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1 Introductory Remarks
The goals of the pre-enrollment "Boot Camp" were to provide an in-depth review
and to fill in gaps in some background material expected in standard first year
graduate courses (mostly on topics in abstract linear algebra and advanced calculus
which have often not be adequately treated in undergraduate courses). Problem
sessions are integral parts of this program. Problems to be discussed will emphasize
interconnectedness between different areas of mathematics, and will include some
problems from the written qualifying exams. Attention will be paid to proper writing
of mathematical proofs; critiques of student solutions will be provided.

Topics related to advanced calculus include:

• Basic properties of the reals: Limits (including upper and lower limits),
Cauchy sequences, completeness, sequential compactness (Bolzano–Weierstrass
theorem) and compactness (Heine-Borel Theorem).

• Basic tools: Cauchy-Schwarz inequality. Summation (integration) by parts.

• Sequences and series of numbers and functions, including absolute and uni-
form convergence, and equicontinuity. Applications involving power series,
integration and differentiation.

• Basic topological notions such as connectivity, Hausdorff spaces, compactness,
product spaces and quotient spaces. Emphasis on examples in Euclidean and
metric spaces.

• Compactness criteria in metric spaces. Arzelà–Ascoli Theorem and applica-
tions.

• Review of multiple, line and surface integrals, theorems of Green and Stokes
and the divergence theorem.

• Jacobians, implicit and inverse function theorems, and applications. Change
of variables formula. Role of exterior calculus.

Almost every incoming student probably has seen the majority of the topics
above. What prepares a student do well in the first year graduate courses is not just
exposure to these topics, but depth of understanding and fluency of applying them.

We will spend minimum amount of time reviewing the relevant topics formally;
we will spend more time on sets of problems to explain the intuition behind the
concepts and methods, how they are applied, and help students to gain a better
understanding of these concepts and methods.

Professors Ocone and Mirek have done these analysis sessions in the last couple
years, and each has prepared some very nice written notes. I will share those notes
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and rely on them. Their notes have somewhat different emphasis and style, with
Professor Ocone’s notes being more basic and aligned with the topics listed above,
while Professor Mirek’s notes going more into some generalities and depth, with
some topics typically on the graduate analysis curriculum and with more examples
rooted in number theory.

There is not enough allotted time to go over the material in either notes. Since
the incoming students have varying backgrounds and interests, these notes give
students enough flexibility to find material suitable to their background and interest
and work on those parts in a more focused way.

I am also preparing some supplementary notes and comments. The notes by
Professors Ocone and Mirek contain some summary reviews of the topics discussed,
and some sketch of proofs. My focus in these notes will not be on a review of
topics, but on strategy of problem solving. In order to make our discussions more
productive, I ask that students do some initial study prior to the start of our boot
camp, write up solutions for as many problems in the posted diagnostic quiz as you
have time for before the boot camp starts, and submit them and any additional
topics or problems that you would like us to discuss in our sessions.

1.1 Some General Guidance
Here are a few points to keep in mind when working on a problem.

• Learn to identify some key steps which may lead to a solution of the problem
and how the given information may help to carry out these steps.

• Learn to keep focus on the key steps and set aside some non-essential techni-
calities at the beginning.

• Learn to carry out some reductions to reduce the problem to one or more
simpler sub-problems, and start with concrete/simpler cases to test out how
your ideas may or may not work out.

One can see that these suggestions are often different from one’s typical learning
experience in a math course, which is often going from the abstract to the concrete,
from the general to the specific, and, to use a variation of an often quoted saying,
“carrying a hammer to look for a nail to pound”. A good strategy to solve a problem
is to start with the problem and identify its key features and find or create the right
tools which may bring about a solution.

The suggestions above apply for mathematical problem solving in general. In
analysis, one needs to learn to “size up” different quantities and identify the ones
which play a leading order role in solving our problem. We begin with a few examples
to illustrate the suggested strategies discussed above.

1.2 Some Initial Examples

Example 1.1 Assume that xn → A as n→∞. Prove that x1+···+xn
n → A as

n→∞.

We first do an analysis of the problem. From the given assumption, for all
sufficiently large n, say, for n > N , xn is within ε > 0 of A. How would this
indicate that x1+···+xn

n is close to A for large n?
We examine

x1 + · · ·+ xn
n

= x1 + · · ·+ xN + xN+1 + · · ·+ xn
n

,

in which all terms xN+1, · · · , xn are within ε > 0 of A. How do we handle
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the first N terms? Well, when n is sufficiently large, the effect of x1+···+xN
n

is negligible.
So we can see a solution strategy now. But we can do one small reduction:

set yn = xn −A. Then yn → 0 and x1+···+xn
n = A+ y1+···+yn

n , so it suffices
to prove y1+···+yn

n → 0. We will leave it to the student to write up a proof
for this last statement using the strategy discussed above.

Checkpoint 1.2 Find the limit limn→∞
n
√
x1 · · ·xn if xn > 0 and xn → A > 0.

Hint. Use x = eln x for x > 0.

Example 1.3 Find the limit limn→∞
n

√∫ b
a
|f(x)|n dx for f ∈ C[a, b].

