g|
]
.

10.2 Maximum Principle for Second Order Parabolic

Equations

All of these maximum principles have their counterparts for second order parabolic

operators. Many of such extensions have less strict requirements on the coefficients

of the operator.

Definition. When L = −aij(x, t)∂2
xi xj

+ bi(x, t)∂xi + c(x, t) is elliptic (uniformly

elliptic), we say ∂t + L is parabolic(uniformly parabolic).
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For considerations in parabolic problems, it is often convenient to consider domains

of the form UT = U × (0, T ] in spacetime. The parabolic boundary of UT is defined

to be ∂′UT = ∂tUT ∪ ∂xUT , where ∂tUT = {(x, 0) : x ∈ U}, and ∂xUT = {(x, t) : x ∈
∂U, 0 < t ≤ T}. Because solutions to parabolic equations have different degrees of

differentiability in t and x, we define C2,1
x,t (UT ) to consist of those functions u(x, t)

that have continuous derivatives in x up to order 2 and continuous derivative ut in

UT .

Theorem 10.11 (Weak Maximum Principle for Parabolic Operators). (i) Suppose

∂t + L is parabolic in UT and satisfies

c(x, t) ≥ −γ in UT . (10.6)

Suppose u ∈ C2,1
x,t (UT ) ∩ C(UT ) satisfies{

(∂t + L)[u] ≤ 0 in UT ,

u ≤ 0 on ∂′UT .

Then u ≤ 0 in UT .

(ii) Suppose ∂t + L is parabolic in UT and c(x, t) ≥ 0. If u ∈ C2,1
x,t (UT ) ∩ C(UT )

satisfies (∂t + L)[u] ≤ 0 in UT , then maxUT u ≤ max (max∂′UT u, 0) := max∂′UT u
+.

Note that (i) above does not require the nonpositive sign condition on c(x). As

a consequence, neither does the uniqueness to the mixed Dirichlet-Cauchy problem

require the sign condition on c(x). The reason is because if we introduce a new

variable v(x, t) = e−γtu(x, t), then{
∂tv + (L+ γ)v = e−γt(∂tu+ L[u]) ≤ 0 in UT ,

v = e−γtu(x, t) ≤ 0 on ∂′UT .

(L+ γ)v would have nonnegative coefficient in front of v, so we can apply maximum

principle on v.

Proof of (i). Because of the above reduction, we may assume γ = 0 in (10.6). For any

ε > 0, we note that (∂t + L) [u− εt] = −ε+ (∂t + L) [u]− εc(x, t)t < 0 in UT , so u− εt
can not take a positive maximum in UT , for, if w(x, t) := u(x, t)−εt attains a positive

maximum at (x0, t0) ∈ UT , then wt(x0, t0) ≥ 0, wxi(x0, t0) = 0, and (∂2
xixj

w(x0, t0)) is

non-positive definite, which would imply (∂t + L)w(x0, t0) ≥ 0, contradicting our set

up of (∂t + L) [u(x, t)− εt] < 0 in UT . Since u− εt ≤ 0 on ∂′UT , it follows now that

u− εt ≤ 0 in UT . Since ε > 0 is arbitrary, we conclude that u ≤ 0 in UT .
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Proof of (ii). (∂t + L) [u−max∂′UT u
+] ≤ −c(x, t) max∂′UT u

+ ≤ 0, and u−max∂′UT u
+ ≤

0 on ∂′UT . So u−max∂′UT u
+ ≤ 0 in UT by (i).

Theorem 10.12 (Uniqueness). Suppose ∂t+L is parabolic in UT and satisfies (10.6).

Suppose u ∈ C2,1
x,t (UT ) ∩ C(UT ) satisfies{

(∂t + L)[u] = 0 in UT ,

u = 0 on ∂′UT .

Then u ≡ 0 in UT .

Proof. We can apply the weak maximum principle to u and −u to conclude that

u ≡ 0 in UT .

Estimation on the solution of parabolic equation also follows routinely.

Theorem 10.13 (Estimation). Suppose ∂t+L is parabolic in UT and satisfies (10.6).

Suppose u ∈ C2,1
x,t (UT ) ∩ C(UT ) satisfies{

(∂t + L)[u] = f(x, t) in UT ,

u = g(x, t) on ∂′UT .

Then

max
UT
|u| ≤ eγT

[
T max

UT
|f |+ max

∂′UT
|g|
]
. (10.7)

Proof. By our trick above, we may work with v(x, t) = e−γtu(x, t) to get (∂t + [L+ γ]) v =

e−γtf(x, t). Note that (∂t + [L + γ])[v − tmaxUT |f | − max∂′UT |g|] ≤ 0 in UT , and

v − tmaxUT |f | −max∂′UT |g| ≤ 0 on ∂′UT . Thus by the maximum principle,

v ≤ tmax
UT
|f |+ max

∂′UT
|g|, in UT .

Similarly

−v ≤ tmax
UT
|f |+ max

∂′UT
|g|, in UT .

Thus (10.7) holds.

Uniqueness to the mixed Dirichlet-Cauchy problem for fully nonlinear parabolic

equations follow in a similar way.

Theorem 10.14. Suppose F = F (x, t, u, uxi , uxi xj) is of class C1 in its argument and

is elliptic everywhere with respect to uxi xj . Then there exists at most one solution u

in the class C2,1
x,t (UT ) ∩ C(UT ) to{

∂tu− F (x, t, u, uxi , uxi xj) = 0, in UT ,

u = g(x, t), on ∂′UT .
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Proof. Suppose u1 and u2 are two solutions. Then v = u1 − u2 satisfies a linear

parabolic equation in UT with zero boundary data on ∂′UT . By the uniqueness for

the linear problem, v ≡ 0 in UT .

Again the validity of the maximum principle for solutions on unbounded domains

requires some growth restrictions on the solutions. Tikhnov constructed a smooth

solution of the standard heat equation ut(x, t) − ∆u(x) = 0 for (x, t) ∈ R × R such

that u(x, t) = 0 for any t ≤ 0, but {0} × (0, 1] ⊂ suppu.

It turns out that the growth bound needed for making the maximum principle

work for solutions to the Cauchy problem is given by the following positive solution

of the heat equation,

(∂t −∆)
1

(4π(T − t))n2
e
|x|2

4(T−t) = 0, t < T, (10.8)

which, for each fixed t < T , grows in x at the rate of e
|x|2

4(T−t) . This can be verified

directly, but can also be seen easily from noticing that

t 7→ 1

(4πt)
n
2

e−
|x|2
4t is holomorphic in t ∈ C \ {0}, removingaslitifneeded,

and

(∂t −∆)
1

(4πt)
n
2

e−
|x|2
4t = 0, t ∈ R+,

so

(∂t −∆)
1

(4πt)
n
2

e−
|x|2
4t = 0, t ∈ C \ {0},

in particular for t ∈ R−; we can obviously replace (4πt)
n
2 by (4π|t|)n2 when t ∈ R−,

and then replace t by t− T to obtain (10.8).

Theorem 10.15. Suppose that u ∈ C2,1
x,t (Rn × (0, T ]) ∩ C(Rn × [0, T ]) satisfies{

(∂t −∆)u ≤ 0 (x, t) ∈ Rn × [0, T )

u(x, 0) ≤ 0,

and that there exists A, a ≥ 0 such that u(x, t) ≤ Aea|x|
2

for (x, t) ∈ Rn× [0, T ]. Then

u(x, t) ≤ 0 for (x, t) ∈ Rn × [0, T ].

Theorem 10.16. There exists at most one solution u ∈ C2,1
x,t (Rn × (0, T ]) ∩ C(Rn ×

[0, T ]) to {
(∂t −∆)u = f(x, t) (x, t) ∈ Rn × [0, T )

u(x, 0) = g(x),
(10.9)

satisfying the bound |u(x, t)| ≤ Aea|x|
2

for (x, t) ∈ Rn × [0, T ] for some A, a ≥ 0.
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Proof for Theorem 10.15. Fix T1 > 0 such that a < 1
4T1

. For any ε > 0, we will prove

that

u(x, t) ≤ ε
1

(4π(T1 − t))
n
2

e
|x|2

4(T1−t) (10.10)

for (x, t) ∈ Rn × [0, T1]. Since (10.10) is valid for arbitrary ε > 0, we conclude

u(x, t) ≤ 0 for (x, t) ∈ Rn × [0, T1]. Since T1 > 0 can be determined in terms of a, we

can repeat this argument a finite number of times over Rn × [0, T1], Rn × [T1, 2T1],

etc. to reach our desired conclusion over Rn × [0, T ].

(10.10) is established by applying the maximum principle over BR× (0, T1), where

R > 0 is chosen such that (10.10) is valid on ∂BR× (0, T1), in light of the assumption

u(x, t) ≤ Aea|x|
2

for (x, t) ∈ Rn × [0, T ].

There are also versions of the strong maximum principle and Hopf boundary point

lemma. These are useful for proving the uniqueness to the mixed Neumann-Cauchy

problems. They are formulated and proved in similar but slightly more sophisticated

ways as for the elliptic versions. We will omit the details.

Exercises

Exercise 10.2.1. Suppose ∂t + L is parabolic in UT and satisfies (10.6), and u ∈
C2,1
x,t (UT ) ∩ C(UT ) satisfies {

(∂t + L)[u] = f in UT ,

u = 0 on ∂′UT .

Suppose f and the coefficients of L are independent of t, and f ≥ 0 in UT . Prove

that ut ≥ 0 in UT .

Exercise 10.2.2. Suppose f is a locally Lipschitz function and u, v ∈ C2,1
x,t (UT ) ∩

C(UT ) satisfy
ut −∆u− f(u) ≥ vt −∆v − f(v) in UT ,

u(x, 0) ≥ v(x, 0) for x ∈ U ,

u(x, t) ≥ v(x, t) for x ∈ ∂U and 0 < t < T .

Prove that u(x, t) ≥ v(x, t) in UT .

Exercise 10.2.3. (Maximum principle for boundary value problem of the heat equa-

tion with Neumann or Robin type boundary condition.)
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(a). Suppose u ∈ C2,1
x,t (UT ) ∩ C(UT ) satisfies

ut(x, t)−∆u(x, t) ≥ 0 for (x, t) ∈ UT ,

u(x, 0) ≥ 0 for x ∈ U ,

∂u(x, t)

∂ν(x)
+ h(x, t)u(x, t) ≥ 0 for (x, t) ∈ ∂U × (0, T ],

where U is a bounded convex domain with C1 boundary (you may take U to

be a bounded interval in R1) and h(x, t) ≥ 0 for (x, t) ∈ ∂U × (0, T ]. Then

u(x, t) ≥ 0 in UT .

(b). Under the same assumptions on U and h(x, t), prove that if u ∈ C2,1
x,t (UT ) ∩

C(UT ) satisfies
ut(x, t)−∆u(x, t) = f(x, t) for (x, t) ∈ UT ,

u(x, 0) = g(x) for x ∈ U ,

∂u(x, t)

∂ν(x)
+ h(x, t)u(x, t) = b(x, t) for (x, t) ∈ ∂U × (0, T ].

Then

max
UT
|u| ≤ C

[
max
UT
|f |+ max

U
|g|+ max

∂U×[0,T ]
|b|
]
.

where C depends only on U and T .

Exercise 10.2.4. Consider the parabolic operator P [u] = ut−
∑n

i,j=1 aij(x, t)∂
2
xixj

u(x, t)

in Qr := {(x, t) : |x| < r, 0 < t < r2}, where we assume that for some 0 < λ ≤ Λ,

λI ≤ (aij(x, t)) ≤ ΛI for all (x, t) ∈ Qr. Assume, in addition, that aij(x, t) ∈ C1
x(Qr),

and there exists M > 0 such that

r|∂xaij(x, t)|
λ

≤M

for all (x, t) ∈ Qr. Suppose that u(x, t) is a solution of P [u] = 0 in Qr and ∂3
xu,

∂2
xtu ∈ C(Qr). Modify Bernstein’s method to prove that there exists some A > 0

depending on M and Λ/λ, such that

max{|∂xu(x, t)| : |x| ≤ r/2,
3

4
r2 ≤ t ≤ r2} ≤ A

r
max
Qr

|u(x, t)|.

Exercise 10.2.5. Let the functions aij(x, t), i, j = 1, 2, · · · , n, be defined for t > 0,

x ∈ Rn, and suppose that for all x ∈ Rn, t > 0,

aij = aji,

n∑
i,j=1

a2
ij ≤ ν−2, and

n∑
i,j=1

aijξiξj ≥ ν|ξ|2 for all ξ ∈ Rn
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with a constant ν ∈ (0, 1]. Consider the function

Kα,β(x, t) = t−αe−
|x|2
βt , x ∈ Rn, t > 0.

Show that there exist positive constants α1, α2, β1, β2, depending only on n and ν,

such that for all x ∈ Rn, t > 0,

PKα1,β1(x, t) :=

(
∂

∂t
−

n∑
i,j=1

aij(x, t)Dxixj

)
Kα1,β1(x, t) ≥ 0, PKα2,β2(x, t) ≤ 0.

Exercise 10.2.6. Use the previous result to show that

(a). the problem

Pu = 0 in Rn × (0, T ], u(x, 0) ≡ 0

has at most one solution in the class C(Rn × (0, T ])∩C2,1
x,t (Rn×(0, T ]), satisfying

the inequality |u(x, t)| ≤ N exp(a|x|2) in Rn×(0, T ] with some positive constants

N and a. (Hint: some modification of the computation from the previous

problem is needed: verify that one can also choose α, β > 0 such that

K̂α,β(x, t) = (T − t)−αe−
|x|2

β(t−T )

satisfies PK̂ ≥ 0 for (x, t) ∈ Rn × [0, T ). α, β > 0 can be chosen independently

of T . Then one fixes T > 0 small so that βT < 1/a and fixes any ε > 0, and

applies the maximum principle between u and εK̂α,β(x, t) on BR × [0, T ) for

sufficiently large R.)

(b). if u ∈ C(Rn × (0, T ]) ∩ C2,1
x,t (Rn × (0, T ]) satisfies Pu ≤ 0 and u(x, t) ≤ Mea|x|

2

for some M,a ≥ 0 in Rn × (0, T ], then u(x, t) ≤ maxy∈Rn u(y, 0) for all (x, t) ∈
Rn × (0, T ].

Exercise 10.2.7. This exercise formulates the strong maximum principle for solu-

tions of parabolic equations and outlines the main steps for a proof. We continue to

use the notation P [u] for a parabolic operator as in the step up of the previous exer-

cises and assume the bounds on its coefficients in Q1. Then the strong maximum prin-

ciple says that, if u(x, t) satisfies P [u] ≤ 0 in Q1, and there exists some (x∗, t∗) ∈ Q1

such that u(x, t) ≤ u(x∗, t∗) for all (x, t) ∈ Q1 with t ≤ t∗ , then u(x, t) = u(x∗, t∗)

for all (x, t) ∈ Q1 ∩ {t ≤ t∗}. Note that for 0 < t∗ < 1, u(x, t) = −K(x − x0, t − t∗)
satisfies (∂t − ∆x)u(x, t) = 0 and u(x, t) ≤ 0 in Q1, if |x0| > 1, u(x, t) = 0 for all

(x, t) ∈ Q1 ∩ {t ≤ t∗}, yet u(x, t) < 0 for t > t∗. Below are two ingredients in a proof

of the strong maximum principle.
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(i). Suppose that Br(x0, t0) = {(x, t) : |x− x0|2 + |t− t0|2 < r2} ⊂ Q1 is such that

u(x, t) < 0 in Br(x0, t0), and there exists P ′ = (x′, t′) ∈ ∂Br(x0, t0), with

x′ 6= x0 and u(x′, t′) = 0, then ∇νu(x′, t′) > 0 for any vector ν pointing outward

of ∂Br(x0, t0) at (x′, t′).

(ii). The following can’t occur: there exists some (x∗, t∗) ∈ Q1, r > 0 such that

u(x∗, t∗) = 0 and u(x, t) < 0 for all (x, t) such that |x − x∗| ≤ r and t∗ − r2 ≤
t < t∗. Note that u(x, t) = x2

2
+t−1 satisfies (∂t−∂2

x)u = 0, u(x, t) < 0 = u(0, 1)

in D = {(x, t) : x2

2
+ t < 1}, which has (0, 1) as a boundary point. This example

shows that in the strong maximum principle the assumption u(x, t) ≤ u(x∗, t∗)

for all (x, t) ∈ Q1 with t ≤ t∗ can’t not freely relaxed.

10.3 A Maximum Principle for Weak Solutions to

Divergence Form Second Order Elliptic PDEs

There is also a need for maximum principle for weak solutions to Lu = (≤,≥)0. Here

we take L to be of divergence form

Lu = −
n∑
j=1

(
n∑
i=1

aij(x)uxi(x) + dj(x)u(x)

)
xj

+
n∑
j=1

bj(x)uxj(x) + c(x)u(x) (10.11)

with the usual condition

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ λ−1|ξ|2 for all ξ ∈ Rn and x ∈ U . (10.12)

For the maximum principle it’s natural (and necessary) to impose on L the condition

that −
∑n

j=1 (dj(x))xj + c(x) ≥ 0 in the distribution sense, namely,

∫
U

(
n∑
j=1

dj(x)ηxj(x) + c(x)η(x)

)
dx ≥ 0, for all η ∈ C1

c (U) with η(x) ≥ 0 in U .

(10.13)

By a density argument, (10.13) holds for η which is an H1(U) limit of nonnegative

functions in C1
c (U).

Theorem 10.17. Suppose that (10.13) holds for L and that u ∈ H1(U) is a weak

subsolution to Lu = 0, namely,

BL[u, η] ≤ 0 for all η ∈ C1
c (U) with η(x) ≥ 0 in U .
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Then supUu ≤ sup∂U u
+. Here supU u is the essential supremum of u over U , defined

as inf{l : u(x) ≤ l, a.e. x ∈ U}, and sup∂U u
+ is defined in a similar way.

Corollary 10.18. Suppose that (10.13) holds for L and that u ∈ H1
0 (U) is a weak

solution of Lu = 0, then u = 0 in U .

There is also a need to bound ||u||L∞(U) in terms of Lu, ||u||L∞(∂U), and perhaps

||u||L2(U).

Theorem 10.19. Suppose u ∈ H1(U) is a solution of Lu = f , where, for some q > n,

f0, c(x) ∈ Lq/2(U), and bj(x), dj(x), fj(x) ∈ Lq(U), then there exists C > 0 depending

on n, λ, q, |U | and upper bound for ||bj, dj||Lq(U) and ||c||Lq/2(U), such that

sup
U
|u| ≤ C

{
||u||L2(U) + λ−1

[
||fj||Lq(U) + ||f0||Lq/2(U) + ||u||L∞(∂U)

]}
. (10.14)

When (10.13) holds, the ||u||L2(U) term in (10.14) can be removed.

Proof of Theorem 10.17. Suppose that l = sup∂U u
+ is finite, and supUu > l (for,

otherwise, we already have our desired conclusion). We will first prove that supUu <

∞ under the conditions in the Theorem. For any k ≥ l ≥ 0, we can use η =

(u − k)+ def
= v as a test function in BL[u, η] ≤ 0. Let A(k) = {x ∈ U : u(x) ≥ k}.

Using uxi(x) = vxi(x) when v(x) > 0, we obtain

BL[u, η]

=

∫
U

{
n∑

i,j=1

aij(x)uxi(x)vxj(x)

+
n∑
j=1

(
dj(x)u(x)vxj(x) + bj(x)uxj(x)v(x)

)
+ c(x)u(x)v(x)

}
dx

≥
∫
U

{
n∑

i,j=1

aij(x)vxi(x)vxj(x) +
n∑
j=1

(dj(x) + bj(x)) vxj(x)v(x)+

+c(x)v(x)2 + k

(
n∑
j=1

dj(x)vxj(x) + c(x)v(x)

)}
dx

≥λ||∇v||2L2(U) −
n∑
j=1

|| (dj(x) + bj(x)) v||L2(U)||vxj ||L2(U) − ||c−||L q2 (A(k))
||v||2

L
2q
q−2 (A(k))

≥λ||∇v||2L2(U) −
n∑
j=1

||dj(x) + bj(x)||Lq(U)||v||
L

2q
q−2 (U)

||vxj ||L2(U)

− ||c−||L q2 (A(k))
||v||2

L
2q
q−2 (A(k))

,
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so that

λ||∇v||2L2(U) ≤

(
n∑
j=1

||dj(x) + bj(x)||2Lq(U)

)1/2

||v||
L

2q
q−2 (U)

||∇v||L2(U)

+ ||c−||L q2 (A(k))
||v||2

L
2q
q−2 (A(k))

.

(10.15)

Then

||v||
L

2q
q−2 (U)

= ||v||
L

2q
q−2 (A(k))

≤ ||v||
L

2n
n−2 (A(k))

|A(k)|
1
n
− 1
q ≤ C(q, n)||∇v||L2(U)|A(k)|

1
n
− 1
q ,

where we have used Sobolev’s inequality in the last estimate. (10.15) now becomes

λ||∇v||2L2(U) ≤ C(q, n)|A(k)|
1
n
− 1
q

{
D + |A(k)|

1
n
− 1
q ||c−||L q2 (A(k))

}
||∇v||2L2(U), (10.16)

where D =
(∑n

j=1 ||dj(x) + bj(x)||2Lq(U)

)1/2

. (10.16) can be used in two ways. First,

for any k < supU u, |A(k)| > 0 and ||∇v||2L2(U) > 0, so it follows from (10.16) that

λ ≤ C(q, n)|A(k)|
1
n
− 1
q


(

n∑
j=1

||dj(x) + bj(x)||2Lq(U)

)1/2

+ |A(k)|
1
n
− 1
q ||c−||L q2 (A(k))

 ,

which implies a positive lower bound for |A(k)| independent of k < supU u. As a

consequence

|{x ∈ U : u(x) = sup
U
u}| = lim

k↗supU u
|A(k)| > 0. (10.17)

We will come back to (10.17) in a moment. Let’s point out another consequence

of (10.16). It follows from (10.16) that if

C(q, n)|A(k)|
1
n
− 1
q


(

n∑
j=1

|| (dj(x) + bj(x)) ||2Lq(U)

)1/2

+ |A(k)|
1
n
− 1
q ||c−||L q2 (U)

 < λ

(10.18)

then ||∇v||L2(U) = 0, which implies that u ≤ k for a.e. x ∈ U .

We can estimate k in terms of ||u||L2(U) for which (10.18) would hold. ||u||2L2(U) ≥
k2|A(k)|, so it suffices to choose k such that

λ−1C(q, n)


(

n∑
j=1

||dj(x) + bj(x)||2Lq(U)

)1/2

+ |U |
1
n
− 1
q ||c−||L q2 (U)

 ||u||2( 1
n
− 1
q

)

L2(U) < k2( 1
n
− 1
q

).

Thus for any

k >

λ−1C(q, n)

( n∑
j=1

||dj(x) + bj(x)||2Lq(U)

)1/2

+ |U |
1
n
− 1
q ||c−||L q2 (U)


nq

2(q−n)

||u||L2(U)

:= C||u||L2(U).
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we have u ≤ k for a.e. x ∈ U . Recall that we also required k > l = sup∂U u
+, so we

conclude that

sup
U
u ≤ max{sup

∂U
u+, C||u||L2(U)}. (10.19)

We next use η = (u−l)+

M+ε−(u−l)+ ∈ H1
0 (U) as a test function, where 0 < M = supU u−

l < ∞ under our assumption, and ε > 0 is arbitrary. Then, with v = (u − l)+, and

using ∇η = (M+ε)∇v
(M+ε−v)2 , we have

BL[u, η]

=

∫
U

{
n∑

i,j=1

aij(x)uxi(x)ηxj(x)

+
n∑
j=1

(
dj(x)u(x)ηxj(x) + bj(x)uxj(x)η(x)

)
+ c(x)u(x)η(x)

}
dx

=

∫
U

{
n∑

i,j=1

aij(x)vxi(x)ηxj(x)

+
n∑
j=1

(−dj(x) + bj(x)) η(x)vxj(x) +

(
n∑
j=1

dj(x) [u(x)η(x)]xj + c(x)u(x)η(x)

)}
dx

≥λ(M + ε)

∫
U

|∇v|2

(M + ε− v)2
dx−M || − dj(x) + bj(x)||L2(U)

{∫
U

|∇v|2

(M + ε− v)2
dx

}1/2

,

where we have used u(x)η(x) = v(x)η(x) + lη(x) ≥ 0 and is in H1
0 (U) due to (10.19),

so is an admissible test function for using (10.13). So we now have, with w(x) =

ln
(

M+ε
M+ε−v(x)

)
,

||w||L2∗ (U) ≤ C(2, n)||∇w||L2(U) ≤ λ−1C(2, n)|| − dj(x) + bj(x)||L2(U). (10.20)

The right hand side of (10.20) is independent of ε, so we can send ε→ 0 to obtain

|| ln
(

M

M − v(x)

)
||L2∗ (U) ≤ λ−1C(2, n)|| − dj(x) + bj(x)||L2(U),

which contradicts (10.17).