Here we are dealing with a generic f ∈ C[a, b]. Obviously we can’t hope to
evaluate the integral

∫ b
a
|f(x)|n dx except when |f(x)| is a constant c over

[a, b], in which case the root of the integral becomes n
√

(b− a)cn → c. At
least in this special case we know the answer.

For the general case, when |f(x)| is not a constant, our focus should
be on what affects this integral when n → ∞. When |f(x1)| < |f(x2)|,
|f(x1)|n would be significantly smaller than |f(x2)|n as n → ∞, so this
suggests that the largest contribution would come from those x such that
|f(x)| = M := max[a,b] |f(y)|.

First, since |f(x)| ≤M for all x ∈ [a, b], it follows that

n

√∫ b

a

|f(x)|n dx ≤n
√

(b− a)Mn.

Since n
√

(b− a)Mn →M , we can conclude that lim supn→∞ n

√∫ b
a
|f(x)|n dx ≤

M.
How does the set of points x such that |f(x)| = M contribute to the

integral?
Let x∗ be a point such that |f(x∗)| = M . Then near x∗, |f(x)| will be

close to M . More precisely, for any given ε > 0, there must exist some
interval I containing x∗ with length δ > 0, in which |f(x)| ≥M − ε. Then

n

√∫ b

a

|f(x)|n dx ≥n
√∫

I

(M − ε)n dx = (M − ε)n
√
δ.

Since n
√
δ → 1, we conclude that lim infn→∞ n

√∫ b
a
|f(x)|n dx ≥ (M − ε). Since

this inequality holds for any ε > 0, we conclude that lim infn→∞ n

√∫ b
a
|f(x)|n dx ≥

M . Combining the two inequalities, we conclude that limn→∞
n

√∫ b
a
|f(x)|n dx

exists and equals M .

Checkpoint 1.4 Drills on lim infn→∞ and lim supn→∞. Here are some often
used properties on lim infn→∞ and lim supn→∞.

1. Properties involving sum of sequences.

lim inf
n→∞

an + lim inf
n→∞

bn
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≤ lim inf
n→∞

(an + bn)

≤ lim sup
n→∞

an + lim inf
n→∞

bn

≤ lim sup
n→∞

(an + bn)

≤ lim sup
n→∞

an + lim sup
n→∞

bn

2. lim supn→∞ n
√
|an| ≤ lim supn→∞ |

an+1
an
|.

3. lim infn→∞ |an+1
an
| ≤ lim infn→∞ n

√
|an|.

4. If limn→∞ |an+1
an
| exists, then limn→∞

n
√
|an| exists, and equals limn→∞ |an+1

an
|.

(The converse is not true. Give an example.)

Use the definitions of lim infn→∞ and lim supn→∞ closely. For example, to prove
lim infn→∞ cn ≤ B it suffices to prove that for any ε > 0, there exists a sub-
sequencecnk such that cnk ≤ B + ε for all sufficiently large k; to prove that
lim infn→∞ cn ≥ A it suffices to prove that for any ε > 0, cn ≥ A − ε for all
sufficiently large n ( of the full sequence).

In analysis we often need to assess the effect of algebraic manipulations of several
quantities which are tending to infinity or zero. In carrying out such an analysis
it is important to identify the leading order ones and make use of them effectively.
The following examples and exercises illustrate how to carry out such an analysis in
analyzing algebraic expressions of the form ∞−∞,∞ · 0, 0/0.

Example 1.5 Analyze the limit of
√
x2 + x+ 1−3

√
x3 + x+ 1 as x→∞.

First, we do a rough analysis of the orders of magnitude of the two expressions.
When x → ∞, the leading order of

√
x2 + x+ 1 is

√
x2 = |x|, and the the

leading order of 3
√
x3 + x+ 1 is 3

√
x3 = |x|. Thus we need to do a more refined

analysis.
One effective way to carry this out is to factor out the leading order

terms, and do a Taylor expansion of the factored-out terms, which are now
evaluated near a finite value.√

x2 + x+ 1 = x
√

1 + x−1 + x−2 = x

{
1 + 1

2
(
x−1 + x−2)+O(x−2)

}
,

3
√
x3 + x+ 1 = x 3

√
1 + x−2 + x−3 = x

{
1 + 1

3
(
x−2 + x−3)+O

(
x−4)} .

In the above, we did a Taylor expansion of
√

1 + u and respectively
3
√

1 + u at u = 0, and treated u = x−1 + x−2 and respectively u = x−2 + x−3.
Thus we have √

x2 + x+ 1−3
√
x3 + x+ 1

=1
2 + 1

2x +O(x−1)− 1
3x −

1
3x2 −O(x−3)

→1
2 as x→∞.
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Checkpoint 1.6 Find limx→0
sin100 x−x100

xa , where a > 0 is some given param-
eter. This and the following problem were originally used by Professor Kasper
Larsen.

l’Hospital’s rule is often a student’s first choice for dealing with limits of the
form 0/0. But that is only a mechanical way of dealing with such a limit. The key
is to compare the order of vanishing of the numerator and the denominator.
Hint. Use the Taylor expansion for sin x in the form of sin x = x+R(x)x3 where
R(x)→ − 1

6 as x→ 0, then use the binormal expansion on x+R(x)x3.

Checkpoint 1.7 Analyze the dependence of a(t) =
∑∞
n=1 e

−npt on t. Define
a(t) =

∑∞
n=1 e

−npt, where p > 0 is some given parameter. Show that there exists
some α > 0 such that

lim
t→0

a(t)
tα

exists.

Also identify this limit, and identify conditions on p such that
∫ 1

0 a(t) dt converges.
Under what conditions is

∫∞
1 a(t) dt convergent?

Hint. For the beginning part, use the integral estimate∫ ∞
1

e−x
pt dx ≤

∞∑
n=1

e−n
pt ≤

∫ ∞
0

e−x
pt dx

and make a change of variables in the integrals to delineate the role of t.

Example 1.8 (January 2017 WQ).

Given any polynomials zn + bn−1z
n−1 + · · ·+ b1z + b0 and an−1z

n−1 + · · ·+
a1z + a0 . Evaluate∫

|z|=r

an−1z
n−1 + · · ·+ a1z + a0

zn + bn−1zn−1 + · · ·+ b1z + b0
dz

for all sufficiently large r > 0.
Even though this problem appeared as a problem in complex analysis, the

main insight is still to quantify the size of the quotient an−1z
n−1+···+a1z+a0

zn+bn−1zn−1+···+b1z+b0

when |z| = r is large. Based on our discussion earlier, we expect it to be
approximated by an−1z

n−1

zn = an−1
z , and the integral of the latter is easy to

evaluate.
To carry out this approach rigorously, we need to estimate how close the

approximation is as |z| → ∞. One can see that∣∣∣ an−1z
n−1 + · · ·+ a1z + a0

zn + bn−1zn−1 + · · ·+ b1z + b0
− an−1

z

∣∣∣
=
∣∣∣an−1z

n + · · ·+ a1z
2 + a0z − an−1

(
zn + bn−1z

n−1 + · · ·+ b1z + b0
)

zn+1 + bn−1zn + · · ·+ b1z2 + b0z

∣∣∣
≤ C

|z|2
for all sufficiently large|z|.

Since the circle {z : |z| = r} has length 2πr, it is now clear that the
approximate integral differs from the given integral by an error which tends
to 0 as |z| → ∞.
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Example 1.9 The first encounter with the Cauchy-Schwarz inequality.

The Cauchy-Schwarz inequality states that, for any a = (a1, · · · , an),b =
(b1, . . . , bn), ∣∣∣ n∑

i=1
aibi

∣∣∣ ≤ ( n∑
i=1

a2
i

)1/2( n∑
i=1

b2i

)1/2

. (1.1)

There are many proofs of this inequality, including very conceptual and
short ones. But we will use this occasion to illustrate how one would go about
investigating such a problem in the absence of knowing the inner product
concept which underlies this inequality.

There are 2n quantities in this inequality. One interpretation of this
inequality is that, among those values of these 2n quantities which make
the right hand side a constant, the left hand side can’t be made large than
the right hand side. But how can we make the left hand side as large as
possible? Can we examine the relations between the two sides by varying
only one or two variables at a time? Why don’t we study the small n cases
first, and see whether we can gain some insight there?

Small n cases. The two sides are equal when n = 1. The n = 2 case
takes the form of

|a1b1 + a2b2| ≤
√
a2

1 + a2
2

√
b21 + b22. (1.2)

There are several possible approaches at this point.

(i). Treat only one quantity, say, a1, as a variable, and the rest as parame-
ters, and prove that the left hand side is no more than the right hand
side as a function of this variable. Algebraically it is easier to try to
prove

f(a1) := |a1b1 + a2b2|2 − (a2
1 + a2

2)(b21 + b22) ≤ 0.

One can use one-variable calculus to tackle this. You should carry out
the calculus to find out the roles played by the remaining variables.
Can you handle the general n case this way too?
If one works directly with the left hand side as set up in (1.2), or try
to prove a1b1 + a2b2 −

√
a2

1 + a2
2
√
b21 + b22 ≤ 0, then the calculus is a

bit more tedious to handle.

(ii). Formulate the problem as a constrained maximization problem and
tackle it using the method of Lagrange multipliers. Note that if we
change (a1, a2) to t(a1, a2) for some t > 0, then both sides get multiplied
by t. We say that they have homogeneity degree 1 in (a1, a2). So it
suffices to consider the above inequality subject to a2

1 + a2
2 = 1. Then

the question becomes one of showing that the maximum of a1b1 + a2b2
as a function of (a1, a2) subject to a2

1 + a2
2 = 1 is smaller than or equal

to
√
b21 + b22. We can certainly investigate this by using the method of

Lagrange multipliers; in fact, we can do this for the general case of n
using a similar reduction.