Remark 10.6. Estimate (10.19) is valid without assuming (10.13), as stated in

(10.14) and proved below.

The proof above and the one to follow appear to be complicated. But one main

point is to estimate the term ||∇v||2L2(U) in terms of integrals that are quadratic in v,

but involving at most a linear factor of ∇v, and of integrals that are linear in ∇v or v
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only (in the proof below). For the latter, one can use the Cauchy-Schwarz inequality

to estimate them in terms of a small factor times ||∇v||2L2(U) plus the square of the

L2(A(k)) integrals of fi and f0 respectively, which can then be estimated in terms

of the Lq (or L
q
2 ) norms of fi (or f0) multiplied by an appropriate power of |A(k)|!

While for the former, one can not automatically estimate them in terms of a small

multiple ||∇v||2L2(U), but each such term will have a factor which is a positive power

of |A(k)| so that for large enough k (which can be estimated in terms of data) these

terms are estimated by a small multiple ||∇v||2L2(U)!

We next describe a proof for Theorem 10.19 in the special case bi = di = c = 0,

to illustrate De Giorgi’s iteration method.

Proof of Theorem10.19 in a special case. We still use v = (u− l)+ as a test function.

Then the same computation as done in the previous proof leads to

λ||∇v||2L2(U) ≤
n∑
i=1

||fi||L2(A(k))||vxi ||L2(U) + ||f0||
L

2n
n+2 (A(k))

||v||
L

2n
n−2 (A(k))

,

so we have

λ||∇v||2L2(U) ≤ λ−1

n∑
i=1

||fi||2L2(A(k)) + 2||f0||
L

2n
n+2 (A(k))

||v||
L

2n
n−2 (A(k))

.

Applying the Sobolev inequality

||v||2
L

2n
n−2 (A(k))

= ||v||2
L

2n
n−2 (U)

≤ C(2, n)||∇v||2L2(U)

we obtain

||v||2
L

2n
n−2 (A(k))

≤ λ−2C(n)

{
n∑
i=1

||fi||2L2(A(k)) + ||f0||2
L

2n
n+2 (A(k))

}
. (10.21)

Note that for h > k,

||v||
L

2n
n−2 (A(k))

≥ (h− k)|A(h)|
1
2
− 1
n .

Furthermore,

||fi||2L2(A(k)) ≤ ||fi||2Lq(A(k))|A(k)|2( 1
2
− 1
q

), and ||f0||2
L

2n
n+2 (A(k))

≤ ||f0||2
L
nq
q+n (A(k))

|A(k)|2( 1
2
− 1
q

).

which leads to the iteration scheme

(h− k)2|A(h)|2( 1
2
− 1
n

) ≤ λ−2C(n)

{
n∑
i=1

||fi||2Lq(A(k)) + ||f0||2
L
nq
q+n (A(k))

}
|A(k)|2( 1

2
− 1
q

).

(10.22)
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Since q > n, we have 1
2
− 1

n
< 1

2
− 1

q
, and nq

q+n
< q

2
, so we have

|A(h)| ≤
(

F

h− k

) 2n
n−2

|A(k)|β for h > k, (10.23)

where β = 2n
n−2

/ 2q
q−2

> 1, and

F 2 = λ−2C(n)

(
n∑
i=1

||fi||2Lq(U) + ||f0||2
L
nq
q+n (U)

)
.

It now follows from the Lemma below that

|A(l + I)| = 0, where I = 2
β
β−1F |A(l)|

1
n
− 1
q ≤ 2

β
β−1F |U |

1
n
− 1
q .

which implies that u ≤ l + 2
β
β−1F |U |

1
n
− 1
q . Working with −u would provide the

remaining bound in (10.14).

Lemma 10.20. Suppose that Φ(t) is defined on [l,∞), non-negative, and non-increasing,

and that for h > k ≥ l, we have

Φ(h) ≤
(

F

h− k

)α
Φ(k)β (10.24)

where α > 0 and β > 1. Then

Φ(l + I) = 0,where I = 2
β
β−1FΦ(l)

β−1
α . (10.25)

Remark 10.7. When lower order terms involving bj(x), dj(x) and c(x) are present,

one would need to replace v = (u − l)+ by v = (u − k)+ for k > l to be adjusted,

and add to the right hand side of (10.21) terms of the kind
∫
U
bi(x)uxi(x)v(x) dx,∫

U
di(x)u(x)vxi(x) dx and

∫
U
c(x)u(x)v(x) dx and estimate them.

∫
U
bi(x)uxi(x)v(x) dx =∫

U
bi(x)vxi(x)v(x) dx and can be treated as in the proof for Theorem 10.19.∣∣∣∣∫

U

c(x)u(x)v(x) dx

∣∣∣∣
≤
∫
U

|c(x)|v2(x) dx+ k

∫
U

|c(x)|v(x) dx

≤||c||
L
q
2 (A(k))

||v||2
L

2q
q−2 (A(k))

+ k||c||
L
q
2 (A(k))

||v||
L

q
q−2 (A(k))

≤||c||
L
q
2 (A(k))

||v||2
L

2q
q−2 (A(k))

+ k||c||
L
q
2 (A(k))

||v||
L

2n
n−2 (A(k))

|A(k)|
q−2
q
−n−2

2n

≤||c||
L
q
2 (A(k))

||v||2
L

2q
q−2 (A(k))

+
ε

2
||v||2

L
2n
n−2 (A(k))

+
k2

2ε
||c||2

L
q
2 (A(k))

|A(k)|1−
2
q

+2( 1
n
− 1
q

).
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Similarly, ∣∣∣∣∫
U

di(x)u(x)vxi(x) dx

∣∣∣∣
≤
∫
U

|di(x)vxi(x)|v(x) dx+ k

∫
U

|di(x)vxi(x)| dx,

where the first term can be estimated as in the proof for Theorem 10.19, while the

second term can be estimated as above to obtain

k

∫
U

|di(x)vxi(x)| dx ≤k||di(x)||L2(A(k))||vxi ||L2(A(k)

≤ ε
2
||∇v||2L2(A(k) +

k2

2ε
||di||2Lq(A(k))|A(k)|1−

2
q .

So in place of (10.22), we have an estimate of the form

||v||2
L

2n
n−2 (A(k))

≤ G||v||2
L

2q
q−2 (A(k))

+
(
F 2 + k2G2

)
|A(k)|1−

2
q , (10.26)

where G = λ−1
(
||c||

L
q
2 (U)
|U |

1
n
− 1
q + ||bi, di||Lq(U)

)
. One now chooses k > l (depend-

ing on G and ||u||L2(U) as in the proof for (10.18)) such that G||v||2
L

2q
q−2 (A(k))

≤
1
2
||v||2

L
2n
n−2 (A(k))

to reach the estimate

(∫
A(k)

v(x) dx

)2

≤ ||v||2
L

2n
n−2 (A(k))

|A(k)|1+ 2
n ≤ |A(k)|2+ 2

n
− 2
q
(
F 2 + k2G2

)
. (10.27)

The complication here, in comparison to (10.23), is the power of k multipled to

|A(k)|2+ 2
n
− 2
q . The following iteration lemma, due to Ladyzhenskaya and Ural’tceva,

which is a modified version of the iteration lemma above, concludes the L∞ estimate.

Lemma 10.21. Suppose that u ∈ L1(U) satisfies for some ε > 0, 0 ≤ α ≤ 1 + ε,

γ > 0, k0 ≥ 0, and for all k ≥ k0∫
U

(u− k)+ dx ≤ γkα|{x ∈ U : u(x) > k}|1+ε. (10.28)

Then the essential maximum of u is bounded above in terms of γ, α, ε, and ||u −
k0||L1(Ak0

), where Ak0 = {x ∈ U : u(x) > k0}.
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10.4 Eigenfunction Expansion of Sturm-Liouville

Problems

The eigenfunction expansion method rests on the involved operator L having a “com-

plete” set of eigenfunctions which spans L2(Ω). However, even in the finite dimen-

sional setting, a linear operator may not have a complete set of eigenvectors spanning

the entire underlying vector space. On the other hand, a group of linear operators,

including the real symmetric and Hermitian operators, do have a complete set of eigen-

vectors spanning the entire underlying vector space, and have the additional property

that one can choose such a set of eigenvectors to be orthonormal. Additionally, the

eigenvalues and eigenvectors have a variational characterization.

Many boundary value problems of differential equations share a formal symmetry

property with the real symmetric and Hermitian operators. The simplest example

is L = − d2

dx2 . Using (·, ·) to denote the L2 inner product, L has the symmetry

(Lu, v) = (u, Lv) for u, v in various classes of functions. This is based on

Lu · v − u · Lv = u · v′′ − v · u′′ = (u · v′ − v · u′)′,

so∫ b

a

[Lu · v − u · Lv] dx = (u·v′−v·u′)
∣∣b
a

= [u(b)v′(b)− v(b)u′(b)]−[u(a)v′(a)− v(a)u′(a)] .

If u and v both satisfy either the homogeneous Dirichlet or the homogeneous Neu-

mann boundary conditions at a and b, we obviously have (Lu, v) = (u, Lv). In fact,

this symmetry continues to hold for more general linear, homogeneous boundary con-

ditions on the boundary points. We can normalize the linear, homogeneous boundary

conditions at the ends in (3.14) as

cosαu(a) + sinαu′(a) = 0,

cos β u(b) + sin β u′(b) = 0,
(3.14’)

for some real parameters α and β. Then (Lu, v) = (u, Lv) continues to hold for u, v

satisfying these boundary conditions. If we consider L as acting on u, v ∈ C2
c (R),

instead of as a problem on a finite interval [a, b], then (Lu, v) = (u, Lv) also holds

for functions in this class. It turns out that we can extend the spectral properties of

real symmetric and Hermitian operators to a large class of boundary value problems

of differential equations having the formal symmetry mentioned above, but certain

appropriate boundary conditions need to be imposed, and the results and proofs need
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to take into account of the infinite dimensional nature of the function spaces involved,

and may exhibit continuous spectrum when the problem loses certain compactness

feature.

The class of boundary value problems of differential operators having the closest

resemblance of spectral properties as the real symmetric and Hermitian operators have

resolvents which are compact operators. They include the regular Sturm-Liouville

problems (3.14) and boundary value problems for second order elliptic operators dis-

cussed in this chapter on bounded domains.

If L : X 7→ Y is a linear operator, where X is a subspace of Y , then for those

scalars λ such that (L − λIY ) has a bounded linear inverse (L − λIY )−1 defined on

Y (namely, for every y ∈ Y , there is a unique x ∈ X satisfying (L− λIY )x = y, and

there exists C > 0 such that ||x|| ≤ C||(L− λIY )x|| for all x), (L− λIY )−1 is called

the resolvent operator of L, and λ is said to be in the resolvent of L. Scalars not in

the resolvent of L are said to be in the spectrum of L. L is said to have compact

resolvent if (L−λIY )−1 : Y 7→ X is a compact operator, namely, it maps any bounded

sequence in Y into a sequence having a convergent subsequence in Y . This notion

does not depend on the particular choice of λ in the resolvent of L: if both λ1 and λ2

are in the resolvent of L, then

(L− λ1IY )−1 − (L− λ2IY )−1 = (λ1 − λ2)(L− λ1IY )−1 · (L− λ2IY )−1

= (λ1 − λ2)(L− λ2IY )−1 · (L− λ1IY )−1,

so (L− λ2IY )−1ym converges iff (L− λ1IY )−1ym converges.

We will sketch below an argument for why the operators in a regular Sturm-

Liouville problem (3.14) or in a boundary value problems for second order elliptic

operators on a bounded domain discussed in this chapter have compact resolvent. In

such a situation, the strategy for understanding the spectrum of L goes as follows:

first suppose that there exists some λ∗ ∈ R in the resolvent of L; then, using the

relation

(L− λIY ) = (L− λ∗IY )− (λ− λ∗)IY = (L− λ∗IY )
[
IY − (λ− λ∗)(L− λ∗IY )−1

]
,

we see that (L−λIY ) has a bounded inverse iff IY −(λ−λ∗)(L−λ∗IY )−1 has a bounded

inverse; equivalently, λ is in the spectrum of L iff (λ − λ∗)−1 is in the spectrum of

(L− λ∗IY )−1.

Denoting (L − λ∗IY )−1 by K. We note that, if (Lx1, x2) = (x1, Lx2) for all

x1, x2 ∈ X, then K also has the property (Ky1, y2) = (y1, Ky2) for all y1, y2 ∈ Y .

This is seen as follows. Let x1 = Ky1, x2 = Ky2, then Lx1 − λ∗x1 = y1, and
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Lx2 − λ∗x2 = y2, so

(Ky1, y2) = (x1, Lx2 − λ∗x2)

= (Lx1, x2)− (x1, λ∗x2)

= (Lx1 − λ∗x1, x2)

= (y1, Ky2).

Thus we have reduced the study of the spectrum of L to that of K, which is a

bounded symmetric operator on Y , and we can appeal to a relatively simple spectrum

theory for compact symmetric operators.

Historically, the spectrum theory for linear differential operators arose first from

the theory of eigenfunction expansions in solving boundary value problems of differ-

ential equations, as in Fourier series expansion, and in the (regular) Sturm-Liouville

problems. Subsequent development involves integral equations extensively. Although

Fourier transforms can be interpreted as providing (generalized) “eigenfunction ex-

pansion” of the differential operator d2

dx2 on L2(R2) (eiξx are the bounded generalized

eigenfunctions of d2

dx2 ), it was Weyl’s 1910 work that made the first systematic study

of spectral properties of singular Sturm-Liouville problems, which included the case

of (3.14) on a compact interval with p(x) → 0 at one or both ends or q(x) or w(x)

singular somewhere in the interval, and also included the case of (3.14) on an infinite

interval. The main new features are the possible presence of continuous spectrum. In

the late 1920’s von Neumann, and Stone, independently, developed a spectral theory

of abstract unbounded self-adjoint operators, which can be applied to the study of

spectral properties of boundary value problems of differential equations; but the im-

plementing of the abstract theory still requires a detailed analysis of the solutions to

the differential equations with appropriate boundary conditions.

We will not have space here to discuss the theory of singular Sturm-Liouville

problems or of abstract unbounded self-adjoint operators; we will limit our dis-

cussion to setting up the resolvent K = (L − λ∗)
−1 in the context of our bound-

ary value problems—using integral representation via Green’s function for Sturm-

Liouville problems for one dimensional problems and variational methods for Dirich-

let or Neumann boundary value problems in multi-dimensions, and providing the

necessary development of the spectral properties of compact symmetric operators.

The construction for the resolvent operator of the regular Sturm-Liouville problems

can be largely subsumed by the latter approach. But it pays to see how things work

out in the one dimensional case; in addition, this explicit approach handles the more

general linear homogeneous boundary conditions with ease.
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The construction of K = (L − λ)−1 in the case of a regular Sturm-Liouville

problem can be carried out in a straight forward fashion, in an almost explicit

way; and the construction will show the needed conditions on λ. The presence of

w(x) in (3.14) would need us to work in the weighted L2 space L2
w[a, b]—mainly to

get the L2 symmetry, to be discussed below. We would define a linear operator L

as Lu = w(x)−1 [−(p(x)u′(x))′ + q(x)u(x)] (use the spherical Laplace operator as a

guide, where w(x) = sin(x) for x ∈ [a, b] ⊂ (0, π)). To identify the domain X = D(L)

of L, we would need u′(x) to be well defined, and p(x)u′(x) to be absolutely contin-

uous over [a, b], and its derivative to be L2 integrable over [a, b] with appropriate

weight.

Since we are assuming 0 < m ≤ w(x) ≤ M for all x ∈ [a, b], for some 0 < m ≤
M < ∞, L2

w[a, b] and L2[a, b] are actually equivalent as normed spaces, though not

isometrically. For simplicity, we will assume that p ∈ C1[a, b], although the set up

can be extended as long as p−1(x) ∈ L[a, b]. We now define

X = D(L) =

{
u ∈ AC[a, b] :

p(x)u′(x) ∈ AC[a, b], [p(x)u′(x)]′ ∈ L2[a, b],

u satisfies the BC’s in (3.14)

}
.

With this set up, we have, for any u, v ∈ X, Lu, Lv ∈ L2
w[a, b], and

(Lu, v) =

∫ b

a

w(x)−1 [−(p(x)u′(x))′ + q(x)u(x)] v(x)w(x)dx

=

∫ b

a

[−(p(x)u′(x))′ + q(x)u(x)] v(x)dx

=

∫ b

a

[p(x)u′(x)v′(x) + q(x)u(x)v(x)] dx− [p(x)u′(x)v(x)] |ba

=

∫ b

a

[p(x)u′(x)v′(x) + q(x)u(x)v(x)] dx

− [p(b)u′(b)v(b)− p(a)u(a)v′(a)]

=

∫ b

a

[−(p(x)v′(x))′ + q(x)v(x)]u(x)dx

− p(b) [u′(b)v(b)− u(b)v′(b)] + p(a) [u(a)v′(a)− u′(a)v(a)]

= (u, Lv) if u, v ∈ D(L)

The boundary conditions in (3.14) are crucial for establishing this symmetry; one

key component in understanding the spectrum property of singular Sturm-Liouville

problems is to identify appropriate boundary conditions to guarantee such symmetry

and the unique solvability u of (L− λ)u = f for f ∈ L2
w[a, b] satisfying the prescribed
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boundary conditions for appropriate λ—these boundary conditions are no longer in

the form of point wise conditions as in (3.14), but may be integral conditions or

asymptotic conditions towards the ends of the interval.

What’s needed next is,

(I) For a given f ∈ L2
w[a, b], to construct a unique u ∈ X (which encodes the

boundary conditions) solving Lu − λu = f and to find a constant C > 0

independent of f such that

||u||L2
w[a,b] ≤ C||f ||L2

w[a,b]. (10.29)

(II) Prove that f 7→ u = (L − λ)−1f is a compact operator in L2
w[a, b], namely, for

a sequence fn bounded in L2
w[a, b], a subsequence of (L − λ)−1fn converges in

L2
w[a, b].

Remark 10.8. For the purpose of establishing (Lu, v) = (u, Lv), one can use the

simpler space of C2
c (a, b); the choice of our X is that the BCs for functions in X help

to determine the unique solvability in the resolution of (I), while there may not be

any solution in C2
c (a, b) which solves Lu− λu = f . It turns out that X also arises in

extending L, first defined on C2
c (a, b), to a closed operator in the abstract theory of

unbounded operators; but such an extension depends on the specific BCs for functions

in X.

(I) amounts to solving −(p(x)u′(x))′ + q(x)u(x)− λw(x)u(x) = w(x)f(x) subject

to the BCs in (3.14). Such an u can be constructed using the variation-of-parameters

method. Let ua(x;λ) denote a solution of −(p(x)u′(x))′ + q(x)u(x)− λw(x)u(x) = 0

over [a, b] subject to the condition at x = a: cosαua(a;λ) + sinαu′a(a;λ) = 0. This

can be considered an IVP for the linear ODE in (3.14), so ua(x;λ) exists, and is unique

up to a scalar multiple due to the linear, homogeneous relation between ua(x;λ) and

u′a(x;λ). Similarly, we define ub(x;λ) to be a solution of the same ODE subject to

the condition at x = b: cos β ub(b;λ) + sin β u′b(b;λ) = 0. Then we construct u(x) in

the form of C1(x)ua(x;λ) + C2(x)ub(x;λ) using the variation-of-parameters method.

C1(x) and C2(x) are chosen so that{
C ′1(x)ua(x;λ) + C ′2(x)ub(x;λ) = 0

p(x)u′a(x;λ)C ′1(x) + p(x)u′b(x;λ)C ′2(x) = −f(x)w(x).

We can determined C ′1(x) and C ′2(x) uniquely, provided the Wronskian between

ua(x;λ) and ub(x;λ),

W [ua, ub;λ](x)
def
= p(x)[u′a(x;λ)ub(x;λ)− u′b(x;λ)ua(x;λ)] 6= 0.
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Note that

dW [ua, ub;λ](x)

dx
= [p(x)u′a(x;λ)]′ub(x;λ)− [p(x)u′b(x;λ)]′ua(x;λ) = 0,

so W [ua, ub;λ](x) is a constant in [a, b].

We claim that (L − λ) has a well defined inverse with (L − λ)−1f ∈ X iff

W [ua, ub;λ] 6= 0. This condition turns out to characterize the eigenvalues of L,

for, if W [ua, ub;λ] = 0, it would imply that (ua(x;λ), u′a(x;λ)) is a scalar multiple

of (ub(x;λ), u′b(x;λ)), and since ua(x;λ) satisfies the BC at x = a in (3.14), this

would imply that ub(x;λ) also satisfies the same BC; since ub(x;λ) satisfies the BC

at x = b, this would imply that it is an eigenfunction of L. To see the other direction

of the claim, suppose that W [ua, ub;λ] 6= 0, then we are able to carry through the

variation-of-parameter argument to construct u(x) = C1(x)ua(x;λ) + C2(x)ub(x;λ)

solving (L−λ)u = f . C ′1(x) and C ′2(x) are uniquely determined, but C1(x) and C2(x)

each still has one free parameter, which we take to be C1(b) and C2(a). In order for

u(x) to satisfy the BC at x = a, we find that we need

cosαu(a;λ) + sinαu′(a;λ) = C2(a) [cosαub(a;λ) + sinαu′b(a;λ)] = 0.

This forces C2(a) = 0, since cosαub(a;λ) + sinαu′b(a;λ) 6= 0, for otherwise, it would

make W [ua, ub;λ] = 0. Similarly, C1(b) = 0. This determines uniquely u(x) ∈ X

solving (L− λ)u = f .

Remark 10.9. Note that the above analysis shows that, under the conditionW [ua, ub;λ] 6=
0, we can actually uniquely solve (L − λ)u = f subject to a non-homogeneous

boundary condition at each end of the type cosαu(a;λ) + sinαu′(a;λ) = Γa and

cos β u(b;λ) + sin β u′(b;λ) = Γb for some prescribed Γa and Γb.

Next, note thatW [ua, ub;λ] is an entire function in λ∗, thusW [ua, ub;λ] 6= 0 except

possibly on a discrete set of λ values. Assuming W [ua, ub;λ] 6= 0 for a particular λ,

and incorporating the BC’s in (3.14), we obtain the following integral representation

for u(x):

u(x) = W [ua, ub;λ]−1

[
ua(x;λ)

∫ b

x

ub(y;λ)f(y)w(y) dy + ub(x;λ)

∫ x

a

ua(y;λ)f(y)w(y) dy

]
.

Defining

G(x, y;λ) =

W [ua, ub;λ]−1ua(y;λ)ub(x;λ) if y ≤ x,

W [ua, ub;λ]−1ua(x;λ)ub(y;λ) if y > x,

∗This is because ua(x;λ) and ub(x;λ) can be constructed as the uniform limit of a sequence of

approximating sequence using Picard’s iteration, and each function in the iteration is a holomorphic

function of λ on C
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the above integral representation can be expressed as

u(x) = K[f ]
def
=

∫ b

a

G(x, y;λ)f(y)w(y) dy.

ThisG(x, y;λ), as a function of x ∈ [a, b] for each fixed y ∈ [a, b], satisfies L[G(x, y;λ)] =

0 at x 6= y, p(y)[Gx(y+ 0, y;λ)−Gx(y− 0, y;λ)] = −1 at each y ∈ (a, b), and the two

BC’s in (3.14). It is called the Green’s function of (3.14).

What remains is to prove that K[f ] ∈ L2
w[a, b] for each f ∈ L2

w[a, b], and that

K : L2
w[a, b] 7→ L2

w[a, b] is compact. The first statement follows simply by noting that

G(x, y;λ) ∈ C([a, b] × [a, b]), while the second statement relies on the compactness

criterion of Ascoli-Arzela: we just need to verify that if F ⊂ L2
w[a, b] is a family with

bounded L2
w[a, b] norms, then {K[f ] : f ∈ F} is equicontinuous in L2

w[a, b]. Let B > 0

be such that |ua(x;λ)|, |ub(x;λ)| ≤ B for all x ∈ [a, b], then it is easy to see that for

any x1, x2 ∈ [a, b],

|G(x1, y;λ)−G(x2, y;λ)| ≤ B|W [ua, ub;λ]−1|
∫ x2

x1

[|u′a(y;λ)|+ |u′b(y;λ)|] dy.

It then follows that, for a ≤ x1 < x2 ≤ b and f ∈ F ,

|K[f ](x1)−K[f ](x2)]|

≤
∫ b

a

|G(x1, y;λ)−G(x2, y;λ)||f(y)|w(y)dy

≤ B|W [ua, ub;λ]−1|
(∫ x2

x1

[|u′a(y;λ)|+ |u′b(y;λ)|] dy
)∫ b

a

|f(y)|w(y)dy,

from which the equicontinuity of {K[f ] : f ∈ F} in L2
w[a, b] follows easily. In fact, the

equicontinuity of {K[f ] : f ∈ F} would follow from the property that
∫ b
a

∫ b
a
|G(x +

h, y;λ)−G(x, y;λ)|2w(y)dydx→ 0 as h→ 0, which can be proved under more general

settings and conditions.

Remark 10.10. We will develop concepts later on which can be used to prove that

K is compact without using an explicit representation for K[f ]. We could prove here

directly that the K (as well as L) has a set of complete orthonormal eigenfunctions in

the sense that the set of linear combination of such eigenfunctions is dense in L2
w[a, b],

but it is more economical to leave it to the next section, where this property is treated

in a more general context.

In the abstract theory of functional analysis, many eigenvalue problems are set up

as an eigenvalue problem for an unbounded operator defined on a dense subspace of

L2(Ω). From the discussion above, one can see that a so called unbounded operator,
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such as L, may arise naturally as the inverse of a bounded operator K on L2(Ω),

and since K(L2(Ω)) can be regarded as a dense subspace of L2(Ω), but not the entire

L2(Ω), the definition of L would necessarily involve a dense subspace of L2(Ω). In the

one dimensional case, K was worked out as an integral operator before the notion of

abstract operators became popular, and these eigenvalue and eigenfunction problems

were often solved via the study of integral equations.

It is possible to treat L as a bounded linear operator, such as from C2
c (Ω) to L2(Ω),

but this would not produce a closed image space, and it would not easy to apply the

tools of functional analysis in such a setting; in addition, one prefers to treat the

domain and the image to be in the same space for eigenvalue problems: imagine how

to make sense of L[v] = λv when L : X 7→ Y and X and Y are unrelated. More

importantly, one usually wouldn’t be able to solve L[u] = f for u ∈ C2
c (Ω); and even

if one works with an appropriate completion or extension, one may not be able to

determine a solution u uniquely, unless the extension encodes appropriate BCs.

A large group of differential operators such as our L have a formal symmetry

property (L[u], v)L2(Ω) = (u, L[v])L2(Ω) when u and v are in appropriate subspaces of

L2(Ω) (defined in terms of boundary conditions), and this analogy with real symmetric

and Hermitian operators in finite dimensional vector spaces is the reason why the

L2(Ω) inner product and the function space L2(Ω) is most appropriate in studying the

spectrum of L. So, even though we can treat L : C2
c (Ω) 7→ L2(Ω) as a bounded linear

operator, for the purpose of understanding the spectrum of L, we would treat L as an

unbounded operator from X 7→ L2(Ω), where X consists of functions in L2(Ω) with

appropriate differentiability and boundary conditions; often C2
c (Ω) ⊂ X ⊂ L2(Ω).

Exercises

Exercise 10.4.1. Work out the eigenvalues, associated eigenfunctions, and Green’s

function for the boundary value problem
−u′′(x) = λu(x) x ∈ [0, 2π]

u(0) = 0

u′(2π) = βu(2π)

where β ∈ R is a fixed parameter.

Exercise 10.4.2. Assume G(x, y) ∈ L2([a, b] × [a, b]). Prove that f ∈ L2[a, b] 7→∫ b
a
G(x, y)f(y)dy defines a bounded compact operator.
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Exercise 10.4.3. Model the discussion of this section and use the solutions e±
√
|λ|x

to (L− λ)u
def
= −u′′(x)− λu(x) = 0 over R for real λ < 0 to show that

f ∈ L2(R) 7→ (2
√
|λ|)−1

∫
R
f(y)e−

√
|λ||x−y|dy ∈ L2(R)

is the resolvent for (− d2

dx2 − λ) for λ < 0.

Next, show that (10.29) can’t hold for (− d2

dx2 −λ) for real λ ≥ 0, which proves that

R≥0 are in the spectrum of − d2

dx2 . (Hint: work with smooth cut-off of the functions

e±i
√
λx, which satisfy (− d2

dx2 − λ)e±i
√
λx = 0.)

Exercise 10.4.4. The operator L
def
= y2 d2

dy2 is related to the Laplace operator y2(∂2
x +

∂2
y) on the hyperbolic plane H2. Note that for such an L, the L2 space would need

to use w(y) = y−2 as a weight. For any λ > −1/4, the equation s(s − 1) = λ in s

has two distinct real roots, one of which is > 1/2. Let s denote that root. Use the

information that u1(y) = ys and u2(y) = y1−s are solutions to (L− λ)u = 0 to show

that

f ∈ L2
y−2(R) 7→ (2s−1)−1

[
u1(y)

∫ ∞
y

u2(ζ)f(ζ)ζ−2dζ + u2(y)

∫ y

0

u1(ζ)f(ζ)ζ−2dζ

]
∈ L2

y−2(R)

is the resolvent for L− λ on L2
y−2(R) for real λ > −1/4.

For real λ ≤ −1/4, both roots to s(s − 1) = λ satisfy Re(s) = 1/2. Use smooth

cut-off of the functions ys and y1−s near y = 0 and y =∞ to show that (10.29) can’t

hold for (L− λ) and such λ, which proves that R≤−1/4 are in the spectrum of L.

Exercise 10.4.5. Verify that the operator T0 = −i d
dx

with domain X0 = {u ∈
AC[0, 1] : u(0) = u(1) = 0, u′ ∈ L2[0, 1]} defines a symmetric operator in L2[0, 1], and

that for any scalar λ, T0 − λI : X0 7→ L2[0, 1] is injective, yet T0 − λI does not have

a well defined inverse L2[0, 1] 7→ X0. Note that L2[0, 1] refers to complex valued L2

functions, and the inner product between two functions u, v ∈ L2[0, 1] is defined as

(u, v) =
∫ 1

0
u(x)v(x)dx. This example demonstrates that an unbounded operator may

have empty resolvent, and that the spectrum theory of a finite dimensional symmetric

operator may not directly extend to an unbounded symmetric operator.

Exercise 10.4.6. Define the operator Tζ = −i d
dx

with domain Xζ = {u ∈ AC[0, 1] :

u(1) = eiβu(0), u′ ∈ L2[0, 1]}, where ζ = eiβ for some β ∈ R. Note that X0 ⊂ Xζ , so

Tζ may be considered an extension of T0. Verify that Tζ defines a symmetric operator

in L2[0, 1], and that a scalar λ is in the spectrum of Tζ iff λ− β ∈ 2πZ.

400



10.5. VARIATIONAL CHARACTERIZATION OF EIGENVALUES AND EIGENFUNCTIONS

10.5 Variational Characterization of Eigenvalues

and Eigenfunctions

The implementation of the strategy to relate the eigenfunction expansion for equa-

tions such as (4.29) to the spectrum of a compact symmetric operator would require

some additional adaptation, which we will describe below. We will also discuss the

variational approach, which allows us to construct the resolvent K and prove its prop-

erties without having an explicit integral representation as in the previous section.

10.5.1 Set up of a Symmetric Second Order Elliptic Operator

and its Resolvent by Variational Method

One main technical issue in extending the approach to (4.29) is that it’s not easy to

provide an easily identifiable description for functions to be in the domain for the

natural operator L associated to (4.29):

L[v] = −
n∑

i,j=1

(aij(x)vxi(x))xj + c(x)v(x).

For the Dirichelt problem with homogeneous boundary condition, a natural candidate

space would be H1
0 (Ω); but it is harder to characterize those v ∈ H1

0 (Ω) which make

L[v] ∈ L2(Ω). We handle this issue in one of two closely related ways.

The first approach is to define L on H1
0 (Ω), allowing L[v] to lie in an extended

space of L2(Ω). When v ∈ H1
0 (Ω) and the aij(x)’s satisfy (4.27), the terms aij(x)vxi(x)

are in L2(Ω), but we can’t necessarily make sense of (aij(x)vxi(x))xj as an L2 function

without knowing more regularity about aij(x)vxi(x), but aij(x)vxi(x) define continu-

ous linear functionals on H1
0 (Ω) through

w ∈ H1
0 (Ω) 7→

∫
Ω

n∑
i,j=1

aij(x)vxi(x)wxj(x) dx,

as there exists C > 0 depending on aij(x) and vxi(x) such that∣∣∣∣∣
∫

Ω

n∑
i,j=1

aij(x)vxi(x)wxj(x) dx

∣∣∣∣∣ ≤ C||w||H1
0 (Ω).

The space of continuous linear functionals on H1
0 (Ω) comes into play when discussing
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the solvability of (4.29), and is denoted as H−1(Ω)∗. Thus for any v ∈ H1
0 (Ω),

L[v] ∈ H−1(Ω), so L : H1
0 (Ω) 7→ H−1(Ω) is a natural set up for L. Then the proper

domain of L for the purpose of discussing spectrum properties would be the subspace

of H1
0 (Ω) whose members v would make L[v] ∈ L2(Ω); more precisely, v needs to have

the property that the L2(Ω) vector field

x ∈ Ω 7→ (
n∑
i=1

ai1(x)vxi(x), · · · ,
n∑
i=1

ain(x)vxi(x))

has an L2(Ω) divergence in the sense that there exists some h ∈ L2(Ω) such that for

any w ∈ H1
0 (Ω),∫

Ω

(
n∑
i=1

ai1(x)vxi(x), · · · ,
n∑
i=1

ain(x)vxi(x)) · ∇w(x) dx = −
∫

Ω

h(x)w(x) dx.

Note that this description is a lot less explicit about v.

The second approach is to work directly with a bilinear form B[v, w] on H1
0 (Ω)×

H1
0 (Ω)

B[v, w] =

∫
Ω

(
n∑

i,j=1

aij(x)vxi(x)wxj(x) + c(x)v(x)w(x)

)
dx,

and produce a compact symmetric operator K : L2(Ω) 7→ H1
0 (Ω) ⊂ L2(Ω), to be

described below, by applying the variational method to the quadratic form B[v, v]

associated with B[v, w], without necessarily defining the domain of L for L[v] ∈ L2(Ω)

in full detail — K would serve as a resolvent for L, if L is properly defined. In general,

for any fixed v ∈ H1
0 (Ω), w 7→ B[v, w] defines a bounded linear functional on H1

0 (Ω),

thus giving rise to an element in H−1(Ω), which we can label as L[v]; and B[·, ·] are

related by the relation 〈L[v], w〉 = B[v, w] for w ∈ H1
0 (Ω).

When 0 ≤ c(x) ≤M for all x ∈ Ω, the variational approach in the earlier section

sets up a well defined map

f ∈ L2(Ω) 7→ v ∈ H1
0 (Ω) such that (4.28) holds,

namely,

B[v, w] = (f, w)L2(Ω) for all w ∈ H1
0 (Ω).

∗Riesz’s Theorem in Functional Analysis implies that any continuous linear functional on H1
0 (Ω)

can be represented as the inner product with an element in H1
0 (Ω); but continuous linear functionals

often arise in other forms than as the inner product with an element. Thus there is a need to to

study H−1(Ω) separately.
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Define this map to be K[f ] = v, and regard

K : L2(Ω) 7→ H1
0 (Ω) ⊂ L2(Ω).

Then K is a symmetric, bounded, injective linear operator on L2(Ω) in the sense

that

K[f ] = 0 =⇒ f = 0 (10.30)

∃C > 0 depending only on L through M , m and Ω s.t. ||K[f ]||L2(Ω) ≤ C||f ||L2(Ω),

(10.31)

(K[f ], g)L2(Ω) = (f,K[g])L2(Ω) for all f, g ∈ L2(Ω). (10.32)

(10.30) follows directly from the integral formulation for (4.28). (10.31) follows from

using w = v in the integral formulation for (4.28):∫
Ω

[
n∑

i,j=1

aij(x)vxi(x)vxj(x) + (c(x)v(x)− f(x)) v(x)

]
dx = 0,

and using (4.27) to imply

m

∫
Ω

|∇v(x)|2 dx ≤
∫

Ω

f(x)v(x) dx ≤
(∫

Ω

f 2(x) dx

)1/2(∫
Ω

v2(x) dx

)1/2

,

which, together with (4.22), concludes a proof for (10.31).

In fact, we get the following stronger inequality if we use the estimate
(∫

Ω
v2(x) dx

)1/2 ≤√
C
(∫

Ω
|∇v|2(x) dx

)1/2
in the above:

||K[f ]||H1
0 (Ω) ≤ ||∇v||L2(Ω) ≤

√
C

m
||f ||L2(Ω). (10.33)

(10.32) is proved as follows. Set K[f ] = v and K[g] = w. By their defining

property, we have∫
Ω

[
n∑

i,j=1

aij(x)vxi(x)wxj(x) + (c(x)v(x)− f(x))w(x)

]
dx = 0,

∫
Ω

[
n∑

i,j=1

aij(x)wxi(x)vxj(x) + (c(x)w(x)− g(x)) v(x)

]
dx = 0,

from which it follows that∫
Ω

f(x)w(x) dx =

∫
Ω

g(x)v(x) dx,
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namely, (10.32).

Based on (10.31) and (10.32), the eigenvalue and eigenfunction expansion problem

for L reduces to that for the bounded and symmetric linear operator K on L2(Ω):

v ∈ H1
0 (Ω) is an eigenfunction for L, L[v] = λv for some λ 6= 0, iff v = K[λv] = λK[v],

iff K[v] = λ−1v and v ∈ L2(Ω). It follows from (10.31) that λ = 0 is not an eigenvalue

of L under our assumptions, thus we have reduced the problem to whether K, as a

bounded and symmetric linear operator on L2(Ω), has a complete set of eigenfunctions

which spans L2(Ω), with the additional orthogonality properties as described for the

eigenfunctions of a Sturm-Liouville problem.

In situations where we don’t have the condition c(x) ≥ 0 in Ω, but have a bound

of the form |c(x)| ≤M in Ω, the operator L+M would satisfy the set up above, and

can be used to set up the map K : L2(Ω) 7→ H1
0 (Ω) ⊂ L2(Ω) such that K[f ] = v

satisfies

B[v, η] +M(v, η)L2(Ω) = (f, η)L2(Ω) for all η ∈ H1
0 (Ω),

and L[v] = λv, iff (L+M)[v] = (λ+M)v, iff K[v] = (λ+M)−1v.

Remark 10.11. For the one-dimensional Sturm-Liouville problem, we were able

to identity more precisely a space X incorporating the BCs on which to consider

L : X 7→ L2(a, b). Here we used X = H1
0 (Ω), or rather a not explicitly identified

subspace of it, in this discussion for homogeneous Dirichlet boundary condition; but

other subspaces reflecting other boundary conditions may also be used.

Remark 10.12. In applications involving curvilinear coordinates or manifolds, the

integrals in the integral formulation would involve a density function, like the weight

function in the Sturm-Liouville problems; in fact, the integration may not be carried

out in one coordinate patch, and there is a coordinate independent formulation of the

volume element as well as the bilinear expressions in the integrand in the integrals.

The analysis carried out above extends to such situations without too much extra

work; one can reformulate certain arguments in a slightly more abstract way, and when

it comes time to work with an explicit form of the equation in a specific coordinate,

one can choose the test function to have support in that coordinate patch, and carry

out the computations largely as above.

For instance, on a Riemannian manifold (M, g) with a given Riemannian metric g,

a C1 function u has a coordinate-free definition of gradient ∇u and its length ||∇u||
at any point, such that, if a coordinate is chosen in a neighborhood of a point x,

in which the length square of a tangent vector v at x with coordinate (v1, · · · , vn)

is given by |v|2 =
∑n

i,j=1 gij(x)vivj, then the length square of ∇u at x is given by
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|∇u(x)|2 =
∑n

i,j=1 g
ij(x)uxi(x)uxj(x), and the volume element in this coordinate is

expressed as
√

det(gij(x))dx1 · · · dxn, where (gij(x)) is the inverse matrix of (gij(x)).

There is a coordinate-free definition of a bilinear form on the gradients of a pair of

functions u and v, which is expressed as

B[u, v] =

∫ ( n∑
i,j=1

gij(x)uxi(x)vxj(x)

)√
det(gij(x)) dx1 · · · dxn

when one of them has compact support in this coordinate patch. The linear differen-

tial operator associated with B[u, v], the Laplace operator ∆g of the metric g, then

has a local expression in this coordinate

∆gu(x) =
n∑

i,j=1

1√
det(gij(x))

(√
det(gij(x))gij(x)uxi(x)

)
xj

,

as∫ ( n∑
i,j=1

gij(x)uxi(x)vxj(x)

)√
det(gij(x)) dx1 · · · dxn

=−
∫ n∑

i,j=1

1√
det(gij(x))

(√
det(gij(x))gij(x)uxi(x)

)
xj

v(x)
√

det(gij(x)) dx1 · · · dxn.

Note that, in comparison with the expression for the linear operator L used earlier

in the section, this ∆g has the weight factor 1√
det(gij(x))

in front of the “divergence

expression”.

Again the analysis of the spherical Laplace operator may serve as a concrete guide,

where, in spherical polar coordinate (θ, φ) on S2, |∇u|2 = u2
θ +sin−2 θu2

φ, and the area

element is sin θ dθdφ; while, if we use a graph representation for S2 or stereographic

coordinate for S2, the expressions for |∇u|2, the area element, and the spherical

Laplace operator would take on a different form.

10.5.2 Eigenvalues and Eigenfunctions of Symmetric Second

Order Elliptic Operators

Some standard properties of eigenvalues and eigenfunctions of L follow from (10.32).

Theorem 10.22. Suppose that the aij(x)’s and c(x) are real-valued, satisfy (4.27)

and |c(x)| ≤ M for all x ∈ Ω. Then all eigenvalues of L are real-valued, and eigen-

functions of L associated to distinct eigenvalues are orthogonal in L2(Ω), and can be

taken to be real-valued.
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Furthermore, we have

Theorem 10.23. Suppose that Ω is a bounded domain in Rn, that the aij(x)’s and

c(x) are real-valued, satisfy (4.27) and |c(x)| ≤M for all x ∈ Ω. Then the eigenvalues

of L can not have a finite accumulation point, and the eigenspace of L associated to

any single eigenvalue is finite dimensional.

Theorem 10.23 is based on the general spectrum property of a linear compact

operator.

Theorem 10.24. Let Y be a Banach space, K : Y 7→ Y be a linear compact oper-

ator. Then the spectrum of K can not have a non-zero accumulation point, and the

eigenspace of K associated to any single non-zero eigenvalue is finite dimensional.

See Theorem 6.8 in Brezis’s text [B] for a simple proof of this theorem. To apply

Theorem 10.24 to our setting, recall that we may assume 0 is in the resolvent of L

by adding a multiple of the identity map if necessary; assuming for the moment that

K has been verified to be compact, then λ 6= 0 is in the spectrum of L iff λ−1 is

in the spectrum of K, then the conclusions of Theorem 10.23 follow readily. The

verification of the compactness of K associated with Theorem 10.23 is based on the

following compactness theorem.

Theorem 10.25. Let Ω be a bounded domain in Rn. Then for any sequence {wj} in

H1
0 (Ω) with bounded H1

0 (Ω) norms, there is a w ∈ H1
0 (Ω) and a subsequence {wjk}

of {wj} such that wjk → w in L2(Ω), and for each 1 ≤ a ≤ n, {∂xawjk} converges

weakly in L2(Ω). As a consequence,
∫

Ω
|∇w(x)|2 dx ≤ lim infk→∞

∫
Ω
|∇wjk(x)|2 dx.

Recall that a sequence {fj} in L2(Ω) converges weakly to f ∗ in L2(Ω) if∫
Ω

fj(x)η(x) dx→
∫

Ω

f ∗(x)η(x) dx ∀η ∈ L2(Ω).

Taking η = f ∗, we see that∫
Ω

|f ∗(x)|2 dx = lim
j→∞

∫
Ω

fj(x)f ∗(x) dx ≤ lim inf
j→∞

(∫
Ω

|fj(x)|2 dx
)1/2(∫

Ω

|f ∗(x)|2 dx
)1/2

,

from which it follows that∫
Ω

|f ∗(x)|2 dx ≤ lim inf
j→∞

∫
Ω

|fj(x)|2 dx. (10.34)

The weak L2(Ω) limits of {∂xawjk} are the L2(Ω) derivatives of the w ∈ H1
0 (Ω):

wxa .
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Under (4.27), we also have

∫
Ω

(
n∑

α,β=1

aαβ(x)wxα(x)wxβ(x)

)
dx ≤ lim inf

k→∞

∫
Ω

(
n∑

α,β=1

aαβ(x)(wjk(x))xα(wjk(x))xβ

)
dx

(10.35)

This follows from a similar argument. Since
∑n

α=1 aαβ(x)wxα(x) ∈ L2(Ω) for each β,

we have∫
Ω

(
n∑

α,β=1

aαβ(x)wxα(x)wxβ(x)

)
dx

= lim
k→∞

∫
Ω

(
n∑

α,β=1

aαβ(x)wxα(x)(wjk(x))xβ

)
dx

≤ lim inf
k→∞

(∫
Ω

n∑
α,β=1

aαβ(x)wxα(x)wxβ(x) dx

)1/2(∫
Ω

n∑
α,β=1

aαβ(x)(wjk(x))xα(wjk(x))xβ dx

)1/2

,

from which (10.35) follows. In the last two lines above, we have used the algebraic

inequality

∣∣ n∑
α,β=1

aαβ(x)wxα(x)(wjk(x))xβ
∣∣

≤

(
n∑

α,β=1

aαβ(x)wxα(x)wxβ(x)

)1/2( n∑
α,β=1

aαβ(x)(wjk(x))xα(wjk(x))xβ

)1/2

,

and the Cauchy-Schwarz inequality applied to the integration of the above estimate.

Remark 10.13. Since any eigenfunction vj(x): Lvj = λjvj, satisfies

B[vj, η] = λj(vj, η)L2(Ω) for any η ∈ H1
0 (Ω),

the L2(Ω)-orthogonality relation in Theorem 10.22 also gives rise to an orthogonality

relation in terms of the bilinear form B:

B[vj, vk] = 0 when λj 6= λk.

But the underlying symmetry for the spectrum property is the L2(Ω) symmetry prop-

erty of K.
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10.5.3 Variational Characterization of Eigenvalues and Eigen-

functions

It turns out that the eigenvalues and eigenfunctions of L (or of K) have a variational

characterization. Let Q[w] be the quadratic form associated with the bilinear form

B[v, w]

Q[w] = B[w,w] =

∫
Ω

(
n∑

i,j=1

aij(x)wxi(x)wxj(x) + c(x)w2(x)

)
dx.