(iii). But we can also investigate (1.2) directly by noting a geometric inter-
pretation of both sides: the constraint a2

1 + a2
2 = 1 means that (a1, a2)

is varying on the unit circle centered at the origin. Both sides of (1.2)
are also of homogeneity degree 1 in (b1, b2), so it does not lose any
information if we assume b21 + b22 = 1. Then |a1b1 +a2b2| is the distance
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from the origin to the line through (a1, a2) with (b1, b2) as unit normal-
--geometrically, the family of straightlines {(a1, a2) : a1b1 + a2b2 = c}
for varying c all have (b1, b2) as their unit normal, so its maximum
value is 1 and is attained when this line is tangent to the unit circle, in
which case (a1, a2) = ±(b1, b2).
Illustration of the extreme values of a1b1 + a2b2 on a2

1 + a2
2 = 1 is

provided at this Desmos page1.
Note that this interpretation can also be adapted to the general n cases.
If we vary two variables, say, ai, aj , for some i < j, and keep all other
variables fixed, we may even keep a2

i +a2
j = r2 as a constant so that the

right hand side does not change. But the dependence of the left hand
side on ai, aj is only through aibi + ajbj . So the question is reduced to
the two variables case, and we conclude that the left hand side attains
its maximum possible value when the two factors on the right hand side
are constrained to be a constant when (ai, aj) = ±(bi, bj) for any pairs
i 6= j. Then a little further argument shows that they all have the take
the same signs. Thus the left hand side attains its maximum possible
value when the two factors on the right hand side are constrained to
be a constant when (a1, · · · , an) = ±(b1, . . . , bn).

General n cases. We set out to discuss the small n cases first, but find
quickly that the ideas for solving the small n cases can easily adapt to the
general n cases.

Example 1.10 Identify the maximum of (
∑n
i=1 ai)

(∑n
i=1 a

−1
i

)
under the

constraint 0 < a ≤ ai ≤ A.

This can be formulated as finding the maximum of the continuously differen-
tiable function

f(a) :=
(

n∑
i=1

ai

)(
n∑
i=1

a−1
i

)
on the bounded closed set B := {a : a ≤ ai ≤ A, 1 ≤ i ≤ n}.

The maximum of f is guaranteed to exist, and the solution method is
standard, but some additional analysis is needed in carrying out the solution.

First, let’s see whether f has any interior critical point.

fak(a) =
(

n∑
i=1

a−1
i

)
−

(
n∑
i=1

ai

)
a−2
k ,

so a critical point of f inside B must satisfy a1 = · · · = an. But at such a
point f(a) = n2, and we know by the Cauchy-Schwarz inequality that for
any a ∈ B,

f(a) ≥
(

n∑
i=1

√
ai

√
a−1
i

)2

= n2,

so such a critical point only corresponds a minimum of f , and the maximum
of f must occur on a boundary point of B.

The boundary of B consists of many faces and edges, so it is not a trivial
task to carry out this analysis. One can get some experience by examining

1https://www.desmos.com/calculator/ppezzftthy
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the n = 2, 3 cases first. But our computation of the partial derivative fak(a)
contains more information:

fak(a) =

∑
i6=k

a−1
i

−
 n∑
i6=k

ai

 a−2
k ,

so it has only one zero in R+, is negative before this zero, and is positive
after this zero. Thus the maximum in varying ak ∈ [a,A] must occur at the
boundary point a or A.

We now see that at a maximum point of f on B,

ak = a or A for each k.

Since switching the order of the ak’s does not affect f(a), we may assume
that a takes the form of

a = (a, · · · , a, A, · · ·A),

with m of a’s, m = 0, 1, · · · , n. For such an a,

f(a) = [ma+ (n−m)A][ma−1 + (n−m)A−1].

What remains is to identify the largest possible value among these n + 1
candidates. It turns out that

m =
{
n
2 for even n,
n+1

2 for odd n.

We thus conclude that

max
B

f =
{(

n
2
)2 (a+A)(a−1 +A−1) =

(
n
2
)2 (1 + A

a )(1 + a
A ) for even n,(

n−1
2
)2 (n+1

n−1a+A)(n+1
n−1a

−1 +A−1) =
(
n−1

2
)2 (n+1

n−1 + A
a )(n+1

n−1 + a
A ) for odd n.

We could have seen the dependence of the bound on A
a by noting that

f(ta) = f(a) for any t > 0. Although the constraint a ≤ ai ≤ A is not
invariant under the scaling a 7→ ta, we can replace ai by ai/a and A by A/a
in our set up: 1 ≤ ai ≤ A

a .

Example 1.11 Identify the minimum of

∣∣∣∑n

i=1
aibi

∣∣∣
(
∑n

i=1
a2
i )1/2(

∑n

i=1
b2
i )1/2 under some

constraints on a,b.

The Cauchy-Schwarz inequality tells us that the above ratio is no greater
than one. It can attain 0 if no constraints are imposed. Suppose that there
exist 0 < a < A, 0 ≤ b < B, and

a ≤ ai ≤ A, b ≤ bi ≤ B for all i.

What would be the minimum of the above ratio subject to this constraint?
This problem is related to #92 in Part II, Chapter 2 of Polya and Szegö’s
classic “Problems and Theorems in Analysis I”, and is an extension of the
previous example.

The ratio has homogeneity of degree 0 in a and b separately, but the
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constraint is not homogeneity of degree 0 in a or b. On the other hand,
using the homogeneity of the ratio, and dividing each ai by a, and each bi by
b, the bounds for the new ai’s are 1 and A/a, and the bounds for the new
bi’s are 1 and B/b, so we expect the result will depend on A/a and B/b. We
will make this reduction from here on.