Theorem 10.26. Suppose that Ω, aij(x)’s, and c(x) satisfy the same assumptions as

in Theorem 10.23. Then

inf

{
Q[w] : w ∈ H1

0 (Ω),

∫
Ω

w2(x) dx = 1

}
is attained by some v ∈ H1

0 (Ω). Let this minimum be λ1. Then L[v] = λ1v. Further-

more, any eigenvalue λ of L satisfies λ ≥ λ1. Thus this λ1 is the smallest eigenvalue

of L.

Theorem 10.27. Suppose that Ω, aij(x)’s, and c(x) satisfy the same assumptions

as in Theorem 10.23. Suppose further that {v1(x), · · · , vj(x), · · · } is a collection of

eigenfunctions of L, which can be taken to be orthonormal in L2(Ω) by Theorems 10.22

and 10.23. Then if

{w ∈ H1
0 (Ω) :

∫
Ω

w2(x) dx = 1,

∫
Ω

w(x)vj(x) dx = 0 for all vj’s}

is non-empty,

inf

{
Q[w] : w ∈ H1

0 (Ω),

∫
Ω

w2(x) dx = 1,

∫
Ω

w(x)vj(x) dx = 0 for all vj’s

}
is attained by some v ∈ H1

0 (Ω), and L[v] = λv for some λ.

It turns out that one can provide a proof for both of the above theorems based

on the compactness Theorem 10.25.

Remark 10.14. A symmetric, compact, bounded linear operator has similar spec-

trum properties, but after stating a general theorem for the spectrum decomposition

of a symmetric, compact, bounded linear operator on a Hilbert space, we still present

a brute force proof for Theorem 10.27 working directly with L and its associated

bilinear form B.
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Theorem 10.28. Let H be a separable Hilbert space and let K be a compact sym-

metric operator on H. Then there exists a Hilbert basis composed of eigenvectors of

K. More specifically, let (λn) be the sequence of all (distinct) nonzero eigenvalues of

K, En = {x ∈ H : (K − λnI)x = 0}, E0 = {x ∈ H : Kx = 0}, then

(i) each En for n 6= 0 is finite dimensional;

(ii) the En’ are mutually orthogonal; and

(iii)
⊕∞

n=0En is dense in H.

See Theorem 6.11 in Brezis’s text [B]. Although K may have only a finite number

of non-zero eigenvalues in the general context of Theorem 10.28, in applying Theorem

10.28 to our settings, K is constructed to be injective, so it follows that we will get

an infinite sequence (λn)→∞ as n→∞.

Theorem 10.27 provides a characterization for the n-th eigenvalue λn of L as

λn = inf{Q[w]/(w,w) : w 6= 0, (w, v1) = · · · = (w, vn−1) = 0},

where v1, · · · , vn−1 are (orthonormal) eigenfunctions associated with the first (n− 1)

eigenvalues λ1, · · · , λn−1 (counting with multiplicity). However, this characterization

depends on knowing the first (n− 1) eigenvalues and their associated eigenfunctions.

The following variational characterization for the n-th eigenvalue λn of L, by a mini-

max procedure, is due to Rayleigh and Ritz.

Theorem 10.29. The n-th eigenvalue λn of L can be characterized as

λn = inf
Wn:ndimensional subspace of H1

0 (Ω)
max{Q[w]/(w,w, ) : w 6= 0, w ∈ Wn}.

Since there is a short proof for Theorem 10.29, assuming Theorem 10.27, we first

supply a proof of Theorem 10.29.

Proof of Theorem 10.29. Let Wn be any n-dimensional subspace of H1
0 (Ω), spanned

by {w1, w2, · · · , wn}, and let {v1, v2, · · · , vn} denote a set of orthonormal eigenfunc-

tions of L associated with the first n eigenvalues (counting with multiplicity). Then

there are constants c1, · · · , cn, not all zero, such that w =
∑n

i=1 ciwi is orthog-

onal to v1, · · · , vn−1 in L2(Ω). This is because that the orthogonality conditions

(
∑n

i=1 ciwi, vj) = 0, j = 1, · · · , n− 1, are n− 1 linear, homogeneous equations on the

n unknowns c1, · · · , cn. Thus by Theorem 10.27,

max{Q[w]/(w,w) : w 6= 0, w ∈ Wn} ≥ Q[
n∑
i=1

ciwi]/||
n∑
i=1

ciwi||2 ≥ λn.
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Next, if we set Vn = span{v1, v2, · · · , vn}, then max{Q[w]/(w,w, ) : w 6= 0, w ∈ Vn} =

λn. This completes a proof for Theorem 10.29.

Proof of Theorem 10.26. First, we need to prove that the inf in the Theorem is fi-

nite. This is easy to prove here: |
∫

Ω
c(x)w2(x) dx| ≤ M

∫
Ω
w2(x) dx = M , when∫

Ω
w2(x) dx = 1, soQ[w] ≥ m

∫
Ω
|∇w(x)|2 dx−M when w ∈ H1

0 (Ω) and
∫

Ω
w2(x) dx =

1.

Next, let {wj(x)} ⊂ H1
0 (Ω) be a minimizing sequence. Then the lower bound

for Q[w] in the line above shows that
∫

Ω
|∇wj(x)|2 dx is bounded. We now apply

Theorem 10.25 to {wj(x)} to find a subsequence, still denoted as {wj(x)}, a v ∈ H1
0 (Ω)

such that wj → v in L2(Ω), and
∫

Ω
|∇v(x)|2 dx ≤ lim infj→∞

∫
Ω
|∇wj(x)|2 dx. Using

wj → v in L2(Ω), we see that
∫

Ω
v2(x) dx = 1, and

∫
Ω
c(x)w2

j (x) dx→
∫

Ω
c(x)v2(x) dx.

Together with (10.35), it follows that

Q[v] ≤ lim inf
j→∞

Q[wj].

This shows that v attains the infimum.

Finally, take any η ∈ H1
0 (Ω) and define µ(t) > 0 for small t ∈ R through µ(t)2 =∫

Ω
(v(x) + tη(x))2 dx. Then µ(0) = 1, and µ(t) is C1 in t with µ′(0) =

∫
Ω
v(x)η(x) dx.

Note that µ(t)−1 (v(x) + tη(x)) ∈ H1
0 (Ω) satisfies the constraint∫

Ω

∣∣µ(t)−1 (v(x) + tη(x))
∣∣2 dx = 1,

so

Q[µ(t)−1 (v(x) + tη(x))] has a mimimum at t = 0.

By taking derivative in t and setting t = 0, using µ(0) = 1, and µ′(0) =
∫

Ω
v(x)η(x) dx,

it follows that

2

∫
Ω

(
n∑

i,j=1

aij(x)vxi(x)ηxj(x) + c(x)v(x)η(x)−Q[v]v(x)η(x)

)
dx = 0.

This shows that L[v] = λ1v with λ1 = Q[v], which is the infimum value of Q[w] under

the constraint.

Let w ∈ H1
0 (Ω) be any eigenfunction of L: L[w] = λw. We may normalize w such

that
∫

Ω
w2(x) dx = 1. Then it follows from the integral form for L[w] = λw that

Q[w] =

∫
Ω

(
n∑

i,j=1

aij(x)wxi(x)wxj(x) + c(x)w2(x)

)
dx = λ

∫
Ω

w2(x) dx = λ,

which shows that λ = Q[w] ≥ λ1.
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Proof for Theorem 10.27. The above proof works verbatim to produce a w ∈ H1
0 (Ω)

such that ∫
Ω

w2(x) dx = 1,

∫
Ω

w(x)vj(x) dx = 0 for all vj’s, and

d

dt

∣∣∣
t=0
Q[µ(t)−1 (w(x) + tη(x))] = 0,

for any η ∈ H1
0 (Ω) satisfying

∫
Ω
η(x)vj(x) dx = 0 for all vj’s, and µ(t) > 0 is defined

through µ(t)2 =
∫

Ω
(w(x) + tη(x))2 dx. This again leads to∫

Ω

(
n∑

i,j=1

aij(x)wxi(x)ηxj(x) + c(x)w(x)η(x)−Q[w]w(x)η(x)

)
dx = 0, (10.36)

for such η.

Given any η ∈ H1
0 (Ω), we are going to define a projection Pη ∈ H1

0 (Ω) such that

η − Pη satisfies all the constraints required.

Define ηj =
∫

Ω
η(x)vj(x) dx, and PNη =

∑N
j=1 ηjvj ∈ H1

0 (Ω). In fact, PNη is well

defined for any η ∈ L2(Ω). We will prove

Claim. For any η ∈ L2(Ω), {PNη} is Cauchy in L2(Ω). If η ∈ H1
0 (Ω),

then {PNη} is also Cauchy in H1
0 (Ω).

When η ∈ H1
0 (Ω), we define Pη to be the H1

0 (Ω) limit of {PNη}. We will provide

a proof for this Claim at the end of this proof. In addition, we will use the following

Property. For any finite dimensional span of {v1, v2, · · · }, where

{v1, v2, · · · } is a collection of eigenfunctions of L,

w ∈ H1
0 (Ω) and (w, v)L2(Ω) = 0 for v ∈ span{vj1 , · · · , vjn}

=⇒ B[w, v] = 0 for v ∈ span{vj1 , · · · , vjn}.
(10.37)

This follows from

B[w, v] =

∫
Ω

w(x)L[v](x) dx =
n∑
k=1

ck

∫
Ω

w(x)vjk(x) dx = 0,

when v =
∑n

k=1 ckvjk . Note that the condition w ∈ H1
0 (Ω) is used in an inconspicuous

way, but the zero boundary value is important; The above property may not hold if

w ∈ H1(Ω).

We now prove that (10.36) holds for any η ∈ H1
0 (Ω) without any constraints, from

which it follows that L[w] = Q[w]w. For any η ∈ H1
0 (Ω), note that, for any j,

(η − Pη, vj)L2(Ω) = lim
N→∞

(η − PNη, vj)L2(Ω) = 0.
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So η − Pη satisfies the constraints for applying (10.36), which now leads to

0 = B[w, η − Pη]−Q[w] (w, η − Pη)L2(Ω)

= B[w, η]−Q[w] (w, η)L2(Ω) −B[w,Pη] +Q[w] (w,Pη)L2(Ω) .

Finally, since (w,PNη)L2(Ω) = 0 for all N , it follows from the Property stated above

that B[w,PNη] = 0 for all N . Then, using PNη → Pη in H1
0 (Ω),

B[w,Pη]−Q[w] (w,Pη)L2(Ω) = lim
N→∞

{
B[w,PNη]−Q[w] (w,PNη)L2(Ω)

}
= 0.

Thus we have proved that

B[w, η]−Q[w] (w, η)L2(Ω) = 0

for all η ∈ H1
0 (Ω), from which it follows that w is an eigenfunction of L: L[w] = Q[w]w.

We now supply a proof for the Claim stated above. Note that (η−PNη, vj)L2(Ω) =

0 for each 1 ≤ j ≤ N , so (η − PNη, PNη)L2(Ω) = 0, from which it follows that

||η||2L2(Ω) = ||η − PNη||2L2(Ω) + ||PNη||2L2(Ω).

Since ||PNη||2L2(Ω) =
∑N

j=1 η
2
j , this produces the Bessel’s inequality for this setting:

∞∑
j=1

η2
j ≤ ||η||2L2(Ω).

Furthermore, we have ||PN ′η − PNη||2L2(Ω) =
∑N ′

j=N+1 η
2
j . By the Bessel’s inequality,

{PNη} is Cauchy in L2(Ω).

We next show that, when η ∈ H1
0 (Ω), {PNη} is Cauchy in H1

0 (Ω).

Since (η − PNη, PNη)L2(Ω) = 0, it follows that

B[η − PNη, PNη] = 0,

and

B[η, η] = B[η − PNη, η − PNη] +B[PNη, PNη].

Note that

B[PNη, PNη] =

∫
Ω

PNηL[PNη] dx

=

∫
Ω

PNη

(
N∑
j=1

λjηjvj(x)

)
dx

=
N∑
j=1

λjη
2
j .
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Using (??), we have

B[PNη, PNη]

=B[η, η]−B[η − PNη, η − PNη]

≤M
(
||∇η||2L2(Ω) + ||η||2L2(Ω)

)
−m||∇(η − PNη)||2L2(Ω) +M ||η − PNη||2L2(Ω)

≤M
(
||∇η||2L2(Ω) + 2||η||2L2(Ω)

)
.

Thus
∑∞

j=1 λjη
2
j is convergent. Next, using L[PN ′η − PNη] =

∑N ′

j=N+1 λjηjvj(x), we

see that, for N ′ > N ,

B[PN ′η − PNη, PN ′η − PNη] =

∫
Ω

(PN ′η − PNη)L[PN ′η − PNη] dx

=

∫
Ω

(PN ′η − PNη)

(
N ′∑

j=N+1

λjηjvj(x)

)
dx

=
N ′∑

j=N+1

λjη
2
j .

This implies that

m||∇(PN ′η−PNη)||2L2(Ω) ≤ B[PN ′η−PNη, PN ′η−PNη] +M ||PN ′η−PNη||2L2(Ω) → 0,

as N ′, N →∞, which proves that {PNη} is Cauchy in H1
0 (Ω).

Based on Theorems 10.22, 10.23, and 10.27, we can enumerate all the eigenvalues

of L as λ1 ≤ λ2 ≤ · · · (allowing finite multiplicity); and it is easy to see that

{w ∈ H1
0 (Ω) :

∫
Ω

w2(x) dx = 1,

∫
Ω

w(x)vj(x) dx = 0 for all vj’s}

is non-empty for any finite collection of vj’s, so the procedure in Theorem 10.27 can

not stop after a finite number of steps, and λn →∞ as n→∞, producing associated

eigenfunctions v1, v2, · · · : L[vn] = λnvn, such that {vn} is orthonormal in L2(Ω).

Then, according to Theorems 10.22,

{w ∈ H1
0 (Ω) :

∫
Ω

w(x)vn(x) dx = 0 for all n} must consist only of w = 0.

We now claim that

{f ∈ L2(Ω) :

∫
Ω

f(x)vn(x) dx = 0 for all n} must also consist only of f = 0.
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For, if f ∈ L2(Ω) and
∫

Ω
f(x)vn(x) dx = 0 for all n. Let w = K[f ] ∈ H1

0 (Ω). Then

B[w, vn] = (f, vn)L2(Ω) = 0 for all n,

but

B[w, vn] =

∫
Ω

w(x)L[vn](x) dx =

∫
Ω

λnw(x)vn(x) dx,

which implies that
∫

Ω
w(x)vn(x) dx = 0 for all n, from which we conclude that w = 0

and therefore f = 0. This shows that the L2(Ω) closure of {v1, v2, · · · } is L2(Ω). We

have thus proved

Theorem 10.30. Under the same assumptions as Theorem 10.22, the L2(Ω) closure

of a complete set of eigenfunctions of L (and of K) {v1, v2, · · · } is L2(Ω). We can

take {v1, v2, · · · } to be orthonormal in L2(Ω). Then any function f ∈ L2(Ω) has a

Fourier expansion in {v1, v2, · · · }: f =
∑∞

n=1 fnvn, where the convergence is in L2(Ω).

Furthermore, if f ∈ H1
0 (Ω), then the same Fourier series also converges in H1

0 (Ω).

The compactness Theorem 10.25 is based on the following compactness criterion

for subsets of Lp(Ω) (see Theorem 4.26 of Brezis’s text [B]).

Theorem 10.31. Let F be a bounded set in Lp(Rn) with 1 ≤ p <∞. Assume that

∀ε > 0,∃δ > 0 such that ||f(·+ h)− f(·)||Lp(Rn) < ε ∀f ∈ F ,∀h ∈ Rn

with |h| < δ.

Then the closure of F
∣∣
Ω

in Lp(Ω) is compact for any measurable Ω ⊂ Rn with finite

measure.

We can apply this theorem in the setting of Theorem 10.25 after we establish

Lemma 10.32. For any v ∈ C1
c (Rn), we have

||v(·+ h)− v(·)||Lp(Rn) ≤ |h|||∇v||Lp(Rn). (10.38)

Proof. The Fundamental Theorem of Calculus gives

|v(x+h)−v(x)| =
∣∣∣ ∫ 1

0

h·∇v(x+th)dt
∣∣∣ ≤ ∫ 1

0

|h||∇v(x+th)|dt ≤ |h|
(∫ 1

0

|∇v(x+ th)|pdt
)1/p

.

Then, ∫
Rn
|v(x+ h)− v(x)|p dx ≤|h|p

∫
Rn

∫ 1

0

|∇v(x+ th)|pdt dx

≤|h|p
∫ 1

0

∫
Rn
|∇v(x+ th)|p dxdt

≤|h|p
∫ 1

0

||∇v||pLp(Rn)dt

=|h|p||∇v||pLp(Rn),
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where we have used ||∇v(· + th)||Lp(Rn) = ||∇v||Lp(Rn) is independent of t, this con-

cludes the proof for (10.38).

Let Ω be a domain in Rn, 1 ≤ p <∞, define W 1,p
0 (Ω) be the completion of C1

c (Ω)

under the norm ||u||W 1,p
0 (Ω) = ||∇u||Lp(Ω) + ||u||Lp(Ω). Then for any u ∈ W 1,p

0 (Ω), there

exists a sequence {vj} ⊂ C1
c (Ω), such that vj → u, and ∂xavj → ∂xau in Lp(Ω) as

j → ∞ for each a = 1, · · · , n. Applying (10.38) to vj and passing to j → ∞ shows

that (10.38) continues to hold for functions in W 1,p
0 (Ω); in particular, when p = 2, it

holds for v ∈ H1
0 (Ω) = W 1,2

0 (Ω).

Proof for Theorem 10.25. Let {wj} be a sequence in H1
0 (Ω) with bounded H1

0 (Ω)

norms. (10.38) and Theorem 10.31 applied to {wj} shows that it has a convergent

subsequence in L2(Ω). Let’s assume that wjk → w∗ in L2(Ω) as k → ∞. For each

1 ≤ a ≤ n, {∂xawj} is a bounded sequence in L2(Ω). We now appeal to a property

that any bounded sequence in L2(Ω) has a subsequence which converges weakly in

L2(Ω). In our setting, we can get a subsequence of wjk , still denoted as wjk , and n

functions v[1], v[2], · · · , v[n] in L2(Ω) such that

∂xawjkconverges weakly to v[a] as k →∞.

If we take η ∈ C1
c (Ω), we have∫

Ω

∂xawjk(x)η(x) dx = −
∫

Ω

wjk(x)∂xaη(x) dx;

passing to k →∞, we obtain∫
Ω

v[a](x)η(x) dx = −
∫

Ω

w∗(x)∂xaη(x) dx.

This shows that w∗ has weak L2 derivatives in Ω, and ∂xaw
∗(x) = v[a](x). Later we

will prove that a function having weak L2 derivatives in the sense here also has L2

derivatives by L2(Ω) norm approximation as defined earlier.

Applying (10.34) to each v[a](x), we see that

||∂xaw∗(x)||L2(Ω) ≤ lim inf
k→∞

||∂xawjk(x)||L2(Ω),

which shows that

||∇w∗(x)||L2(Ω) ≤ lim inf
k→∞

||∇wjk(x)||L2(Ω).
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Remark 10.15. The notion of weak convergence and weak compactness has wide

applications. An infinite dimensional normed space no longer has the Bolzano-

Weierstrass property that any bounded sequence has a convergent (in norm) sub-

sequence; but the notion of weak compactness provides a substitute for this property.

A concrete case to understand the notion of weak compactness is the space lp,

which is defined as {x = (x1, · · · , xn, · · · ) :
∑∞

n=1 |xn|p < ∞} for 1 < p < ∞. Let

{x[m]} be a bounded sequence in lp for some 1 < p < ∞, namely, each x[m] =

(x[m]1, · · · , x[m]n, · · · ) ∈ lp, and there exists M > 0 such that
∑∞

n=1 |x[m]n|p < Mp

for all m. This implies that, for each fixed n, the sequence {x[m]n}∞m=1 is a bounded

sequence, so it has a convergent subsequence. Through a diagonal process, we can

find a subsequence {x′[m]} of {x[m]}, and xn such that x′[m]n → xn as m → ∞,

namely, x′[m]n → xn componentwise. Furthermore, for any N ,

N∑
n=1

|xn|p = lim
m→∞

N∑
n=1

|x′[m]n|p ≤Mp,

so
∑∞

n=1 |xn|p ≤Mp, namely, (xn)n ∈ lp.
While we can’t imply that {x′[m]} converges to x = (xn) in lp norm, we can see

that {x′[m]} converges weakly to (xn) in the following sense: Given any g = (gn) ∈ lp′ ,
where p′ is the conjugate exponent of p determined by p−1 + p′−1 = 1, in examining

the relation between

∞∑
n=1

x′[m]ngn and
∞∑
n=1

xngn as m→∞,

we can use the convergence of
∑∞

n=1 |gn|p
′

to control the tail part of both sums as

follows. For any given ε > 0, we can find N such that
∑∞

n=N |gn|p
′
< εp

′
. Then∣∣∣ ∞∑

n=1

x′[m]ngn −
∞∑
n=1

xngn

∣∣∣
≤

N−1∑
n=1

∣∣∣x′[m]n − xn
∣∣∣∣∣gn∣∣+

∞∑
n=N

(∣∣∣x′[m]ngn

∣∣∣+
∣∣∣xngn∣∣∣)

≤
N−1∑
n=1

∣∣∣x′[m]n − xn
∣∣∣∣∣gn∣∣+

( ∞∑
n=N

|x′[m]n|p
)1/p

+

(
∞∑
n=N

|xn|p
)1/p

( ∞∑
n=N

|gn|p
′

)1/p′

≤
N−1∑
n=1

∣∣∣x′[m]n − xn
∣∣∣∣∣gn∣∣+ 2Mε.

We can now use x′[m]n → xn as m → ∞ to control the finite sum
∑N−1

n=1

∣∣∣x′[m]n −
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xn

∣∣∣∣∣gn∣∣: to find m′ such that
∑N−1

n=1

∣∣∣x′[m]n − xn
∣∣∣∣∣gn∣∣ < ε when m > m′. To summa-

rize, weak lp convergence is equivalent to componentwise convergence, plus a uniform

bound on the lp norms.

The key role played by the element g in the dual space lp
′

is to control the tail

part of the error. This feature is not visible in the more abstract set up for weak

convergence and weak compactness, but it does provide some helpful guidance on the

notion of weak convergence and weak compactness.

Exercises

Exercise 10.5.1. In the last statement of Theorem 10.30, if f ∈ H1
0 (Ω), then the

same Fourier series also converges in H1
0 (Ω), is the statement still valid if H1

0 (Ω) is

replaced by H1(Ω)?

Exercise 10.5.2. In the set up and proof of Theorem 10.26, if we replace the con-

straint
∫

Ω
w2(x) = 1 by the constraint

∫
Ω
|∇w|2(x) = 1, would the same proof for the

existence of a minimizer go through under this constaint? Would the conclusion that

a minimizer exsits hold using this constraint?

Exercise 10.5.3. Prove that sup{(K[f ], f)L2(Ω) : f ∈ L2(Ω), ||f ||L2(Ω) = 1} is at-

tained by some f1, and that f1 is an eigenfunction of K. Recall that, under our

formulation, (K[f ], f)L2(Ω) = Q(K[f ]) ≥ c||K[f ]||2L2(Ω) for some c > 0 depending only

on K and Ω, and it’s then easy to see that sup{(K[f ], f)L2(Ω) : f ∈ L2(Ω), ||f ||L2(Ω) =

1} > 0. Does the conclusion of this exercise still hold in the abstract if one only relies

on (10.32) and (10.31)?

Exercise 10.5.4. Let {f1, · · · , fk, · · · } be a collection of eigenfunctions of K. Prove

that

sup{(K[f ], f)L2(Ω) : f ∈ L2(Ω), ||f ||L2(Ω) = 1, (f, fj)L2(Ω) = 0 for all fj’s}

is attained by some f ∗, and that f ∗ is an eigenfunction of K.

Exercise 10.5.5. Prove that if {uj} converges in Lp(Ω), and has uniformly bounded

Lq(Ω) norms for some q > p, then for any p < r < q, {uj} converges in Lr(Ω).

Exercise 10.5.6. (i). Prove that, if Ω is bounded and 1 < p < ∞, then for any

sequence {uj} in W 1,p
0 (Ω) with bounded W 1,p

0 (Ω) norms, there exist u ∈ W 1,p
0 (Ω)

and a subsequence {ujk} such that ujk → u in Lq(Ω) for any 1 ≤ q ≤ p.
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(ii). Exhibit a sequence {uj} in W 1,1
0 (−1, 1) with W 1,1

0 (−1, 1) norms→ 1 as j →∞,

such that u′j(x)→ 0 for x 6= 0 in (−1, 1), {uj} converges in L1(−1, 1), yet {u′j}
won’t converge weakly in L1(−1, 1).

(iii). Exhibit a sequence {uj} in W 1,p
0 (Rn) with bounded W 1,p

0 (Rn) norms, but with

no convergent subsequence in Lp(Rn).

Exercise 10.5.7. Consider the functional I[u] =
∫

Ω

{
1
2
|∇u(x)|2 − |u(x)|p

p

}
dx on

H1
0 (Ω), where 1 < p < 2, and Ω is a bounded domain in Rn. Prove that inf{I[u] :

u ∈ H1
0 (Ω)} is attained by some v ∈ H1

0 (Ω), and that v satisfies∫
Ω

{
∇v(x) · ∇η(x)− |v(x)|p−2v(x)η(x)

}
dx = 0

for all η ∈ H1
0 (Ω). Here we interpret |v(x)|p−2v(x) to be equal to 0 when v(x) = 0.

10.6 Additional Problems

Problem 10.6.1. Consider the heat equation ut = ∆u in a bounded domain Ω ⊂ Rn,

with initial condition u = u0(x) at t = 0 and boundary condition ∂u
∂ν

= −k(u− U) at

∂Ω, where ν is the outward unit normal and k ≥ 0. Use the energy method to show

that there can be at most one solution. Does a similar assertion hold also for k < 0?

(Try to play with 1-dimensional interval case.)

Problem 10.6.2. Suppose a(x, t) = (aij(x, t)) takes values in the class of symmetric,

positive definite n×n matrices, with the bounds m|ξ|2 ≤
∑n

i,j=1 aij(x, t)ξiξj ≤M |ξ|2

for all ξ ∈ Rn and (x, t) in Ω× [0, T ] and for some 0 < m ≤M , and c(x, t) is bounded.

Consider the PDE

ut(x, t) =
n∑

i,j=1

∂

∂xi

(
aij(x, t)

∂u(x, t)

∂xj

)
+ c(x, t)u(x, t)

in a bounded domain Ω, with initial condition u = u0(x) at t = 0 and a Dirichlet

boundary condition u = g at ∂Ω. Use the energy method to show that there can be

at most one solution.

Problem 10.6.3. This problem illustrates that the energy method can be adapted to

deal with certain variable coefficient wave equations. Prove that if u is a C2 solution

of

utt − c2uxx + α(x, t)ut + β(x, t)ux + γ(x, t)u = 0,
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with u(x, 0) = ut(x, 0) = 0 for |x − x0| ≤ R, and α(x, t), β(x, t), γ(x, t) are assumed

to be in x∞, then u(x, t) = 0 for |x− x0| ≤ R− ct for 0 < t < R/c. (Hint: formulate

and prove a version of the energy estimates.)

Let u(x, t) be a C2 solution of the n-dimensional wave equation utt(x, t)−c2∆u(x, t) =

0 in B(X,R). Prove that for any 0 < t ≤ R/c,∫
|x−X|≤R−ct

[
u2
t (x, t) + c2|∇xu(x, t)|2

]
dx ≤

∫
|x−X|≤R

[
u2
t (x, 0) + c2|∇xu(x, 0)|2

]
dx.

You may take n to be 2 or 3.

Problem 10.6.4. Suppose that u ∈ C1(D) ∩ C2(D) is harmonic in D, where D
is the unit disk in R2 centered at 0. Let g(eiθ) = u(eiθ) and h(eiθ) = ∂u(reiθ)

∂r
|r=1

for eiθ ∈ ∂D. Let gn and hn be the Fourier coefficient of g and h respectively:

gn = (2π)−1
∫
∂D g(eiθ)e−niθdθ, hn = (2π)−1

∫
∂D h(eiθ)e−niθdθ. Prove that hn = ngn.

(Hint: Apply Green’s formula to u(reiθ) and v = rne−niθ on D.)

Suppose that U, V ⊂ C are open domains in C, and φ : U 7→ V is holomorphic. Let

u ∈ C2(V ). Prove that ∆[u(φ(z))] = (∆u)(φ(z))|φ′(z)|2.
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Chapter 11

SOLVABILITY OF IVP TO

PARABOLIC EQUATIONS

In Chapter 1 we used the fundamental solution to the heat equation

K(x, t) =


1

(4πt)n/2
e−
|x|2
4t when (x, t) ∈ Rn × R+

0 when (x, t) ∈ Rn × (−∞, 0]

to generate a solution to the homogeneous heat equation with initial data g ∈ C(Rn)∩
L∞(Rn) {

ut(x, t)−∆u(x, t) = 0 for (x, t) ∈ Rn × R+

u(x, 0) = g(x) for x ∈ Rn
(11.1)

in the form

u(x, t) =

∫
Rn
K(x− y, t)g(y)dy.

The same representation also provides a solution when g ∈ Lp(Rn) for 1 ≤ p ≤ ∞, and

can be used with Duhamel principle to generate a solution to the nonhomogeneous

heat equation:

u(x, t) =

∫ t

0

∫
Rn
K(x− y, t− s)f(y, s)dyds+

∫
Rn
K(x− y, t)g(y)dy. (11.2)

We will provide a justification in section 1 below that, under appropriate regularity

assumption on f — mere continuity of f in Rn × (0, T ] will not be enough, (11.2)

provides a classical C2,1(Rn × (0, T ]) solution (namely u and up to 2-derivatives in

x and 1-derivative in t: uxi , ut, uxixj ∈ C(Rn × (0, T ])—when there is a need to
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distinguish the order of differentiation in x and t, we use the notation C2,1
x,t (Rn×(0, T ]))

to {
ut(x, t)−∆u(x, t) = f(x, t) for (x, t) ∈ Rn × (0, T ]

u(x, 0) = g(x) for x ∈ Rn.
(11.3)

We will also prove, using a device based on Green’s identity concerning solutions

to (11.3) and involving the adjoint operator to the heat equation, that any C2,1(Rn×
(0, T ]) ∩ C(Rn × [0, T ]) solution u(x, t) of (11.3) with some growth control of u and

f at ∞ is represented as in (11.2).

The condition f ∈ C2,1(Rn × (0, T ]) is too strong for getting a C2,1(Rn × (0, T ])

solution to (11.3); we will find in section 2 that a natural condition is to impose some

kind of Hölder continuity condition on f .

In section 2 we also study the IVP for perturbations of the standard heat equation—

perturbations only on the lower order terms at this stage, and learn how to use the

available estimates for the standard heat equation and an iteration procedure to con-

struct solutions to the perturbed equation.

In section 3 we study the estimates of more general second order variable coefficient

heat equations, and the solvability of corresponding IVPs.

11.1 Solvability of IVP (11.3)

We first prove

Theorem 11.1. Let g ∈ L∞(Rn) ∩ C(Rn), and f ∈ C1
x(Rn × [0, T ]) with compact

support in Rn× [0, T ]. Then (11.2) provides a solution to (11.3) in C2,1(Rn×(0, T ])∩
C(Rn × [0, T ]).

Proof. We will rely on a basic fact used in the proof of Theorem in Chapter 1: for

any g ∈ Lp(Rn), for some 1 ≤ p ≤ ∞,∫
Rn
K(x− y, t)g(y)dy.

provides a C2,1(Rn × (0,∞)) solution to (11.1).

Set

F (x, t; s) =

∫
Rn
K(x− y, t− s)f(y, s)dy.

Then

u(x, t) =

∫
Rn
K(x− y, t)g(y)dy +

∫ t

0

F (x, t; s)ds.
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F (x, t; s) is a smooth function of (x, t) in the domain t > s, and

∂xiF (x, t; s) =

∫
Rn
∂xiK(x− y, t− s)f(y, s)dy,

∂xixjF (x, t; s) =

∫
Rn
∂xixjK(x− y, t− s)f(y, s)dy,

∂tF (x, t; s) =

∫
Rn
∂tK(x− y, t− s)f(y, s)dy.

We already know that, under our condition on g,
∫
Rn K(x − y, t)g(y)dy provides a

C2,1(Rn × (0,∞)) solution to (11.1). It remains to prove that the second integral,∫ t
0
F (x, t; s)ds, is a solution to (11.3), and

∫ t
0
F (x̃, t; s)ds→ 0 as (x̃, t)→ (x, 0).

To apply (v) of Lemma A.1 to the second integral,
∫ t

0
F (x, t; s)ds, we need to

establish that, for any (x, t) ∈ Rn × (0, T ], there exist a δ > 0 and an integrable

bound G(s;x, t) over s ∈ [0, t] such that

|∂xiF (x̃, t; s)| ,
∣∣∂xixjF (x̃, t; s)

∣∣ , ∣∣∂tF (x, t̃; s)
∣∣ ≤ G(s;x, t), for |x̃− x| < δ and |t̃− t| < δ.

Note first that

|∂xiF (x̃, t; s)| ≤ ||f ||L∞(Rn×[0,T ])

∫
Rn
|∇xK(x̃− y, t− s)|dy

= ||f ||L∞(Rn×[0,T ])

∫
Rn

|x̃− y|
(4π(t− s))n/22(t− s)

e−
|x̃−y|2
4(t−s) dy

≤
||f ||L∞(Rn×[0,T ])

2(4π)n/2
√
t− s

∫
Rn
|z|e−|z|2/4dz,

(11.4)

which is (Lebesgue) integrable in s ∈ [0, t]. So

∂xi

(∫ t

0

F (x, t; s)ds

)
=

∫ t

0

∂xiF (x, t; s)ds =

∫ t

0

∫
Rn
∂xiK(x− y, t− s)f(y, s)dyds.

Under the sole assumption ||f ||L∞(Rn×[0,T ]) <∞ (even if f ∈ C(Rn× [0, T ])), the best

direct upper bound one can get for |∂2
xixj

F (x, t; s)| is∣∣∣∂2
xixj

F (x, t; s)
∣∣∣

≤||f ||L∞(Rn×[0,T ])

∫
Rn

∣∣∣∂2
xixj

K(x− y, t− s)
∣∣∣ dy

≤C(n)||f ||L∞(Rn×[0,T ])/(t− s),

which is not (Lebesgue) integrable in s ∈ [0, t], so one can not conclude that one can

pass ∂2
xixj

under the integral
∫ t

0
F (x, t; s)ds, under the assumption of f ∈ C(Rn ×

[0, T ]) ∩ L∞(Rn × [0, T ]), by appealing to (v) of Lemma A.1.
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However, under the assumption that f ∈ C1
x(Rn × [0, T ]) with compact support

in Rn × [0, T ]), we see that∣∣∣∂2
xixj

F (x̃, t; s)
∣∣∣

=

∣∣∣∣∫
Rn
∂xixjK(x̃− y, t− s)f(y, s)dy

∣∣∣∣
=

∣∣∣∣−∫
Rn
∂xiyjK(x̃− y, t− s)f(y, s)dy

∣∣∣∣
=

∣∣∣∣∫
Rn
∂xiK(x̃− y, t− s)∂yjf(y, s)dy

∣∣∣∣
≤||∇f ||L∞(Rn×[0,T ])

∫
Rn
|∂xiK(x̃− y, t− s)| dy

≤C(n)||∇f ||L∞(Rn×[0,T ])/
√
t− s,

which is (Lebesgue) integrable in s ∈ [0, t]. So under this assumption on f , we have

∂2
xixj

(∫ t

0

F (x, t; s)ds

)
=

∫ t

0

(
∂2
xixj

F (x, t; s)
)
ds

=

∫ t

0

∫
Rn
∂xixjK(x̃− y, t− s)f(y, s)dyds.

In particular, ∆x

(∫ t
0
F (x, t; s)ds

)
=
∫ t

0

∫
Rn ∆xK(x̃− y, t− s)f(y, s)dyds.

Next, note that

∂tF (x, t; s) =

∫
Rn
∂tK(x− y, t− s)f(y, s)dy

=

∫
Rn

∆xK(x− y, t− s)f(y, s)dy

=

∫
Rn

∆yK(x− y, t− s)f(y, s)dy

= −
∫
Rn
∇yK(x− y, t− s) · ∇yf(y, s)dy.

Thus

|∂tF (x, t; s)| ≤ C(n)||∇f ||L∞(Rn×[0,T ])/
√
t− s.

To determine ∂t

(∫ t
0
F (x, t; s)ds

)
, we first examine, for h > 0

h−1

(∫ t+h

0

F (x, t+ h; s)ds−
∫ t

0

F (x, t; s)ds

)
=h−1

(∫ t

0

[F (x, t+ h; s)− F (x, t; s)] ds+

∫ t+h

t

F (x, t+ h; s)ds

)
=h−1

(∫ t

0

[F (x, t+ h; s)− F (x, t; s)] ds+

∫ t+h

t

[F (x, t+ h; s)− f(x, t)] ds

)
+ f(x, t).
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We can now apply (v) of Lemma A.1 to the first integral to conclude that

lim
h↘0

h−1

(∫ t

0

[F (x, t+ h; s)− F (x, t; s)] ds

)
=

∫ t

0

∂tF (x, t; s)ds

=

∫ t

0

∫
Rn
∂tK(x− y, t− s)f(y, s)dyds.

Next

F (x, t+ h; s)− f(x, t) =

∫
Rn
K(x− y, t+ h− s)f(y, s)dy − f(x, t)

=

∫
Rn
K(x− y, t+ h− s) [f(y, s)− f(x, t)] dy.

Using the continuity of f(y, s) at (x, t), for a given ε > 0, we find δ > 0 such that

|f(y, s) − f(x, t)| < ε when |y − x| < δ, and |s − t| < δ. When 0 < h < δ, and

t ≤ s ≤ t+ h, we have

|F (x, t+ h; s)− f(x, t)|

≤
(∫
|y−x|<δ

+

∫
|y−x|≥δ

)
K(x− y, t+ h− s) |f(y, s)− f(x, t)| dy

≤ε
∫
|y−x|<δ

K(x− y, t+ h− s)dy + 2||f ||L∞(Rn×[0,T ])

∫
|y−x|≥δ

K(x− y, t+ h− s)dy.

Noting that ∣∣∣∣∫
|y−x|<δ

K(x− y, t+ h− s)dy
∣∣∣∣ < 1,

and ∫
|y−x|≥δ

K(x− y, t+ h− s)dy =

∫
|z|≥ δ√

t+h−s

e−
|z|2

4

(4π)
n
2

dz,

since there exists M > 1 such that

2||f ||L∞(Rn×[0,T ])

∣∣∣∣∣
∫
|z|≥M

e−
|z|2

4

(4π)
n
2

dz

∣∣∣∣∣ < ε,

so if we set σ = (δ/M)2, then when 0 < h < min{δ, σ}, and t ≤ s ≤ t + h, we will

have 0 ≤ t+ h− s ≤ h < σ, thus δ√
t+h−s ≥M , we can then conclude that

h−1

∣∣∣∣∫ t+h

t

[F (x, t+ h; s)− f(x, t)] ds

∣∣∣∣ ≤ h−1

∫ t+h

t

2εds ≤ 2ε,

therefore proving

lim
h↘0

h−1

(∫ t+h

0

F (x, t+ h; s)ds−
∫ t

0

F (x, t; s)ds

)
=

∫ t

0

∫
Rn
∂tK(x−y, t−s)f(y, s)dyds+f(x, t).
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The case limh↗0 is handled in a similar way. We have thus proved that

∂t

(∫ t

0

F (x, t; s)ds

)
=

∫ t

0

∫
Rn
∂tK(x− y, t− s)f(y, s)dyds+ f(x, t).

Finally, since

|F (x, t; s)| ≤
∫
Rn
||f ||L∞(Rn×[0,T ])K(x− y, t− s)dy ≤ ||f ||L∞(Rn×[0,T ]),

we conclude that∣∣∣∣∫ t

0

F (x, t; s)ds

∣∣∣∣ ≤ ||f ||L∞(Rn×[0,T ])t→ 0 as t↘ 0,

thus proving that (11.2) takes on the initial value g(x) in the classical sense.

Theorem 11.2. Let u(x, t) be any C2,1(Rn×(0, T ])∩C(Rn×[0, T ]) solution of (11.3)

satisfying, for some constants A,B > 0,

|u(x, t)| ≤ AeB|x|
2

, |∇u(x, t)| ≤ AeB|x|
2

, and |f(x, t)| ≤ AeB|x|
2

for (x, t) ∈ Rn × (0, T ].

(11.5)

Then, for 0 < T < (4B)−1, (11.2) holds; in fact, (11.2) holds without the assumption

on |∇u(x, t)|, or under the weaker integral growth assumption∫∫
Rn×(0,T ]

[|u(x, t)|+ |f(x, t)|] e−B|x|2dxdt <∞. (11.6)

Remark 11.1. Under the assumption (11.5) or (11.6), and the restriction on T , the

integrals in (11.2) are well defined. The function u(x, t) = e
|x|2

4(T−t)

(T−t)
n
2

satisfies (11.3) with

f ≡ 0 for t < T , u(x, 0) = e
|x|2
4T

T
n
2

, but u(x, t)↗∞ as t↗ T . This example illustrates

that the restriction on T is needed; furthermore, that, a solution to (11.3) may exist

for only a finite time interval when the initial data has sufficiently fast growth as

x→∞.

This Theorem will be proved by exploiting the relation

v(y, s) [∂s −∆y]u(y, s) + u(y, s) [∂s + ∆y] v(y, s)

= [u(y, s)v(y, s)]s +∇y [u(y, s)∇yv(y, s)− v(y, s)∇yu(y, s)] .
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∂s + ∆y is called the adjoint operator of ∂s −∆y. If we do integration by parts of

the above over BR × [0, t], we obtain∫∫
BR×[0,t]

v(y, s) [∂s −∆y]u(y, s)dyds+

∫∫
BR×[0,t]

u(y, s) [∂s + ∆y] v(y, s)dyds

=

∫∫
∂BR×[0,t]

[
u(y, s)∇n(y)v(y, s)− v(y, s)∇n(y)u(y, s)

]
dσ(y)ds

+

∫
BR

u(y, t)v(y, t)dy −
∫
BR

u(y, 0)v(y, 0)dy.

(11.7)

(11.7) can be exploited in various ways, mainly by working with pairs u and v

such that some of the terms will either vanish or be controlled. For example, if v

vanishes near the boundary of BR × [0, t], then all the integrands on the right hand

side vanish, giving us∫∫
BR×[0,t]

v(y, s) [∂s −∆y]u(y, s)dyds+

∫∫
BR×[0,t]

u(y, s) [∂s + ∆y] v(y, s)dyds = 0.

This is similar to the Green’s identity for the Laplace operator. We will first illustrate

an application of using such integral relations by proving

Theorem 11.3. Let u(x, t) be a C2,1(BR × (0, T ]) solution to ut(x, t)−∆u(x, t) = 0

for (x, t) ∈ BR × (0, T ], then u ∈ C∞(BR × (0, T ]).

Proof. For any (x, t) ∈ BR × (0, T ], we may assume u ∈ C(BR × [0, T ]) by working

with a slightly smaller R and resetting initial time to some 0 < ε < t. If we choose

v(y, s) such that [∂s + ∆y] v(y, s) = 0 for y ∈ BR and 0 < s < t, we then obtain∫
BR

u(y, t)v(y, t)dy =

∫
BR

u(y, 0)v(y, 0)dy +

∫∫
BR×[0,t]

f(y, s)v(y, s)dyds

−
∫∫

∂BR×[0,t]

[
u(y, s)∇n(y)v(y, s)− v(y, s)∇n(y)u(y, s)

]
dσ(y)ds.

Now if we set vε(y, s) = K(x−y, t+ε−s), where ε > 0 is a (small) positive parameter,

then [∂s + ∆y] vε(y, s) = 0 for y ∈ BR and 0 < s < t, but as ε↘ 0,∫
BR

u(y, t)vε(y, t)dy → u(x, t)

∫
BR

u(y, 0)vε(y, 0)dy →
∫
BR

u(y, 0)K(x− y, t)dy,

and ∫∫
BR×[0,t]

f(y, s)v(y, s)dyds→
∫∫

BR×[0,t]

f(y, s)K(x− y, t− s)dyds. (11.8)

427



CHAPTER 11. SOLVABILITY OF IVP TO PARABOLIC EQUATIONS

In the last integral above, a somewhat technical argument is needed to justify the

limiting process due to the singularity of K(x− y, t− s) at (y, s) = (x, t)—see below;

or we may assume f ≡ 0 in the context of this Theorem here. So we obtain

u(x, t) =

∫
BR

u(y, 0)K(x− y, t)dy +

∫∫
BR×[0,t]

f(y, s)K(x− y, t− s)dyds

−
∫∫

∂BR×[0,t]

[
u(y, s)∇n(y)K(x− y, t− s)−K(x− y, t− s)∇n(y)u(y, s)

]
dσ(y)ds.

(11.9)

This representation formula is similar to the Poisson representation formula obtained

through the Green’s Theorem for the Laplace operator. Note thatK(x−y, t−s) in C∞

when (x, t) ∈ BR× (0, T ] and (y, s) ∈ ∂BR× [0, t] or BR×{0}; and the only singular

point in the integrals above is at y = x and s = t in
∫∫

BR×[0,t]
f(y, s)K(x−y, t−s)dyds.

If f ≡ 0, then this integral is absent and we can appeal to Lemma A.1 through the

above integral representation to conclude that u(x, t) is C∞ in (x, t) ∈ BR × (0, T ].

Here is a justification for (11.8), under the assumption that f ∈ L∞(BR × [0, t]).

Setting FR(x, t; s) =
∫
BR
f(y, s)K(x− y, t− s)dy, we know that, for any x and t > s,

FR(x, t+ ε; s)→ FR(x, t; s) as ε↘ 0, and

|FR(x, t+ ε; s)| ≤
∫
BR

|f(y, s)|K(x− y, t+ ε− s)dy ≤ ||f ||L∞(BR×[0,t]),

for any 0 ≤ s ≤ t and ε > 0, thus we can apply (v) of Lemma A.1 to conclude that∫∫
BR×[0,t]

f(y, s)K(x− y, t+ ε− s)dyds =

∫ t

0

FR(x, t+ ε; s)ds

→
∫ t

0

FR(x, t; s)ds =

∫∫
BR×[0,t]

f(y, s)K(x− y, t− s)dyds

as ε↘ 0.

Next, let u be a solution to (11.3), and we proceed to derive (11.2) under appro-

priate growth assumptions on u.

Proof of Theorem 4.2. Let’s first handle the simpler case under (11.5). For the given

x pick R > 0 such that |x| < R/2. We will apply (11.9) on increasingly large R and

prove that the boundary integrals converge to 0, and the integral over BR × (0, t]

converges to the integral over Rn × (0, t].
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More specifically we will let R→∞ and appeal to Lemma A.1 to prove∫
BcR

|u(y, 0)|K(x− y, t)dy → 0,∫∫
BcR×[0,t]

K(x− y, t− s)|f(y, s)|dyds→ 0,∫∫
∂BR×[0,t]

[
u(y, s)∇n(y)K(x− y, t− s)−K(x− y, t− s)∇n(y)u(y, s)

]
dσ(y)ds→ 0,

(11.10)

and as a result, ∫
BR

u(y, 0)K(x− y, t)dy →
∫
Rn
u(y, 0)K(x− y, t)dy∫∫

BR×[0,t]

K(x− y, t− s)f(y, s)dyds→
∫∫

Rn×[0,t]

K(x− y, t− s)f(y, s)dyds,

thus establishing (11.2).