Consider
f(a,b) :=

∑n
i=1 aibi

(
∑n
i=1 a

2
i )

1/2 (
∑n
i=1 b

2
i )

1/2

subject to the constraint 1 ≤ ai ≤ A/a and 1 ≤ bi ≤ B/b for each i. We first
compute the derivatives of the log of f :

fak/f = bk∑n
i=1 aibi

− ak∑n
i=1 a

2
i

,

fbk/f = ak∑n
i=1 aibi

− bk∑n
i=1 b

2
i

,

so any critical point must satisfy a = tb for some t > 0. But such a critical
point would make f = 1, which is the maximum of f ; furthermore, such a
critical point may not be in the interior of the constraint set. Therefore, the
minimum of f in this constraint region must occur on its boundary.

We also note that

fak/f =
bk
∑
i 6=k a

2
i − ak

∑
i 6=k aibi

(
∑n
i=1 aibi) (

∑n
i=1 a

2
i )

,

so when varying ak only, fak has only one zero, is positive before the zero and
negative after the zero. So, like in the previous example, at any minimum of
f , we must have

ak = 1 or A
a

; bk = 1 or B
b
.

One complication here is that rearranging the ak’s and bk’s may cause a
change in the value of f . This is handled by the following algebraic fact.

If 0 < a1 ≤ a2 ≤ · · · ≤ an and b1 ≥ b2 ≥ · · · ≥ bn > 0, then for
any permutation σ of {1, 2, · · · , n},

n∑
i=1

aibi ≤
n∑
i=1

aibσ(i) ≤
n∑
i=1

aibn+1−i.

In other words,
∑n
i=1 aibσ(i) is the smallest when the ordering

of the ai’s is the opposite of that of the bσ(i)’s, and the largest
when their orderings are the same.

This is seen by examining the effect of permuting any two indices. Suppose
ai ≤ aj , bi ≥ bj . Then

(aibi + ajbj)− (aibj + ajbi) = (ai − aj)(bi − bj) ≤ 0.
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This algebraic fact is used in an optimization problem in queuing theory.
Suppose n tasks need to be completed in a queue. The completion times for
these tasks are t1, t2, · · · , tn. We need to find a queuing arrangement so that
the total waiting time by all the tasks is minimal.

An arrangement corresponds to a permutation σ of {1, 2, · · · , n}. The
associated total waiting time is

tσ(1) + tσ(1) + tσ(2) + · · ·+ tσ(1) + tσ(2) + · · ·+ tσ(n)

=ntσ(1) + (n− 1)tσ(2) + · · ·+ tσ(n).

According to the algebraic discussion above, the minimal of this waiting time
is when the tσi ’s are arranged in ascending order.

In our situation, rearranging the ai’s or bσ(i)’s would not change the
denominator, so the minimum of the quotient must have them arranged in
opposite ordering.

Suppose we arrange the bσ(i)’s in descending order,

b = (B
b
, · · · , B

b
, 1, · · · , 1)

with k of Bb ’s, then we must have

a = (1, · · · , 1, A
a
, · · · , A

a
),

with l of A
a ’s. A further argument shows that l = k (You should try to

provide an argument for this statement). Thus the candidates for min f in
this constraint region are from

kBb + (n− k)Aa√
[k(Bb )2 + n− k][k + (n− k)(Aa )2]

for k = 0, · · · , n. It remains to find the smallest of these n+ 1 values, or find
a nearly optimal lower bound.

It turns out that, if k is allowed to be a real number (so one can use one
variable calculus to find the minimum), then the minimum is

2√
AB
ab +

√
ab
AB

,

which is the bound given by Polya and Szegö. This analysis also shows
conditions under which the inequality becomes an equality.
Hint. Setting t = (n− k)/k, then t ranges between 0 and ∞, and

kBb + (n− k)Aa√
[k(Bb )2 + n− k][k + (n− k)(Aa )2]

=
B
b + tAa√

[(Bb )2 + t][1 + t(Aa )2]

and it’s not too hard to work out the minimum of this function of t for
0 < t <∞ to be the claimed result above.

Checkpoint 1.12 Identify the infimum of uβ+vα√
(uβ2+v)(u+vα2)

for (u, v) in the
first quadrant. Here we assume that α, β > 0.

10



Hint. The function has homogeneity of degree 0 in (u, v), so it suffices to examine
it as a function of t = v/u.

Answer. 2
√
αβ

αβ+1 = 2√
αβ+(
√
αβ)−1

.

2 Inequalities: Basic Tools of the Trade
The central concepts in analysis involve various notions of convergence and com-
pactness. The bulk of the actual work in analysis to handle the issues involving
convergence and compactness is to assess the size of the different terms, to identify
the leading order ones, and use the information effectively to draw useful conclusions.
This process involves regular and judicious use of various inequalities. So a good
part of our discussions will involve inequalities.

2.1 Using homogeneity and scaling
Many of the examples of the previous subsection involve concrete functions, for
which we can often estimate their sizes in a more specific way; we often also need
to work with general functions which are not known in detail in advance, so in
estimating their sizes we would need to apply equalities or inequalities that are valid
for a class of general functions. In such a situation, using homogeneity and scaling
is often a helpful tool as a starting point. We already used these properties in the
previous subsection, here we give a bit more discussion.Any product of powers of
several quantities has a notion of degree of homogeneity for the different powers. For
example, if we treat a, b as separate entities, then ab has degree 1 of homogeneity
for both a and b, while a2 has degree 2 of homogeneity for a; but if we treat a, b as
components of a single vector entity (a, b), then both ab and a2 have degree 2 of
homogeneity for (a, b).

In the summations
n∑
i=1

aibi,

(
n∑
i=1

a2
i

)1/2( n∑
i=1

b2i

)1/2

,

if we treat a = (a1, · · · , an),b = (b1, . . . , bn) as separate entities, then each sum has
degree 1 of homogeneity in a or b.

More formally an expression E(a,b, · · · ) is said to have degree d of (positive)
homogeneity in a if

E(λa,b, · · · ) = λdE(a,b, · · · ) for all λ > 0,a,b, · · · .

The principle of homogeneity analysis says that if both sides of an equality or
inequality have a degree of homogeneity in a certain variable, then they must have
the same degree of homogeneity in that variable.

Example 2.1 Degree of homogeneity in (a+ b)n.

In the identity

(a+ b)2 = a2 + 2ab+ b2

each side has degree 2 homogeneity in (a, b). While

(a+ b)3 = a3 + 3a2b2 + b3 can’t possibly hold for all (a, b),

for, (a+ b)3 − a3 − b3 has degree 3 homogeneity in (a, b), but 3a2b2 degree 4
homogeneity in (a, b).

11



We illustrate how to use this principle to prove some inequalities, including the
Cauchy-Schwarz inequality.

Example 2.2 Estimate (x+y)a in terms of xa+ya, where 0 < a < 1, x, y > 0.

Both expressions have degree a of homogeneity in (x, y), so we can exploit
this. We can normalize to the situation that x+ y = 1 and find an upper
and lower bound of xa + ya.

Since 0 ≤ x, y ≤ 1, we have xa ≥ x and ya ≥ y, so xa + ya ≥ x+ y = 1.
Thus xa + ya ≥ (x+ y)a holds.

To get an upper bound for xa + ya subject to x + y = 1 and x, y > 0,
we can eliminate the y = 1− x and treat xa + ya = xa + (1− x)a as a one
variable function of 0 ≤ x ≤ 1. Using calculus we easily find that it attains
its maximum on [0, 1] at x = 1

2 , so x
a + (1− x)a ≤ 21−a, and in general we

have xa + ya ≤ 21−a(x+ y)a.
To summarize, for any 0 < a < 1, x, y > 0, there holds

2a−1(xa + ya) ≤ (x+ y)a ≤ xa + ya.

Example 2.3 The Cauchy-Schwarz inequality again.

The Cauchy-Schwarz inequality states that, for any a = (a1, · · · , an),b =
(b1, . . . , bn),

|
n∑
i=1

aibi| ≤

(
n∑
i=1

a2
i

)1/2( n∑
i=1

b2i

)1/2

.

Both sides of the inequality have degree 1 of homogeneity in a or b, so it
suffices to establish it for

n∑
i=1

a2
i = 1 and

n∑
i=1

b2i = 1.

We apply the arithmetic -geometric inequality to each aibi

|aibi| ≤
a2
i + b2i

2 ,

then sum over i to get
n∑
i=1
|aibi| ≤

∑n
i=1 a

2
i +

∑n
i=1 b

2
i

2 = 1,

which is the case of the Cauchy-Schwarz inequality when
∑n
i=1 a

2
i =

∑n
i=1 b

2
i =

1.

Checkpoint 2.4 Use the same technique to prove the Hölder’s inequality.
The Hölder’s inequality states

|
n∑
i=1

aibi| ≤

(
n∑
i=1
|ai|p

)1/p( n∑
i=1
|bi|p

′

)1/p′

,

for any vectors a = (a1, · · · , an),b = (b1, . . . , bn), where p > 1 and p′ satisfy

12



1
p + 1

p′ = 1.
Hint. First use convexity of x 7→ xp (or calculus) to establish, for a, b ≥ 0,

ab ≤ ap

p
+ bp

′

p′
.

You should also consult Professor Ocone’s discussion on these inequalities.
Likewise, the integrals

∫ b
a
f(x) dx,

∫ b
a
f(x)2 dx,

(∫ b
a
f(x)2 dx

)1/2
and

(∫ b
a
f ′(x)2 dx

)1/2

have degrees of homogeneity in f equal to 1, 2, 1, 1 respectively. The integrals∫ b
a
f(x)g(x) dx and

(∫ b
a
f(x)2 dx

)1/2 (∫ b
a
g(x)2 dx

)1/2
have degree 1 of homogeneity

in f, g individually, and degree 2 of homogeneity in (f, g).
Using similar techniques, one can easily prove the integral version of the Cauchy-

Schwarz inequality,

∣∣∣ ∫ b

a

f(x)g(x) dx
∣∣∣ ≤ (∫ b

a

f(x)2 dx

)1/2(∫ b

a

g(x)2 dx

)1/2

and Hölder’s inequality,

∣∣∣ ∫ b

a

f(x)g(x) dx
∣∣∣ ≤ (∫ b

a

∣∣∣f(x)
∣∣∣p dx)1/p(∫ b

a

∣∣∣g(x)
∣∣∣p′ dx)1/p′

,

where p, p′ ≥ 1, 1
p + 1

p′ = 1.