Under our assumptions, there exists θ > 0 such that B < 1−θ
4t

. Then we also have

B < 1−θ
4(t−s) for all 0 ≤ s ≤ t. Thus, under either (11.5) or (11.6), we see that (11.10)

hold; for example,

K(x− y, t− s)|f(y, s)| ≤
∣∣∣f(y, s)e−B|y|

2
∣∣∣ e (1−θ)|y|2−|x−y|2

4(t−s)

(4π(t− s))n2

≤
∣∣∣f(y, s)e−B|y|

2
∣∣∣ e−θ|y|2+2x·y−|x|2

4(t−s)

(4π(t− s))n2
,

which is integrable over Rn × [0, t], thus the second limit in (11.10) holds; and

as to the last limit in (11.10), under (11.5), there exists some C > 0 such that

|u(x, t)|, |∇u(x, t)| ≤ CeB|x|
2
. We then use

|∇yK(x− y, t− s)| ≤ |x− y|
2(t− s)

K(x− y, t− s)

and

B|y|2 = B
[
|y − x|2 + 2(y − x) · x+ |x|2

]
≤ B(1 + θ)|y − x|2 +B(θ−1 + 1)|x|2

≤ (1− θ2)|y − x|2

4(t− s)
+B(θ−1 + 1)|x|2

to estimate ∣∣u(y, s)∇n(y)K(x− y, t− s)−K(x− y, t− s)∇n(y)u(y, s)
∣∣

≤C
(

1 +
|x− y|
2(t− s)

)
eB|y|

2

K(x− y, t− s)

≤C
(

1 +
|x− y|
2(t− s)

)
e−

θ2|y−x|2
4(t−s) +B(θ−1+1)|x|2

(4π(t− s))n2
.
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When |x| < R/2, and |y| = R, we have R/2 ≤ |x − y| ≤ 2R, so we have, for some

constant C ′ > 0, that∣∣∣∣∫∫
∂BR×[0,t]

[
u(y, s)∇n(y)K(x− y, t− s)−K(x− y, t− s)∇n(y)u(y, s)

]
dσ(y)ds

∣∣∣∣
≤C ′eB(θ−1+1)|x|2

∫ t

0

Rn−1(1 +
R

t− s
)
e−

θ2R2

16(t−s)

(t− s)n2
ds.

Making the change of variable τ = R2

t−s , we find dτ = R2

(t−s)2ds, and

∫ t

0

Rn−1

(
1 +

R

t− s

)
e−

θ2R2

16(t−s)

(t− s)n2
ds

=

∫ ∞
R2

t

(R + τ)τ
n
2
−2e−

θ2τ
16 dτ,

which → 0 as R→∞. Thus by sending R→∞, we obtain (11.2) in this case.

The above argument made a point wise growth assumption on∇u. If we would like

to avoid such kind of assumptions, we need to treat the boundary integral
∫∫

∂BR×[0,t]

differently: if we choose vε(y, s) = η(y)K(x − y, t + ε − s), where η(y) is a smooth

cut-off function, equal to 1 on BR/2 and supported in BR, ε > 0 is a small parameter.

Then the integral term
∫∫

∂BR×[0,t]
vanishes∗, but

[∂s + ∆y] vε(y, s) = (∆yη(y))K(x− y, t+ ε− s) + 2∇yη(y) · ∇yK(x− y, t+ ε− s),

so (11.7) would give us∫
BR

u(y, t)vε(y, t)dy

=

∫
BR

u(y, 0)K(x− y, t+ ε)η(y)dy +

∫∫
BR×[0,t]

η(y)K(x− y, t+ ε− s)f(y, s)dyds

−
∫∫

BR×[0,t]

u(y, s) [(∆yη(y))K(x− y, t+ ε− s) + 2∇yη(y) · ∇yK(x− y, t+ ε− s)] dyds.

We would like to take ε ↘ 0 and R → ∞ in the above relation to obtain a relation

that does not involve ε or R. We first send ε ↘ 0, as done in the earlier part of the

proof, to obtain

u(x, t) =

∫
BR

u(y, 0)K(x− y, t)η(y)dy +

∫∫
BR×[0,t]

η(y)K(x− y, t− s)f(y, s)dyds

−
∫∫

BR×[0,t]

u(y, s) [(∆yη(y))K(x− y, t− s) + 2∇yη(y) · ∇yK(x− y, t− s)] dyds.

∗the argument below is on the technical side, and may be omitted on a first reading.
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As done earlier, we have∫
BR

u(y, 0)K(x− y, t)η(y)dy →
∫
Rn
u(y, 0)K(x− y, t)dy.

So it remains to prove∫∫
BR×[0,t]

η(y)K(x− y, t− s)f(y, s)dyds→
∫∫

Rn×[0,t]

K(x− y, t− s)f(y, s)dyds,

(11.11)∫∫
BR×[0,t]

u(y, s) [(∆yη(y))K(x− y, t− s) + 2∇yη(y) · ∇yK(x− y, t− s)] dyds→ 0.

(11.12)

The factor (∆yη(y))K(x− y, t− s) + 2∇yη(y) · ∇yK(x− y, t− s) in the last integral

vanishes for y ∈ BR/2, as ∆yη(y) = 0 and ∇yη(y) = 0 for y ∈ BR/2, so the integral is

carried out in
(
BR \BR/2

)
× [0, t]. Using the bounds

|∆yη(y)| ≤ C

R2
, |∇yη(y)| ≤ C

R
,

for some constant C > 0 independent of R > 0, and estimate for eB|y|
2

as done earlier,

we have a bound for

|u(y, s) [(∆yη(y))K(x− y, t− s) + 2∇yη(y) · ∇yK(x− y, t− s)]|

≤C
∣∣∣u(y, s)e−B|y|

2
∣∣∣ ( 1

R2
+
|x− y|
R(t− s)

)
eB|y|

2− |x−y|
2

4(t−s)

(4π(t− s)n2

≤C ′
∣∣∣u(y, s)e−B|y|

2
∣∣∣ ( 1

R2
+
|x− y|
R(t− s)

)
e−

θ2|x−y|2
4(t−s) +B(θ−1+1)|x|2

(t− s)n2

≤C ′
∣∣∣u(y, s)e−B|y|

2
∣∣∣ ( 1

R2
+

1

t− s

)
e−

θ2R2

16(t−s) +B(θ−1+1)|x|2

(t− s)n2
,

when |x| < R/2 ≤ |y| ≤ R, and 0 ≤ s < t. We will take R2 > t, so

(
1

R2
+

1

t− s

)
e−

θ2R2

16(t−s) +B(θ−1+1)|x|2

(t− s)n2
≤ 2eB(θ−1+1)|x|2e−

θ2R2

16(t−s)

(t− s)n2 +1
.

But elementary one variable calculus shows that

e−
θ2R2

16(t−s)

(t− s)n2 +1
≤ C(n)

Rn+2
,
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which → 0 as R→∞. In addition, we also have∫∫
{R/2≤|y|≤R}×[0,t]

∣∣∣u(y, s)e−B|y|
2
∣∣∣ dyds→ 0

as R→∞, under the assumption (11.6). This concludes the proof for (11.12). (11.11)

is proved in a similar fashion.

11.2 Hölder estimates and improved solvability of

IVP (11.3)

As we saw in last section, some smoothness of f is imposed to justify differentiation

under the integral sign, as ∂2
xK(x, t), ∂tK(x, t) are not (Lebesgue) integrable in Rn×

(0, T ], so one can not simply carry out ∂2
x or ∂t under the integral sign in (11.2)

assuming only f ∈ L∞(Rn × (0, T ]) or C(Rn × (0, T ]).

It is desirable to weaken the smoothness assumption on f to still have u as given

by (11.2) in C2,1(Rn × (0, T ]). We will study this issue now and also carry out a

brief discussion on how to study the solvability of IVP to perturbations of the heat

equation. For instance, we would like to solve
ut(x, t)−∆u(x, t) +

n∑
i=1

bi(x, t)uxi(x, t) + c(x, t)u(x, t) = f(x, t) for (x, t) ∈ Rn × R+

u(x, 0) = g(x) for x ∈ Rn,

(11.13)

where bi(x, t), c(x, t), f(x, t) are given functions on Rn × [0, T ] with reasonable reg-

ularity and growth condition, and g(x) is a given function on Rn with reasonable

regularity and growth condition.

One natural approach is to establish the existence of a solution to (11.13) by

iteration, treating the lower order terms
∑n

i=1 bi(x, t)uxi(x, t) + c(x, t)u(x, t) as part

of the source term on the right hand side, namely, we define a map

S[u](x, t) =

∫ t

0

∫
Rn
K(x− y, t− s)

[
f(y, s)−

n∑
i=1

bi(y, s)uxi(y, s)− c(y, s)u(y, s)

]
dyds

+

∫
Rn
K(x− y, t)g(y)dy,

(11.14)

and hope to establish the existence of a fixed point of the map S in an appropriate

function space.
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The following Theorem helps to provide a natural function space on which to

study S.

Theorem 11.4. Suppose that f ∈ L∞(Rn × [0, T ]). Then

v(x, t) =

∫ t

0

∫
Rn
K(x− y, t− s)f(y, s)dyds ∈ C(Rn × [0, T ]).

Furthermore, ∇xv ∈ C(Rn × [0, T ]), and, for any 0 < δ < 1, there exists C =

C(n, δ) > 0 such that

|v|0;Rn×[0,T ] +
√
T |∇xv|0;Rn×[0,T ] +

√
T

1+δ
[∇xv]δ;Rn×[0,T ] ≤ CT ||f ||L∞(Rn×[0,T ]), (11.15)

where

|v|0;Rn×[0,T ] := sup{|v(x, t)| : (x, t) ∈ Rn × [0, T ]},

and

[∇xv]δ;Rn×[0,T ] := sup{|∇xv(x1, t)−∇xv(x2, t)|
|x1 − x2|δ

: x1, x2 ∈ Rn, x1 6= x2, 0 ≤ t ≤ T}

+ sup{|∇xv(x, t1)−∇xv(x, t2)|
|t1 − t2|δ/2

: x ∈ Rn, 0 ≤ t1, t2 ≤ T, t1 6= t2}.

Let

C
δ,δ/2
x,t (Rn × [0, T ]) =Cδ,δ/2(Rn × [0, T ])

={u ∈ C(Rn × [0, T ]) : |v|0;Rn×[0,T ] + [u]δ;Rn×[0,T ] <∞}.

(Some authors would write [u]δ,δ/2;Rn×[0,T ] for [u]δ;Rn×[0,T ].) If we make the following

assumptions on f(x, t), bi(x, t), c(x, t) and g(x):

f(x, t), bi(x, t), c(x, t) ∈ L∞(Rn × [0, T ]), g ∈ C1(Rn) with g, ∂xg ∈ L∞(Rn)

(11.16)

then, using only the estimate for the first two terms on the left hand side of (11.15)

in Theorem 11.4, (11.14) gives a well defined map S : X 7→ X, where

X = {u(x, t) : u, ∂xu(x, t) ∈ C(Rn × [0, T ]) ∩ L∞(Rn × [0, T ])}

equipped with ||u||X := |u|0;Rn×[0,T ] +
√
T |∂xu|0;Rn×[0,T ]. Furthermore, using (11.15),

we have

||S[u1]− S[u2]||X ≤ C
√
T

(
sup
i
||bi||L∞(Rn×[0,T ]) +

√
T ||c||L∞(Rn×[0,T ])

)
||u1 − u2||X .

So, for T > 0 sufficiently small, S : X 7→ X is a contraction and therefore has a

unique fixed point.
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Remark 11.2. The form of the estimate (11.15) is dictated by scaling.

This method also works to prove short-time existence of generalized solutions in

function spaces such as X when the lower order terms are nonlinear in ∇u and u.

A solution to (11.13) is a fixed point u of S; but a fixed point u of S can only be

regarded as a generalized solution of (11.13) at this point, as we don’t know whether

it is C2,1
x,t ; although Theorem 11.4 actually shows that the fixed point u ∈ X has

additional differentiability in x, namely, ∂xu ∈ Cδ,δ/2(Rn × [τ, T ]) for any 0 < δ < 1

and any 0 < τ < T . If we make the following further assumptions on f(x, t), bi(x, t)

and c(x, t):

[f, bi, c]δ;Rn×[0,T ] <∞, (11.17)

for some 0 < δ < 1, then with the next Theorem, we can conclude that the fixed point

u ∈ X actually has the better regularity that ut(x, t), ∂
2
xixj

u(x, t) exist in Rn × (0, T ]

and continuous there, therefore solves (11.13) in the classical sense.

Theorem 11.5. Assume that |f |0;Rn×[0,T ] + [f ]δ;Rn×[0,T ] < ∞ for some 0 < δ < 1,

then v(x, t) as defined in Theorem 11.4 has the property that vt(x, t), ∂
2
xixj

v(x, t) exist

in Rn × [0, T ] and continuous there; furthermore, there exists C = C(n, δ) > 0,

[vt, ∂
2
xixj

v]δ;Rn×[0,T ] ≤ C[f ]δ;Rn×[0,T ]. (11.18)

We summarize the solvability for (11.13) as

Theorem 11.6. Suppose (11.16), then S as defined by (11.14) has a unique fixed

point u ∈ X, which serves as a generalized solution to (11.13). If we further assume

(11.17), then (11.13) has a unique solution in C(Rn× [0, T ])∩C2+δ,1+δ/2(Rn× (0, T ]).

Here and from now on, to simplify notations, when Q is a closed set, C(Q) will

denote the space of continuous functions on Q with finite C(Q) norm; Cα(Q), etc,

will be used in a similar way.

Proof of Theorem 11.6. We only need to clarify two issues: (a) to remove the small-

ness assumption on T in the earlier argument, and (b) to make sure that we can apply

Theorem 11.5.

For (a), the smallness of T > 0 needed to make S : X 7→ X a contraction depends

only on the size of the L∞ norms of the coefficients, so after establishing the existence

of a fixed point u = S[u] on 0 ≤ t ≤ T for some T > 0, one can use the value of

u(x, T ) as an initial value to construct a fixed point u = S[u] on T ≤ t ≤ 2T ; and one
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can carry out this procedure iteratively to obtain a solution on any given interval.

Technically one can use the property∫
Rn
K(x− y, t− τ)K(y − z, τ − s)dy = K(x− z, t− s) for t > τ > s,

to rewrite∫ τ

0

∫
Rn
K(x− y, t− s)

[
f(y, s)−

n∑
i=1

bi(y, s)uxi(y, s)− c(y, s)u(y, s)

]
dyds

=

∫ τ

0

∫
Rn

∫
Rn
K(x− z, t− τ)K(z − y, τ − s)

[
f(y, s)−

n∑
i=1

bi(y, s)uxi(y, s)− c(y, s)u(y, s)

]
dzdyds,

which, after integrating out dyds first, gives us∫
Rn
K(x−z, t−τ)

(∫ τ

0

∫
Rn
K(z − y, τ − s)

[
f(y, s)−

n∑
i=1

bi(y, s)uxi(y, s)− c(y, s)u(y, s)

]
dyds

)
dz.

Likewise ∫
Rn
K(x− y, t)g(y)dy

=

∫
Rn

(∫
Rn
K(x− z, t− τ)K(z − y, τ)dz

)
g(y)dy

=

∫
Rn
K(x− z, t− τ)

(∫
Rn
K(z − y, τ)g(y)dy

)
dz.

Putting these together, we see that∫ τ

0

∫
Rn
K(x− y, t− s)

[
f(y, s)−

n∑
i=1

bi(y, s)uxi(y, s)− c(y, s)u(y, s)

]
dyds

+

∫
Rn
K(x− y, t)g(y)dy

=

∫
Rn
K(x− z, t− τ)S[u](z, τ)dz

using the definition of S[u](z, τ). Then one can rewrite S[u](x, t), for t > τ , as{∫ τ

0

+

∫ t

τ

}∫
Rn
K(x− y, t− s)

[
f(y, s)−

n∑
i=1

bi(y, s)uxi(y, s)− c(y, s)u(y, s)

]
dyds

+

∫
Rn
K(x− y, t)g(y)dy

=

∫ t

τ

∫
Rn
K(x− y, t− s)

[
f(y, s)−

n∑
i=1

bi(y, s)uxi(y, s)− c(y, s)u(y, s)

]
dyds

+

∫
Rn
K(x− y, t− τ)S[u](y, τ)dy,
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which gives the iteration formula to be used to extend the solution from [0, T ] to

[T, 2T ].

For (b), we use a similar technique. Under assumption (11.16) and (11.17), for

u ∈ X, Theorem 11.5 proves that the fixed point u = S[u] has the property that

u, ∂xu ∈ Cδ,δ/2(Rn × (0, T ]), and provides an upper bound for the [·]δ;Rn×[0,T ] norm of

the first integral in (11.14) and its derivative in x, but provides no upper bound in

the same norm over Rn × [0, T ] for the second integral
∫
Rn K(x− y, t)g(y)dy without

assuming g ∈ C1+δ(Rn), although it is C∞ in Rn×(0, T ], so one cannot apply Theorem

11.5 directly. For any 0 < τ < t, one simply rewrites S[u](x, t) as above, and applies

Theorem 11.5 to the first integral
∫ t
τ

∫
Rn . . . dyds, while the remaining two integrals

are C∞ in Rn × (τ, T ]. Finally, We can now differentiate under the integral sign to

verify that the fixed point u satisfies (11.13).

Proof of Theorems 11.4 11.5. We will use the observation that

∂lx∂
m
t K(x, t) =

1

t
l
2

+m
pl+2m(

x√
t
)K(x, t),

where pl+2m is a polynomial of degree l + 2m, and the consequence∫
Rn

∣∣∂lx∂mt K(x, t)
∣∣ dx =

Cl,m;n

t
l
2

+m
.

First, v ∈ C(Rn × [0, T ]) by Lebesgue’s Dominated Convergence Theorem, and

|v|0;Rn×[0,T ] ≤ ||f ||L∞(Rn×[0,T ])

∫ T

0

∫
Rn
K(x− y, t− s)dyds = T ||f ||L∞(Rn×[0,T ]).

Next set

F (x, t; s) =

∫
Rn
K(x− y, t− s)f(y, s)dy.

Then

v(x, t) =

∫ t

0

F (x, t; s)ds,

F (x, t; s) is a smooth function of (x, t) in the domain t > s, and

∂xiF (x, t; s) =

∫
Rn
∂xiK(x− y, t− s)f(y, s)dy,

from which we obtain

|∂xiF (x, t; s)| ≤ ||f ||L∞(Rn×[0,T ])

∫
Rn
|∇xK(x− y, t− s)|dy

= ||f ||L∞(Rn×[0,T ])

∫
Rn

|x− y|
(4π(t− s))n/22(t− s)

e−
|x−y|2
4(t−s) dy

≤
C1,0;n||f ||L∞(Rn×[0,T ])√

t− s
,

(11.19)
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which is Lebesgue integrable in s ∈ [0, t]. So

∂xiv(x, t) =

∫ t

0

∂xiF (x, t; s)ds =

∫ t

0

∫
Rn
∂xiK(x− y, t− s)f(y, s)dyds,

from which one obtains

|∇xv|0;Rn×[0,T ]

≤C1,0;n||f ||L∞(Rn×[0,T ])

∫ t

0

ds√
t− s

≤C(n)
√
T ||f ||L∞(Rn×[0,T ]).

We will prove the following slightly stronger estimates than (11.15).

|∂xiv(x1, t)− ∂xiv(x2, t)| ≤ C(n)||f ||L∞(Rn×[0,T ])|x1 − x2|
(

log+

t

|x1 − x2|2
+ 1

)
,

(11.20)

and for any 0 < t1 < t2,

|∂xiv(x, t2)− ∂xiv(x, t1)| ≤ C(n)||f ||L∞(Rn×[0,T ])

√
t2 − t1. (11.21)

In the last section we already discussed the reason why one does not have

∂2
xixj

v(x, t) =

∫ t

0

∫
Rn
∂2
xixj

K(x− y, t− s)f(y, s)dyds

under the sole assumption ||f ||L∞(Rn×[0,T ]) <∞ (even if f ∈ C(Rn× [0, T ])). However,

with the assumption that [f ]δ;Rn×[0,T ]) <∞ and the property∫
Rn
∂2
xixj

K(x− y, t− s)dy = 0 for all t > s,

we have ∣∣∣∂2
xixj

F (x, t; s)
∣∣∣

≤
∣∣∣∣∫

Rn
∂2
xixj

K(x− y, t− s) [f(y, s)− f(x, s)] dy

∣∣∣∣
≤C(n)[f ]δ

∫
Rn
|x− y|δ

(
1

(t− s)n/2+1
+
|x− y|2

(t− s)n/2+2

)
e−
|x−y|2
4(t−s) dy

=
C(n)[f ]δ

(t− s)1−δ/2

∫
Rn
|z|δ

(
1 + |z|2

)
e−|z|

2/4dz

=
C
′
(n)[f ]δ

(t− s)1−δ/2 ,
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which is Lebesgue integrable in s ∈ [0, t]. Thus we have

∂2
xixj

v(x, t)

=

∫ t

0

∫
Rn
∂2
xixj

K(x− y, t− s) [f(y, s)− f(x, s)] dyds,

and ∣∣∣∂2
xixj

v(x, t)
∣∣∣

≤C ′(n)[f ]δ

∫ t

0

ds

(t− s)1−δ/2

=2δ−1C
′
(n)[f ]δt

δ/2.

Next, to prove (11.20), we estimate

|∂xiF (x1, t; s)− ∂xiF (x2, t; s)|

=

∣∣∣∣∫
Rn

[∂xiK(x1 − y, t− s)− ∂xiK(x2 − y, t− s)] f(y, s)dy

∣∣∣∣
=

∣∣∣∣∫
Rn

∫ 1

0

∂

∂θ
[∂xiK(θx1 + (1− θ)x2 − y, t− s)] f(y, s)dθdy

∣∣∣∣
=

∣∣∣∣∣
n∑
j=1

∫
Rn

∫ 1

0

(x1 − x2)j
∂2

∂xi∂xj
K(θx1 + (1− θ)x2 − y, t− s)f(y, s)dθdy

∣∣∣∣∣
≤|x1 − x2|

∫ 1

0

∫
Rn

∣∣∣∣ ∂2

∂xi∂xj
K(θx1 + (1− θ)x2 − y, t− s)

∣∣∣∣ |f(y, s)|dydθ

≤
C(n)||f ||L∞(Rn×[0,T ])|x1 − x2|

t− s
.

(11.22)

We will estimate

|∂xiv(x1, t)− ∂xiv(x2, t)| = |
∫ t

0

[∂xiF (x1, t; s)− ∂xiF (x2, t; s)] ds|

depending on the relation between |x1 − x2|2 and t. If t ≤ |x1 − x2|2, then

|∂xiv(x1, t)− ∂xiv(x2, t)|

≤
∫ t

0

[|∂xiF (x1, t; s)|+ |∂xiF (x2, t; s)|] ds

≤
∫ t

0

C(n)||f ||L∞(Rn×[0,T ])√
t− s

ds

≤2C(n)||f ||L∞(Rn×[0,T ])

√
t

≤2C(n)||f ||L∞(Rn×[0,T ])|x1 − x2|,
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using (11.19); while if t > |x1 − x2|2, then

|∂xiv(x1, t)− ∂xiv(x2, t)|

≤

(∫ t−|x1−x2|2

0

+

∫ t

t−|x1−x2|2

)
|∂xiF (x1, t; s)− ∂xiF (x2, t; s)| ds,

and use (11.22) to estimate the first integral∫ t−|x1−x2|2

0

|∂xiF (x1, t; s)− ∂xiF (x2, t; s)| ds

≤
∫ t−|x1−x2|2

0

C(n)||f ||L∞(Rn×[0,T ])|x1 − x2|
t− s

ds

≤C(n)||f ||L∞(Rn×[0,T ])|x1 − x2| log
t

|x1 − x2|2
,

and use (11.19) to estimate the second integral∫ t

t−|x1−x2|2
|∂xiF (x1, t; s)− ∂xiF (x2, t; s)| ds

≤
∫ t

t−|x1−x2|2

C(n)||f ||L∞(Rn×[0,T ])√
t− s

ds

≤2C(n)||f ||L∞(Rn×[0,T ])|x1 − x2|.

The above estimates concludes (11.20). We can estimate |∂xiv(x, t2) − ∂xiv(x, t1)|
according to the relation t2 − t1 < t1 or otherwise. Set 0 ≤ t0 < t1. Then

|∂xiv(x, t2)− ∂xiv(x, t1)|

=

∣∣∣∣∫ t0

0

(∂xiF (x, t2; s)− ∂xiF (x, t1; s)) ds+

∫ t2

t0

∂xiF (x, t2; s)ds−
∫ t1

t0

∂xiF (x, t1; s)ds

∣∣∣∣
≤
∫ t0

0

|∂xiF (x, t2; s)− ∂xiF (x, t1; s)| ds+

∫ t2

t0

|∂xiF (x, t2; s)| ds+

∫ t1

t0

|∂xiF (x, t1; s)| ds

The first integral can be estimated as∫ t0

0

|∂xiF (x, t2; s)− ∂xiF (x, t1; s)| ds

≤
∫ t2

t1

∫ t0

0

|∂t∂xiF (x, τ ; s)| dsdτ

≤C(n)

∫ t2

t1

∫ t0

0

||f ||L∞(Rn×[0,T ])

(τ − s)3/2
dsdτ

≤C(n)||f ||L∞(Rn×[0,T ])

(√
t2 − t0 −

√
t1 − t0

)
,

(11.23)
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the second integral can be estimated as∫ t2

t0

|∂xiF (x, t2; s)| ds

≤C(n)||f ||L∞(Rn×[0,T ])

∫ t2

t0

ds

(t2 − s)1/2

≤2C(n)||f ||L∞(Rn×[0,T ])

√
t2 − t0,

(11.24)

and the third integral can be estimated as∫ t1

t0

|∂xiF (x, t1; s)| ds

≤C(n)||f ||L∞(Rn×[0,T ])

∫ t1

t0

ds

(t1 − s)1/2

≤2C(n)||f ||L∞(Rn×[0,T ])

√
t1 − t0.

(11.25)

If t2− t1 < t1, we can set t0 = t1− (t2− t1), so t1− t0 = t2− t1 and t2− t0 = 2(t2− t1),

then (11.23)(11.24)(11.25) imply that

|∂xiv(x, t2)− ∂xiv(x, t1)| ≤ C ′(n)||f ||L∞(Rn×[0,T ])

√
t2 − t1;

while if t2 − t1 ≥ t1, then we can set t0 = 0, and using t2 ≤ 2(t2 − t1) in this case, we

can still get

|∂xiv(x, t2)− ∂xiv(x, t1)|
≤C ′(n)||f ||L∞(Rn×[0,T ])

√
t2

≤C ′′(n)||f ||L∞(Rn×[0,T ])

√
t2 − t1.

(11.15) follws from (11.20) and (11.21) as follows. If |x1 − x2| ≤
√
t, then (11.20)

implies that

|∂xiv(x1, t)− ∂xiv(x2, t)|
|x1 − x2|δ

≤C(n)||f ||L∞(Rn×[0,T ])|x1 − x2|1−δ
(

log+

t

|x1 − x2|2
+ 1

)
≤C ′(n, δ)t

1−δ
2 ;

while if |x1 − x2| >
√
t, then

|∂xiv(x1, t)− ∂xiv(x2, t)|
|x1 − x2|δ

≤|∂xiv(x1, t)− ∂xiv(x2, t)|
tδ/2

≤
C(n)||f ||L∞(Rn×[0,T ])t

1/2

tδ/2

=C(n)||f ||L∞(Rn×[0,T ])t
1−δ

2 .
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Similarly, we have

|∂xiv(x, t2)− ∂xiv(x, t1)|
|t2 − t1|δ/2

≤C ′′ ||f ||L∞(Rn×[0,T ])|t2 − t1|
1−δ

2

≤C ′′ ||f ||L∞(Rn×[0,T ])T
1−δ

2 ,

from which we conclude that

[∂xv]δ;Rn×[0,T ] ≤ C(n)||f ||L∞(Rn×[0,T ])T
1−δ

2 .

Finally, (11.18) is proved using similar techniques. We will just pick one term to

illustrate the method. First, we can establish in a similar way that

vt(x, t) =

∫ t

0

∫
Rn
Kt(x−y, t−s) [f(y, s)− f(x, s)]+f(x, t) =

∫ t

0

Ft(x, t; s)ds+f(x, t).

For x1, x2 ∈ Rn, we estimate∣∣∣∣∫ t

0

Ft(x1, t; s)ds−
∫ t

0

Ft(x2, t; s)ds

∣∣∣∣
≤
∫ t−|x1−x2|2

0

|Ft(x1, t; s)− Ft(x2, t; s)| ds+

∫ t

t−|x1−x2|2
(|Ft(x1, t; s)− Ft(x2, t; s)|) ds.

The second integral is bounded above by

C(n)[f ]δ

∫ t

t−|x1−x2|2
(t− s)−1+δ/2ds ≤ δ−1C(n)[f ]δ|x1 − x2|δ.

We will estimate the first integral using

|∂t∂xF (x, t; s)| ≤ C(n)[f ]δ(t− s)−
3
2

+ δ
2 .

So using |Ft(x1, t; s)− Ft(x2, t; s)| = |x1 − x2| |∂t∂xF (ξ, t; s)| for some ξ between x1

and x2, and the bound above, the first integral is bounded above by

C(n)[f ]δ|x1 − x2|
∫ t−|x1−x2|2

0

(t− s)−
3
2

+ δ
2ds ≤ C(n)[f ]δ

1− δ
|x1 − x2|δ.

Remark 11.3. Note that in order for v(x, t) as given in Theorem 11.4 to be in

C2,1(Rn × [0, T ]), it suffices to assume |f(x1, t) − f(x2, t)| ≤ M |x1 − x2|δ for some

0 < M < ∞ and 0 < δ ≤ 1. The δ < 1 assumption enters in proving the Hölder

continuity of the integral
∫ t

0
∂2
xF (x, t; s)ds in ∂2

xv(x, t) (respectively,
∫ t

0
∂tF (x, t; s)ds

in vt(x, t)), and the Hölder continuity of f in t is used only in proving the Hölder

continuity of vt in t through

∂tv(x, t) =

∫ t

0

∂tF (x, t; s)ds+ f(x, t).
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11.3 Local Hölder estimates and solvability of IVPs

of more general second order parabolic equa-

tions∗

We next localize the Hölder estimates in Theorems 11.4 and 11.5 to prepare for a priori

Schauder estimates for solutions to second order parabolic equations with variable,

Hölder continuous coefficients, which we will use to solve initial value problems for

such equations and prove Hölder regularity of ut and uxixj for C2,1 solutions of such

equations.

Let QR = {(x, t) : |x| < R,−R2 < t ≤ 0}.

Theorem 11.7. Suppose that u ∈ C2,1(Q2R) is a solution to ut − ∆u = f(x, t) in

Q2R, and that f ∈ Cδ,δ/2(Q2R) for some 0 < δ < 1. Then u ∈ C2+δ,1+δ/2(QR), and

there exists C = C(n, δ) > 0 such that

|u|′2+δ,1+δ/2;QR

:=|u|0;QR +R|∂xu|0;QR +R2
(
|∂2
xu|0;QR + |ut|0;QR

)
+R2+δ

(
[ut]δ,δ/2;QR + [∂2

xu]δ,δ/2;QR

)
≤C

{
|u|0;Q2R

+R2|f |′δ,δ/2;Q2R

}
(11.26)

where |f |′δ,δ/2;Q2R
= |f |0;Q2R

+ (2R)δ[f ]δ,δ/2;Q2R
.

The following is the interior a priori Schauder estimate for solutions to second

order parabolic equations with variable, Hölder continuous coefficients.

Theorem 11.8. Suppose that aij(x, t), bi(x, t), c(x, t) ∈ Cδ,δ/2(Q2R) for some 0 < δ <

1, and that for some 0 < λ ≤ Λ,

|aij|0;Q2R
+Rδ[aij]δ,δ/2;Q2R

+R|bi|0;Q2R
+R1+δ[bi]δ,δ/2;Q2R

+R2|c|0;Q2R
+R2+δ[c]δ,δ/2;Q2R

≤ Λ,

(11.27)

and

λ|ξ|2 ≤
n∑

i,j=1

aij(x, t)ξiξj ∀(x, t) ∈ Q2R, ξ ∈ Rn. (11.28)

Suppose u ∈ C2+δ,1+δ/2(Q2R) and let

ut(x, t)−
n∑

i,j=1

aij(x, t)uxixj(x, t)+
n∑
i=1

bi(x, t)uxi(x, t)+c(x, t)u(x, t) = f(x, t). (11.29)

∗May be skipped in a first course.
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Then there exists some C = C(n, δ, λ,Λ) > 0 such that

|u|′2+δ,1+δ/2;QR
≤ C

{
|u|0;Q2R

+R2|f |′δ,δ/2;Q2R

}
(11.30)

Remark 11.4. Theorem 11.8 is different from Theorem 11.7 in that it assumes that

u ∈ C2+δ,1+δ/2(Q2R) a priori. Later we will use Theorem 11.8 to prove that any

C2,1(Q2R) solution u to (11.29) with Cδ,δ/2(Q2R) Hölder continuous coefficients and

right hand side is actually C2+δ,1+δ/2(Q2R) Hölder continuous.

The hypotheses and conclusion are formulated in a scaling invariant way so as to

easily exhibit how the size of the coefficients and domain impact the constant in the

estimate; hypothesis (11.27) does impose conditions on the size of the coefficients in

relation to the size of the domain in order to have control on the constant C in (11.30).

For example, if one would like to use (11.30) on a solution to (11.29) with f ≡ 0 on

Rn × (−∞, T ] on QR(x, t) for arbitrary (x, t) ∈ Rn × (−∞, T ] and arbitrarily large

R > 0, then (11.27) demands that aij(x, t) must be constants, and bi(x, t) = c(x, t) =

0 in Rn × (−∞, T ]. But in such cases (11.30) implies that any bounded solution u

on Rn × (−∞, T ] (so called ancient solution) satisfies |u|′2+δ,1+δ/2;QR
≤ C|u|0;Q2R

≤
C|u|0;Rn×(−∞,T ] for all R > 0, which implies that u must be a constant.

The following global a priori Schauder estimate for solutions to second order

parabolic equations with variable, Hölder continuous coefficients will be useful for

proving existence of solutions to the initial value problem for such equations.

Theorem 11.9. Suppose that aij(x, t), bi(x, t), c(x, t) ∈ Cδ,δ/2(Rn × [0, T ]) for some

0 < δ < 1 and T > 0, and that, for some 0 < λ ≤ Λ, (11.28) holds in Rn× [0, T ], and

|aij|0;Rn×[0,T ] + T δ/2[aij]δ,δ/2;Rn×[0,T ] +
√
T |bi|0;Rn×[0,T ] + T

1+δ
2 [bi]δ,δ/2;Rn×[0,T ]

+T |c|0;Rn×[0,T ] + T 1+δ/2[c]δ,δ/2;Rn×[0,T ] ≤ Λ.
(11.31)

Suppose that u ∈ C2+δ,1+δ/2(Rn× [0, T ]) and satisfies (11.29) in Rn× (0, T ], and that

u(x, 0) = g(x) for x ∈ Rn. Then there exists some C = C(n, δ, λ,Λ) > 0 such that

|u|′2+δ,1+δ/2;Rn×[0,T ] ≤ C
{
|g|′2+δ;Rn + T |f |′δ,δ/2;Rn×[0,T ]

}
, (11.32)

where |u|′2+δ,1+δ/2;Rn×[0,T ], |g|
′

2+δ;Rn and |f |′δ,δ/2;Rn×[0,T ] are defined in a similar way as

in Theorem 11.7, replacing R there by
√
T .

We will defer outlining some of the steps for proving Theorems 11.7, 11.8 and 11.9

until after we describe their applications.
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Theorem 11.10. Suppose that aij(x, t), bi(x, t), c(x, t) satisfy the same hypotheses as

in Theorem 11.9, that f ∈ Cδ,δ/2(Rn × [0, T ]), and that g ∈ C2+δ(Rn). Then there

exists a unique solution u ∈ C2+δ,1+δ/2(Rn × [0, T ]) to the Cauchy problem
ut(x, t)−

n∑
i,j=1

aij(x, t)uxixj(x, t) +
n∑
i=1

bi(x, t)uxi(x, t) + c(x, t)u(x, t) = f(x, t) in Rn × (0, T ],

u(x, 0) = g(x) in Rn.

(11.33)

Proof of Theorem 11.10. By working with the rescaling (x, t) 7→ (x/
√
T , t/T ), we

may assume T = 1. The existence and uniqueness of u follows from the method of

continuity and the estimate (11.32). More specifically, we consider the family of maps

Mθ : X = C2+δ,1+δ/2(Rn × [0, T ]) 7→ Y := Cδ,δ/2(Rn × [0, T ])× C2+δ(Rn)

defined by

X 3 u 7→ ([∂t + Lθ]u, u(·, 0)) ∈ Y.

where Lθ = θL − (1 − θ)∆ for θ ∈ [0, 1]. Then it follows from (11.32) that for some

C = C(n, δ, λ,Λ) independent of θ ∈ [0, 1],

||u||X ≤ C||Mθu||Y for all u ∈ X and θ ∈ [0, 1] (11.34)

where the norms in X and Y are scaled by T according to our definition. Since when

θ = 0, M0 : X 7→ Y is an isomorphism from X onto Y , it follows that M1 : X 7→ Y

is also an isomorphism from X onto Y , proving the existence of a unique solution

u ∈ C2+δ,1+δ/2(Rn × [0, T ]) to the Cauchy problem (11.33).

We can use the interior estimates (11.30) to weaken the hypotheses on g in The-

orem 11.10.

Theorem 11.11. Suppose that aij(x, t), bi(x, t), c(x, t) satisfy the same hypotheses as

in Theorem 11.9, that f ∈ Cδ,δ/2(Rn × [0, T ]), and that g ∈ C(Rn) ∩ L∞(Rn). Then

there exists a unique solution u ∈ C(Rn×[0, T ])∩C2+δ,1+δ/2(Rn×(0, T ]) to the Cauchy

problem (11.33).

Proof of Theorem 11.11. . Take a sequence gj(x) ∈ C∞(Rn) with finite C2+δ,1+δ/2(Rn×
[0, T ]) norms such that, for any compact subset K of Rn, |gj − g|0;K → 0, and

|gj|0;Rn ≤ |g|0;Rn . Let uj be the unique solution to (11.33) with gj replacing g.
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If we know |gj − g|0;Rn → 0, then by the maximum principle, there exists C =

C(n, λ,Λ, T ) > 0 such that

|uj−uk|0;Rn×[0,T ] ≤ C|gj−gk|0;Rn → 0, and lim
j→∞

uj(x, t) := u(x, t) ∈ C(Rn × [0, T ]) exists.

Furthermore u(x, 0) = g(x) for all x ∈ Rn. Next, for any QR(x0, t0) ⊂ Rn × [0, T ],

we can apply the interior estimates (11.30) to uj − uk over QR/2(x0, t0) to conclude

that {uj} is Cauchy in C2+δ,1+δ/2(QR/2(x0, t0)), therefore u ∈ C2+δ,1+δ/2(QR/2(x0, t0))

as well and satisfies the first equation in (11.33) there.

In the absence of having |gj−g|0;Rn → 0, we still have, by the maximum principle,

that

|uj|0;Rn×[0,T ] ≤ C(Λ, T )
(
|f |0;Rn×[0,T ] + |gj|0;Rn

)
≤ C(Λ, T )

(
|f |0;Rn×[0,T ] + |g|0;Rn

)
=: M.

(11.35)

Thus, applying the interior estimates (11.30) to uj over QR(x0, t0) would imply

that {uj} is bounded in C2+δ,1+δ/2(QR/2(x0, t0)), so a subsequence of {uj} would

converge to some u in C2+δ′,1+δ′/2(QR/2(x0, t0)) for any 0 < δ′ < δ, proving that

u ∈ C2+δ′,1+δ′/2(QR/2(x0, t0)) for any 0 < δ′ < δ and satisfies the first equation in

(11.33) there. In addition,

[u]2+δ,1+δ/2;QR/2(x0,t0) ≤ lim inf
j→∞

[uj]2+δ,1+δ/2;QR/2(x0,t0),

proving that u ∈ C2+δ,1+δ/2(QR/2(x0, t0)).

Finally, to prove that u ∈ C(Rn × [0, T ]) and satisfies u(x, 0) = g(x) for all

x ∈ Rn, we use the barrier argument. If all lower order terms are absent, then

we can choose β > 0 depending on Λ and |f |0;Rn×[0,T ] such that for any α, ε > 0,

w(x, t) = α(|x− x0|2 + βt) + g(x0) + ε is a super solution. We can also choose α > 0

depending on ε and g such that for all large j, gj(x) ≤ w(x, 0) for all x ∈ Rn. Then

by the maximum principle, uj(x, t) ≤ w(x, t) for all (x, t) ∈ Rn × [0, T ]. Sending

j → ∞, we obtain u(x, t) ≤ w(x, t) for all (x, t) ∈ Rn × [0, T ]. Thus we can choose

σ > 0 such that when |x−x0|2 + t ≤ σ2, u(x, t)− g(x0) ≤ 2ε. Similarly, we can prove

that −u(x, t) + g(x0) ≤ 2ε when |x−x0|2 + t ≤ σ2. Thus u(x, t) is continuous at each

(x0, 0) and u(x, 0) = g(x).

In the general case, for any x0 and ε > 0, a local barrier in Q = Bσ(x0) × [0, σ2]

can be constructed in the form of w(x, t) = [α(|x− x0|2 + βt) + g(x0) + ε] eγt for

appropriate choice of α, β, γ and σ. First we choose σ such that |g(x)− g(x0)| ≤ ε/2

for x ∈ Bσ(x0). Denoting the operator on the left hand side of the first equation in

(11.33) by P , then a direct computation shows that

Pw ≥ α [β − CΛ(1 + |x− x0|)] eγt + [c(x, t) + γ]w(x, t).
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We now choose γ ≥ Λ ≥ |c|0;Q, which leads to [c(x, t) + γ]w(x, t) ≥ [c(x, t) + γ] g(x0)eγt,

so

Pw ≥ {α [β − CΛ(1 + |x− x0|)] + [c(x, t) + γ] g(x0)} eγt.

We then choose β > 0 so that β − CΛ(1 + |x − x0|) ≥ 1 in Bσ(x0), and choose

α > |c(x, t) + γ|0;Q|g(x0)| + |f |0;Rn×[0,T ] so that Pw ≥ |f |0;Rn×[0,T ] in Q. Finally,

recalling the C0 bound (11.35) for uj, we further require that w(x, t) ≥M ≥ |uj(x, t)|
for (x, t) ∈ ∂Bσ(x0)× [0, σ2], which can be achieved if ασ2 ≥ |g(x0)|+M .

Now the maximum principle applied to uj and w on Q implies that, for all large

j, uj(x, t) ≤ w(x, t) for (x, t) ∈ Q. Since lim(x,t)→(x0,0)w(x, t) = g(x0) + ε, we can find

0 < ρ ≤ σ, such that when |x − x0|2 + t ≤ ρ2, uj(x, t) ≤ w(x, t) ≤ g(x0) + 2ε. The

barrier construction can also be applied to −uj, which finally leads to the continuity

of u(x, t) at (x0, 0) and u(x0, 0) = g(x0).

We can also use interior estimates (11.30) to prove C2+δ,1+δ/2 regularity of any

C2,1 solution to (11.29) in a region.

Theorem 11.12. Suppose that aij(x, t), bi(x, t), c(x, t) ∈ Cδ,δ/2(Q2R) for some 0 <

δ < 1, and that u ∈ C2,1(Q2R) satisfies [∂t + L]u ∈ Cδ,δ/2(Q2R). Then u ∈ C2+δ,1+δ/2(Q2R).

Proof. It suffices to prove u ∈ C2+δ,1+δ/2(QR′) for any R′ < 2R. We can extend

aij(x, t), bi(x, t), and c(x, t) to Rn × [−4R2, 0] so that their extensions belong to

Cδ,δ/2(Rn × [−4R2, 0]). Let ζ(x, t) be a smooth cut-off function such that it is iden-

tically 1 in QR′ and supported in Q2R. Then v(x, t) = u(x, t)ζ(x, t) ∈ C2,1(Rn ×
[−4R2, 0]), and also satisfies [∂t + L] v ∈ Cδ,δ/2(Rn × [−4R2, 0]), and v(x,−4R2) = 0

for all x ∈ Rn. According to Theorem 11.10, there exists a unique w ∈ X (shifting

the initial time to t = −4R2) satisfying [∂t + L]w = [∂t + L] v in Rn × [−4R2, 0].

But by the maximum principle, w(x, t) = v(x, t) in Rn × [−4R2, 0]. Thus in QR′ ,

u = v = w ∈ C2+δ,1+δ/2(QR′).

As a byproduct of our Schauder theory for variable coefficients second order

parabolic equations, we obtain the corresponding results for variable coefficients sec-

ond order elliptic equations.

Corollary 11.13. Suppose that aij(x), bi(x), c(x) ∈ Cδ(B2R) for some 0 < δ < 1,

and that for some 0 < λ ≤ Λ,

|aij|0;R2R
+Rδ[aij]δ;B2R

+R|bi|0;B2R
+R1+δ[bi]δ;B2R

+R2|c|0;B2R
+R2+δ[c]δ;B2R

≤ Λ,

(11.36)
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and

λ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ∀x ∈ B2R, ξ ∈ Rn. (11.37)

Suppose u ∈ C2+δ(B2R) and let

−
n∑

i,j=1

aij(x)uxixj(x) +
n∑
i=1

bi(x)uxi(x) + c(x)u(x) = f(x). (11.38)

Then there exists some C = C(n, δ, λ,Λ) > 0 such that

|u|′2+δ;BR
≤ C

{
|u|0;B2R

+R2|f |′δ;B2R

}
(11.39)

Corollary 11.14. Under the same hypotheses for aij(x), bi(x), c(x) as in Corollary

11.13, suppose that u ∈ C2(B2R) satisfies −
∑n

i,j=1 aij(x)uxixj(x)+
∑n

i=1 bi(x)uxi(x)+

c(x)u(x) ∈ Cδ(B2R). Then u ∈ C2+δ(B2R).

We now outline some steps in the proof for Theorems 11.7, 11.8 and 11.9.

Proof for Theorem 11.7. Again we may assume R = 1. Let ζ(x, t) be a smooth cut-off

function supported in Q2 and identically equal to 1 in Q3/2. Let

v(x, t) =

∫ t

−4

∫
B2

K(x− y, t− s)f(y, s)ζ(y, s)dyds.

Then v ∈ C2+δ,1+δ/2(Q2) and satisfies

vt(x, t)−∆v(x, t) = f(x, t)ζ(x, t) in Q2,

= f(x, t) in Q3/2.

Set w(x, t) = u(x, t) − v(x, t). Then wt(x, t) − ∆w(x, t) = 0 in Q3/2. Note that

|v|0;Q2 ≤ 4|f |0;Q2 , so |w|0;Q2 ≤ |u|0;Q2+4|f |0;Q2 . By the gradient estimates for solutions

to the homogeneous heat equation, w ∈ C∞(Q3/2), and |∂kt ∂lxw|0;Q1 ≤ C(n, k, l)|w|0;Q2

for any k, l ∈ N. In particular |w|2+δ,1+δ/2;Q1 ≤ C(n, δ)|w|0;Q2 . We now apply Theorem

2 to v to imply that

[u]2+δ,1+δ/2;Q1 ≤ [v]2+δ,1+δ/2;Q1 + [w]2+δ,1+δ/2;Q1

≤ C[fζ]δ,δ/2;Q2 + C (|u|0;Q2 + 4|f |0;Q2)

≤ C(n, δ)
(
|u|0;Q2 + |f |δ,δ/2;Q2

)
Finally we apply the interpolation inequality which bounds any intermediate semi-

norms of u in terms of |u|0;Q1 and [u]2+δ,1+δ/2;Q1 to conclude the proof for Theorem

2.
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Proof for Theorem 11.8. Here we will introduce three new techniques: (i) how to

handle interior estimates; (ii) how to use the method of “freezing coefficients”; and

(iii) how to use interpolation inequalities.