Checkpoint 2.5 Prove
∫ b
a
|f(x)| dx ≤ (b− a)1− 1

p

(∫ b
a

∣∣∣f(x)
∣∣∣p dx)1/p

. Here p > 1
and f(x) is any function such that |f(x)|p is (Riemann) integrable on [a, b]. You
may assume that |f(x)| is also (Riemann) integrable on [a, b], although this can be
proved based on the given assumption.

The above discussion on homogeneity is about the scaling in the dependent
variable. The scaling of the independent variable also plays a role. For instance, if D

is a (nice) domain in Rn, then we will see that ‖f‖Lp(D) :=
(∫

D

∣∣∣f(x)
∣∣∣p dx)1/p

scales

like (length)
n
p , and ‖∇f‖Lp(D) :=

(∫
D

∣∣∣∇f(x)
∣∣∣p dx)1/p

scales like (length)
n−p
p .

These are based on the heuristic reasoning that the volume of a domain in Rn scales
like (length)n and taking a derivative scales like (length)−1.

More formally, we make the change of (independent) variable x = Ly, and take
an f(x) which is supported in D---let’s assume that D has the property that 0 ∈ D
and if x ∈ D then x/L ∈ D for any L ≥ 1. Then for any L ≥ 1, f(Ly) is also a
function supported in D, and(∫

D

∣∣∣f(Ly)
∣∣∣p dy)1/p

= L−
n
p

(∫
D

∣∣∣f(x)
∣∣∣p dx)1/p

,

(∫
D

∣∣∣∇y[f(Ly)]
∣∣∣p dy)1/p

= L
p−n
p

(∫
D

∣∣∣∇f(x)
∣∣∣p dx)1/p

.

Suppose that we believe that for a given p ≥ 1 there is a constant C > 0 depending
on D and some exponent q such that for all C1(D) functions f(x) in D with compact
support in D there holds(∫

D

∣∣∣f(x)
∣∣∣q dx)1/q

≤ C
(∫

D

∣∣∣∇f(x)
∣∣∣p dx)1/p

. (2.1)
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Then the same inequality should also hold with f(Lx) replacing f(x) for any L ≥ 1
(let’s assume that D has the property that 0 ∈ D and if x ∈ D then x/L ∈ D for
any L ≥ 1). This leads to

L−
n
q

(∫
D

∣∣∣f(x)
∣∣∣q dx)1/q

≤ CL
p−n
p

(∫
D

∣∣∣∇f(x)
∣∣∣p dx)1/p

.

In order for this inequality to hold for all L ≥ 1, we conclude that a necessary
condition is

−n
q
≤ p− n

p
equivalently 1

q
≥ 1
p
− 1
n
.

Of course this reasoning only gives a necessary condition for (2.1) to hold; it
does not give an idea whether (2.1) holds. (2.1) does hold and is called the Sobolev
inequality, but its proof would require other ideas.

Another issue related to scaling in (2.1) is the dependence of C on D. It turns
out that if 1

q = 1
p −

1
n , then C depends only on the dimension n and is independent

of D---let’s denote it as Sn, while if 1
q >

1
p −

1
n , then C has the form of Sn|D|

1
q−

1
p+ 1

n ,
where |D| is the volume of D.
Proof of the above statement. Let qn be determined by 1

qn
= 1

p −
1
n . Then, for q

such that 1
q >

1
p −

1
n , we know q < qn. We apply Hölder’s inequality to estimate(∫

D

∣∣∣f(x)
∣∣∣q dx)1/q

in terms of
(∫

D

∣∣∣f(x)
∣∣∣qn dx)1/qn

, then apply (2.1) with qn to

estimate the latter by
(∫

D

∣∣∣∇f(x)
∣∣∣p dx)1/p

.
Here is the actual implementation.(∫

D

∣∣∣f(x)
∣∣∣q dx)1/q

≤|D|
1
q−

1
qn

(∫
D

∣∣∣f(x)
∣∣∣qn dx)1/qn

≤|D|
1
q−

1
qn Sn

(∫
D

∣∣∣∇f(x)
∣∣∣p dx)1/p

.

�

Remark 2.6

An easier and more natural formulation of (2.1) which exhibits the dependence
of C on the domain D is to make both sides “non-dimensionalized” with
respect to the x variable. As it stands, the two integrals in (2.1) depend on
the choice of a unit for x and scale differently on this unit, so in order to
make (2.1) valid in any choice of scale, the constant C has to keep track of
the dependence on the scale.

On the other hand,(
|D|−1

∫
D

∣∣∣f(x)
∣∣∣q dx)1/q

and
(
|D|−1+ p

n

∫
D

∣∣∣∇f(x)
∣∣∣p dx)1/p

do not depend on the choice of a scale on x, and (2.1) can be reformulated as(
|D|−1

∫
D

∣∣∣f(x)
∣∣∣q dx)1/q

≤ C ′
(
|D|−1+ p

n

∫
D

∣∣∣∇f(x)
∣∣∣p dx)1/p

for some constant C ′ > 0 which is independent of the choice of a scale for
D. It turns out that in the case here C ′ does not depend on other geometric
features of D either and depends only on the dimension n.
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Another often used interpretation of this formulation and the change of
variable x = Ly is to treat this change of variable as transforming the quan-
tities for x ∈ D to ones for y in some appropriatly scaled, often normalized,
region; say, if D is a ball of radius L, then x = Ly would make y to lie in a
unit ball, and once a certain equality or inequality can be established on a
unit ball, it can be used to establish an appropriate one on any sized ball by
this scaling.