We will denote (x, t) by X, (y, s) by Y to simplify notation. The basic idea is

to study (11.29) near each Y0 = (y0, s0) as ut(X) −
∑n

i,j=1 aij(Y0)∂2
iju(X) = F (X),

where

F (X) =
n∑

i,j=1

[aij(X)− aij(Y0)] ∂2
iju(X)−

n∑
i=1

bi(X)uxi(X)− c(X)u(X) + f(X),

Thus we are treating equation (11.29) near Y0 as if we are freezing the coefficents

of the principal term at Y0. We can then apply an extension of (11.26) in Theo-

rem 11.7 to the constant coefficients operator ∂t −
∑n

i,j=1 aij(Y0)∂2
ij on Q2r(Y0) for

r > 0 small, to estimate [u]2+δ,1+δ/2;Qr(Y0) in terms of the [·]δ,δ/2;Q2r(Y0) norm of F

and |u|0;Q2r(Y0). Using that, when r > 0 is small, the [·]δ,δ/2;Q2r(Y0) norm of the term∑n
i,j=1 [aij(X)− aij(Y0)] ∂2

iju(X) in F is a small multiple of [u]2+δ,1+δ/2;Q2r(Y0) plus a

multiple of |∂2
xu|0;Q2r(Y0), we hope to absorb the term [u]2+δ,1+δ/2;Q2r(Y0) to the left hand

side, except that this semi-norm is evaluated on Q2r(Y0) instead of Qr(Y0). The tech-

nique below overcomes this difficulty. The lower order terms will be estimated, with

the help of interpolation inequalities, in terms of a small multiple of [u]2+δ,1+δ/2;Q2r(Y0)

plus a multiple of |u|0;Q2r(Y0).

Again it suffices to prove the theorem for R = 1. It’s convenient to use d(X, Y ) =

|X−Y |+
√
t− s as the distance betweenX and Y . Let dX,Y = min{d(X, ∂′Q2), d(Y, ∂′Q2)}.

Note dX,Y = 0 when either X or Y ∈ ∂′Q2, and dX,Y ≥ 1 when X, Y ∈ Q1.

Due to the interpolation inequalities, it suffices to estimate

M := sup{d2+δ
X,Y

|∂2
xu(X)− ∂2

xu(Y )|
d(X, Y )δ

: X 6= Y ∈ Q2}.

in terms of |u|0;Q2 and |f |δ,δ/2;Q2 . The scale d2+δ
X,Y , in addition to making M scaling

invariant, will help us locate points X0, Y0 in the interior of Q2 through which we

will estimate M .

Suppose M > 0 and pick X0 6= Y0 ∈ Q2 such that

M

2
≤ d2+δ

X0,Y0

|∂2
xu(X0)− ∂2

xu(Y0)|
d(X0, Y0)δ

.

Let d0 := dX0,Y0 . Then d0 > 0 and Qd0(X), Qd0(Y ) ⊂ Q2. We will estimate M

depending on whether d(X0, Y0) < θd0

2
or d(X0, Y0) ≥ θd0

2
, where 0 < θ < 1 is to be

chosen later.
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11.3. LOCAL HÖLDER ESTIMATES AND SOLVABILITY OF IVPS...

In the case d(X0, Y0) < θd0

2
, then either X0 ∈ Q θd0

2

(Y0) or Y0 ∈ Q θd0
2

(X0). We may

assume the former, and have

M

2
≤ d2+δ

0

|∂2
xu(X0)− ∂2

xu(Y0)|
d(X0, Y0)δ

≤ d2+δ
0 [∂2

xu]δ,δ/2;Q θd0
2

(Y0);

while in the case d(X0, Y0) ≥ θd0

2
, we have

M

2
≤ 21+δd2

0

θδ
|∂2
xu|0;Q2−d0

,

so we have

M

2
≤ d2+δ

0 [∂2
xu]δ,δ/2;Q θd0

2

(Y0) +
21+δd2

0

θδ
|∂2
xu|0;Q2−d0

≤ Cd2+δ
0

{ |u|0;Qθd0 (Y0)

(θd0)2+δ
+
|F |0;Qθd0 (Y0)

(θd0)δ
+ [F ]δ,δ/2;Qθd0 (Y0)

}
+

21+δd2
0

θδ
|∂2
xu|0;Q2−d0

≤ C

{
|u|0;Qθd0 (Y0)

θ2+δ
+
d2

0|F |0;Qθd0 (Y0)

θδ
+ d2+δ

0 [F ]δ,δ/2;Qθd0 (Y0)

}
+

21+δd2
0

θδ
|∂2
xu|0;Q2−d0

where F (X) is defined as above. In the above we have used an extension of (11.26)

in Theorem 11.7 to the constant coefficient operator ∂t −
∑n

i,j=1 aij(Y0)∂2
ij.

In the following we will assume that bi, c ≡ 0 and put our focus on the term

n∑
i,j=1

[aij(X)− aij(Y0)] ∂2
iju(X),

—when the biuxi(X) terms are present, they will be handled by interpolation inequal-

ities. Note that

[F ]δ,δ/2;Qθd0 (Y0) ≤ Λ
[
(θd0)δ[∂2

xu]δ,δ/2;Qθd0 (Y0) + |∂2
xu|0;Qθd0 (Y0)

]
+ [f ]δ,δ/2;Qθd0 (Y0),

|F |0;Qθd0 (Y0) ≤ Λ(θd0)δ|∂2
xu|0;Qθd0 (Y0) + |f |0;Qθd0 (Y0).

By the definition of M , [(1− θ)d0]2+δ[∂2
xu]δ;Qθd0 (Y0) ≤M , so

M

2
≤C

{
|u|0;Qθd0 (Y0)

θ2+δ
+
d2

0[Λ(θd0)δ|∂2
xu|0;Qθd0 (Y0) + |f |0;Qθd0 (Y0)]

θδ

+d2+δ
0

{
Λ
[
(θd0)δ[∂2

xu]δ,δ/2;Qθd0 (Y0) + |∂2
xu|0;Qθd0 (Y0)

]
+ [f ]δ,δ/2;Qθd0 (Y0)

}}
+

21+δd2
0

θδ
|∂2
xu|0;Q2−d0

≤C
{

Λ(θd0)δ

(1− θ)2+δ
M + d2

0

(
Λdδ0 +

21+δ

θδ

)
|∂2
xu|0;Q2−d0

}
+ C

[
d2+δ

0 [f ]δ,δ/2;Qθd0 (Y0) +
d2

0

θδ
|f |0;Qθd0 (Y0)

]
+
|u|0;Qθd0 (Y0)

θ2+δ
.
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We now fix θ so that CΛθδ

(1−θ)2+δ ≤ 1
8

(d0 ≤ 2 here) to obtain

M

4
≤C

{
d2

0

[(
Λdδ0 +

21+δ

θδ

)
|∂2
xu|0;Q2−d0

+ [f ]δ,δ/2;Qθd0 (Y0)

]
+
d2

0

θδ
|f |0;Qθd0 (Y0) +

|u|0;Qθd0 (Y0)

θ2+δ

}
≤Cd2

0|∂2
xu|0;Q2−d0

+ C ′[|f |′δ,δ/2;Q2
+ |u|0;Q2 ]

(11.40)

We finally use interpolation inequalities to estimate Cd2+δ
0 |∂2

xu|0;Q2−d0
in terms of a

small multiple of M plus a multiple of |u|0;Q2 , which leads to our desired bound

(11.30).

Exercise 11.3.1. LetK(x, t) denote the standard heat kernel, and u(x, t) =
∫
Rn K(x−

y, t)g(y)dy for g ∈ Lp(Rn). Prove that for any non-negative integers l and m,

• ||∂lt∂mx K(·, t)||Lq(Rn) = Cq,l,m,nt
−n

2
(1− 1

q
)−l−m

2 for t > 0.

• with r given by 1 + 1
r

= 1
p

+ 1
q
,

||u(·, t)||Lr(Rn) ≤ Cp,r,l,m,nt
−n

2
( 1
p
− 1
r

)−l−m
2 ||f ||Lp(Rn).

Exercise 11.3.2. Prove that
∫
Rn K(x − y, t − τ)K(y − z, τ − s)dy = K(x − z, t −

s) for t > τ > s.

Exercise 11.3.3. Let v(x, t) =
∫ t

0
F (x, t; s)ds as defined in Theorem 1. Complete

the details in the proof for [vt]δ;Rn×[0,T ] ≤ C[f ]δ;Rn×[0,T ] by proving the bound of the

Hölder semi-norm of vt in the t-direction.

Exercise 11.3.4. Let u ∈ C2,1
x,t (Rn × (0, T ]) ∩ C(Rn × [0, T ]) be a solution to (11.3),

satisfying for some A > 0, a > 0,

|u(x, t)| ≤ Aea|x|
2

for all (x, t) ∈ Rn × [0, T ].

Prove that for t < 1
4a

, (11.2) holds, namely,

u(x, t) =

∫ t

0

∫
Rn
K(x− y, t− s)f(y, s)dyds+

∫
Rn
K(x− y, t)g(y)dy.

Exercise 11.3.5. Suppose u ∈ C2+δ,1+δ/2(QR) satisfies

ut(x, t)−
n∑

i,j=1

aij(x, t)uxixj(x, t) +
n∑
i=1

bi(x, t)uxi(x, t) + c(x, t)u(x, t) = f(x, t)
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in QR. Define v(y, s) = u(Ry,R2s) for (y, s) ∈ Q1. (a). Express |v|2+δ,1+δ/2;Q1 in

terms of corresponding norms of u on QR. (b). Transform the equation above for

u into an equation for v, and express the | · |δ,δ/2;Q1norms of the coefficients in the

equation for v in terms of the corresponding norms of the coefficients in the equation

for u over QR.

Exercise 11.3.6. Suppose that {uj} is bounded in C2+δ,1+δ/2(QR(x0, t0)). Prove

that there exists a subsequence {ujk} of {uj} and u ∈ C2+δ,1+δ/2(QR(x0, t0)) such

that {ujk} converges to u in C2+δ′,1+δ′/2(QR/2(x0, t0)) for any 0 < δ′ < δ.

Exercise 11.3.7. Interpolation inequalities are used in deriving the Schauder esti-

mates. There are many different forms of interpolation inequalities, all tracing their

origin to the 1-dimensional version. Let I denote a closed interval on R.

(1). There exists C > 0 such that for any u ∈ C2(I), and any |I| > ε > 0, |u′|0;I ≤
ε|u′′|0;I + Cε−1|u|0;I . (Hint: For any x ∈ I, and for h such that x+ h ∈ I, use

u(x+ h)− u(x) =

∫ x+h

x

u′(t)dt = u′(x)h+

∫ x+h

x

(x+ h− t)u′′(t)dt

to express |u′|0;I in terms of |u|0;I and |u′′|0;I .)

(ii). There exists C > 0 such that for any u ∈ C1+δ(I) for some 0 < δ ≤ 1, and any

|I| > ε > 0, |u′|0;I ≤ εδ[u′]δ;I + Cε−1|u|0;I . (Hint: Modify the above relation

to u(x + h) − u(x) = u′(x)h +
∫ x+h

x
[u′(t) − u′(x)]dt and use |u′(t) − u′(x)| ≤

[u′]δ;I |t− x|δ. )

(iii). There exists C > 0 such that for any u ∈ C2+δ(I) for some 0 < δ ≤ 1, and any

|I| > ε > 0, |u′′|0;I ≤ εδ[u′′]δ;I + Cε−2|u|0;I .
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Appendix A

Interchange of Order of

Differentiation and Integral or Sum

We often need to interchange the order of differentiation and an infinite sum or

integral. We list below some commonly used criteria to justify such an interchange.

The most convenient tool is Lebesgue’s Dominated Convergence Theorem, formulated

as (iv) and (v) below; but we have also included more elementary versions for those

readers who are not familiar with or comfortable with Lebesgue’s integral.

Lemma A.1. (i). Suppose that sN(x) → s(x) as N → ∞ for some x ∈ [a, b], that

s′N(x) exists and is continuous for x ∈ [a, b], and that s′N(x) converges to t(x)

uniformly for x ∈ [a, b] as N → ∞, then s(x) is continuously differentiable for

x ∈ [a, b] and s′(x) = t(x) for x ∈ [a, b].

(ii). Suppose that each an(x) is C1[a, b], that the series
∑∞

n=1 a
′
n(x) converges uni-

formly over [a, b], and that
∑∞

n=1 an(x) converges at some x ∈ [a, b], then∑∞
n=1 an(x) defines a C1[a, b] function and(

∞∑
n=1

an(x)

)′
=
∞∑
n=1

a′n(x) for x ∈ [a, b].

(iii). Suppose that U is a bounded closed set in Rn, that s(x; ξ) and sx(x; ξ) are

continuous for (x; ξ) ∈ (x0 − δ, x0 + δ) × U , then
∫
U
s(x; ξ)dξ is continuously

© 2023, by Zheng-Chao Han. Please do not distribute these notes at this point, as they have

not been thoroughly revised.
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differentiable in x ∈ (x0 − δ, x0 + δ), and

d

dx

(∫
U

s(x; ξ)dξ

)
=

∫
U

sx(x; ξ)dξ for x ∈ (x0 − δ, x0 + δ).

(iv). Suppose that U ⊂ Rn, that sj(ξ) and s(ξ) are integrable with sj(ξ) → s(ξ) as

j → ∞ for any ξ ∈ U , and that there exists an integrable function M(ξ) over

U such that |sj(ξ)| ≤M(ξ) for all ξ ∈ U , then limj→∞
∫
U
sj(ξ)dξ =

∫
U
s(ξ)dξ.

(v). Suppose that U ⊂ Rn, that s(x; ξ) and sx(x; ξ) are continuous for (x; ξ) ∈
(x0 − δ, x0 + δ) × U , and that there exists an integrable function M(ξ) over U

such that

|sx(x; ξ)| ≤M(ξ) for (x; ξ) ∈ (x0 − δ, x0 + δ)× U ,

then
∫
U
s(x; ξ)dξ is continuously differentiable in x ∈ (x0 − δ, x0 + δ), and

d

dx

(∫
U

s(x; ξ)dξ

)
=

∫
U

sx(x; ξ)dξ for x ∈ (x0 − δ, x0 + δ).

Remark. • In (iv)–(v) the integrability can be either Riemann or Lebesgue inte-

grability, and the continuity in the ξ in (v) can be replaced by the integrability

in ξ.

• The formulation in (iii)-(v) above may seem like that U is an n-dimensional

region in Rn, and dξ is the volume integral in Rn; but they are equally valid

when U is a lower dimensional surface in Rn, and dξ is the corresponding surface

integral.

• (iii) has two key ingredients: the uniform continuity of sx(x; ξ) in [x0− δ1, x0 +

δ1] × U for any 0 < δ1 < δ, and the finiteness of the measure of U . Then, for

any x ∈ (x0− δ, x0 + δ), we can find 0 < δ1 < δ, such that x ∈ (x0− δ1, x0 + δ1),

and δ2 = δ1 − |x − x0| > 0; and for any 0 < |h| < δ2, s(x + h; ξ) − s(x; ξ) =

sx(x + θh; ξ)h for some 0 < θ < 1 depending on h, x and ξ. But due to the

uniform continuity of sx(x; ξ) in [x0 − δ1, x0 + δ1]× U , for any given ε > 0, we

can find 0 < h0 ≤ δ2, such that

|h−1 (s(x+ h; ξ)− s(x; ξ))− sx(x, ξ)| < ε (uniform)

for any 0 < |h| < h0, (x, ξ) ∈ [x0 − δ1, x0 + δ1]× U , and∣∣∣∣h−1

[∫
U

(s(x+ h; ξ)− s(x; ξ)) dξ

]
−
∫
U

sx(x, ξ) dξ

∣∣∣∣ < ε|U |,
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which provides a proof for (iii). Even if we can establish (uniform) when U is

not closed or bounded, but |U | is ∞, (iii) may not be valid without a condition

such as in (v). Here is a simple example when U = R and x = x0 = 0:

s(x, ξ) = x2

1+x2ξ2 . At issue is that the integrals in the “tail part”, i.e., when |ξ|
is large, is not small uniformly in h when |h| → 0.

• In most applications of (v), the dominating function M(ξ) is needed only in

the tail part as alluded to above, or near isolated points where the integral

may become an improper integral. With the assumption in (v), we can use a

“divide-and-conquer” strategy to tackle the problem. For many problems, for

any given ε > 0, we can find a bounded and closed set V in U such that (a)∫
U\V |M(ξ)| dξ < ε; and (b) sx(x; τ) becomes uniformly continuous in (x0 −
δ/2, x0 + δ/2)× V . Then we estimate, when x, x+ h ∈ (x0 − δ/2, x0 + δ/2),∣∣∣∣h−1

[∫
U

(s(x+ h; ξ)− s(x; ξ)) dξ

]
−
∫
U

sx(x; ξ) dξ

∣∣∣∣
≤
∫
U\V

∣∣sx(x+ θh; ξ)− sx(x; ξ)
∣∣ dξ +

∫
V

∣∣sx(x+ θh; ξ)− sx(x; ξ)
∣∣ dξ

≤
∫
U\V

2M(ξ) dξ +

∫
V

∣∣sx(x+ θh; ξ)− sx(x; ξ)
∣∣ dξ

≤2ε+

∫
V

∣∣sx(x+ θh; ξ)− sx(x; ξ)
∣∣ dξ.

Finally we use the uniform continuity of sx(x; ξ) over (x0 − δ/2, x0 + δ/2)× V
to make

∫
V

∣∣sx(x + θh; ξ) − sx(x; ξ)
∣∣ dξ < ε when |h| is sufficiently small. We

will provide two examples below to illustrate this.

Example A.1. We provide here a justifcation for (2.17). Set s(x, t; ξ) = c(ξ)eixξ−ξ
2t

for (x, t) ∈ R × R+, and ξ ∈ R. s(x, t; ξ) is a smooth function of (x, t; ξ) in this

domain. For any (x, t) ∈ R×R+, we can take 0 < t0 < t < t1, and apply Lemma A.1

on R× (t0, t1)×R. If the integral were
∫ L
−L for some finite L > 0, then we can directly

apply (iii) in Lemma A.1. For this integral over R, our attention in constructing an

M(ξ) as in (v) should be focused on the large |ξ| region.

|st(x, t; ξ)| = | − ξ2c(ξ)eixξ−ξ
2t| = |ξ|2|c(ξ)|e−ξ2t| ≤ |ξ|2|c(ξ)|e−ξ2t0 ,

if t ∈ (t0, t1). Under fairly flexible assumptions on |c(ξ)|, |ξ||c(ξ)|e−ξ2t0 is integrable

in ξ over R. The key here is that t0 > 0 can be fixed in advance depending on the

given t > 0, and the bound above applies uniformly in (t0, t1).
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Example A.2. Here we provide a partial justification for Exercise 3.2.2: if f is

bounded, then

u(x, t) =

∫ t

0

∫
R
K(x− y, t− τ)f(y, τ) dydτ ∈ C(R× R+)

and is continuously differentiable in x for (x, t) ∈ R × R+. For any (x, t) ∈ R × R+,

we first prove the differentiability of u(x, t) in x, and

ux(x, t) =

∫ t

0

∫
R
Kx(x− y, t− τ)f(y, τ) dydτ,

and then use this integral representation to prove that ux(x, t) is continuous in (x, t) ∈
R×R+. In proving the differentiability in x, we may regard t > 0 as a fixed parameter

and let s(x, t; τ) =
∫
RK(x− y, t− τ)f(y, τ) dy. Then we can apply (v) of Lemma A.1

to the integral
∫
RK(x− y, t− τ)f(y, τ) dy, as in the previous example, to prove that,

for any 0 ≤ τ < t,

sx(x, t; τ) =

∫
R
Kx(x− y, t− τ)f(y, τ) dy.

Now u(x, t) =
∫ t

0
s(x, t; τ) dτ . Since

Kx(x− y, t− τ) = − x− y
2
√

4π(t− τ)3/2
e−
|x−y|2
4(t−τ) ,

so if |f(y, τ)| ≤M for all (y, τ) ∈ R× R+, then

|sx(x, t; τ)| ≤M

∫
R

|x− y|
2
√

4π(t− τ)3/2
e−
|x−y|2
4(t−τ) dy.

Making the change of variables z = x−y
2
√
t−τ in the above integral, we find∫

R

|x− y|
2
√

4π(t− τ)3/2
e−
|x−y|2
4(t−τ) dy =

∫
R

|z|e−z2√
π(t− τ)

dz,

and

|sx(x, t; τ)| ≤ CM√
t− τ

,

with C =
∫
R
|z|e−z2√

π
dz < ∞. Since

∫ t
0

CM√
t−τ dτ < ∞, we can apply (v) of Lemma A.1

again to conclude that ux(x, t) =
∫ t

0
sx(x, t; τ) dτ .

Next we show how to prove the continuity of u(x, t) in (x, t) ∈ R×R+. Since the

domain of integration depends on t, and the integral at τ = t is an improper one, it’s
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not easy to directly apply (iv). We will provide a direct proof, which illustrates how

we handle such analysis.

Fix any (x, t) ∈ R× R+, we will select 0 < δ < t, and for t− δ/2 < t′ < t + δ/2,

we estimate∣∣u(x, t)− u(x′, t′)
∣∣ =

∣∣∣∣ ∫ t−δ

0

[s(x, t; τ)− s(x′, t′; τ)] dτ +

∫ t

t−δ
s(x, t; τ)−

∫ t′

t−δ
s(x′, t′; τ) dτ

∣∣∣∣
≤
∫ t−δ

0

∣∣s(x, t; τ)− s(x′, t′; τ)
∣∣ dτ +

∫ t

t−δ

∣∣s(x, t; τ)
∣∣dτ +

∫ t′

t−δ

∣∣s(x′, t′; τ)
∣∣ dτ.

We can easily estimate that |s(x, t; τ)| ≤M , so
∫ t
t−δ |s(x, t; τ)|dτ ≤Mδ, and∫ t′

t−δ
|s(x′, t′; τ)| dτ ≤M(t′ − t+ δ) ≤ 2Mδ.

For any given ε > 0, we first fix 0 < δ < t such that 2Mδ < ε.

For
∫ t−δ

0

∣∣s(x, t; τ) − s(x′, t′; τ)
∣∣ dτ , we can apply (iv) of Lemma A.1 as follows.

Take any (x′j, t
′
j) → (x, t), since |s(x′, t′; τ)| ≤ M for any t′ > τ , to apply (iv) of

Lemma A.1 it suffices to prove the continuity of s(x′, t′; τ) at (x, t) when τ ≤ t − δ,
as then it would imply limj→∞

∣∣s(x, t; τ) − s(x′j, t′j; τ)
∣∣ → 0 verifying the remaining

condition to apply (iv) of Lemma A.1.

Since s(x′, t′; τ) =
∫
RK(x′ − y, t′ − τ)f(y, τ) dy,and

K(x′j − y, t′j − τ)f(y, τ)→ K(x− y, t− τ)f(y, τ)

as j → ∞ for every y ∈ R, it suffices to find a dominating function for K(x′j −
y, t′j − τ)f(y, τ). But when |x − x′j| ≤ δ/2, τ ≤ t − δ and t′j ≥ t − δ/2, we will have

t′j − τ ≥ δ/2, so

∣∣K(x′j − y, t′j − τ)f(y, τ)
∣∣ ≤M

e−
|x′j−y|

2

2δ

√
2πδ

≤M
e−
|x−y|2−δ2/2

4δ

√
2πδ

using |x − y| ≤ |x − x′j| + |x′j − y| ≤ δ/2 + |x′j − y|, so |x − y|2 ≤ δ2/2 + 2|x′j − y|2.

Since the upper bound is an integrable function of y over R, we are now in a position

to apply (iv) of Lemma A.1 to conclude that s(x′, t′; τ) is continuous at (x, t) when

τ ≤ t− δ. A similar proof works for ux(x, t).
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