Checkpoint 2.5 can be proved in this fashion by first proving it on a unit
interval and then transforming the general case to the unit interval case.

2.2 Making good use of the FTC and integration-by-parts
The Fundamental Theorem of Calculus (FTC) and integration-by-parts are essential
tools in analyzing integrals involving a function and its derivatives. We illustrate
their basic usages through some simple examples.

Example 2.7 (August 2014 WQ).

Let f(x) be a continuously differentiable real-valued function over R with
f(0) = 0. Suppose that |f ′(x)| ≤ |f(x)| for all x ∈ R.
(a). Show that f(x) = 0 for all x in a neighborhood (−ε, ε) for some ε > 0.

(b). Show that f(x) = 0 for all x ∈ R.

Solution. We should focus on how to make effective use of the assumption
|f ′(x)| ≤ |f(x)| for all x ∈ R. Whenever f(x) 6= 0, the assumption is
equivalent to |(ln |f(x)|)′| ≤ 1, which can be readily used. How to deal with
the possibility that |f(x)| transits between 0 and positive? What role does
the assumption f(0) = 0 play?

Since the assumption is easier to yield information when f(x) 6= 0, we will
make an argument by contradiction and assume that there exists some x∗ near
0 such that f(x∗) 6= 0 and explore the behavior of f(x) in a neighborhood of
x∗ where f(x) 6= 0.

First proof. Let I be the largest interval containing x∗ such that
f(x) 6= 0 for all x ∈ I. Then for any x ∈ I, |(ln |f(x)|)′| ≤ 1, and, since
f(0) = 0, I must have at least one finite end point xe at which f(xe) = 0.
(Can you write down a more formal proof of this statement?)

Using the FTC, for any x, y ∈ I,∣∣∣ ln |f(x)|
|f(y)|

∣∣∣ =
∣∣∣ ln |f(x)| − ln |f(y)|

∣∣∣
=
∣∣∣ ∫ x

y

(ln |f(s)|)′ ds
∣∣∣

≤|y − x|,

from which we obtain

e−|y−x| ≤ |f(x)|
|f(y)| ≤ e

|y−x|, for any x, y ∈ I.

Now if we let x→ xe, then |f(x)|
|f(y)| → 0, but this would contradict the above

inequality.
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Second proof. Since the integral of f ′(x) would give the change in f(x),
using f(0) = 0, we have, for x > 0,

|f(x)| = |f(x)− f(0)| = |
∫ x

0
f ′(s) ds| ≤

∫ x

0
|f(s)| ds.

But the derivative of F (x) :=
∫ x

0 |f(s)| ds is |f(x)|, so this has led to

F ′(x) ≤ F (x) for x > 0.

This can be recognized to lead to(
e−xF (x)

)′ = e−x (F ′(x)− F (x)) ≤ 0 for x > 0.

We therefore conclude that

e−xF (x) ≤ e0F (0) = 0 for x > 0.

But this leads to

F (x) =
∫ x

0
|f(s)| ds ≤ 0 for x > 0,

which forces f(x) = 0 for all x > 0. The case for x < 0 can be proved in a
similar fashion.

Example 2.8 Prove |f(b)− f(a)| ≤
(∫ b

a
|f ′(x)|p dx

) 1
p (b− a)1− 1

p .

Here, f(x) is any continuous function on [a, b] with piecewise continuous
derivative.

This is proved by applying the FTC and and Hölder’s inequality.

|f(b)−f(a)| = |
∫ b

a

f ′(x) dx| ≤
∫ b

a

|f ′(x)| dx ≤
(∫ b

a

|f ′(x)|p dx
) 1
p

(b−a)1− 1
p .

Remark 2.9

As a consequence of the above simple inequality, we see that, if we define
X := {f ∈ C[a, b] : f(a) = 0, f ′(x) piecewise continuous on [a, b]},

then for any p, q ≥ 1, f ∈ X,

||f ||Lq [a,b] ≤ (b− a)1− 1
p+ 1

q ||f ′||Lp[a,b]. (2.2)
Another simple consequence of the above simple inequality is that, for

any p ≥ 1,M > 0, the set of functions f in
Y := {f ∈ C[a, b] : f ′(x) piecewise continuous on [a, b]}

with ||f ′||Lp[a,b] ≤ M is equicontinuous. In particular Arzelà–Ascoli
Theorem implies that the set of functions f in X with ||f ′||Lp[a,b] ≤ M
is pre-compact in C[a, b], namely, its closure in C[a, b] is compact there.
Put another way, for any sequence {fk} in this set, it has a subsequence
{fkl}, and a limiting function f∞ ∈ C[a, b] such that {fkl} → f∞ in C[a, b]
as l→∞.
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Here is the definition of an equicontinuous family of functions.

Definition 2.10

A family F of real-valued, continuous functions on a metric space X is said
to be equicontinuous at x0 ∈ X if for every ε > 0 there exists a δ > 0 such
that ∣∣∣f(x0)− f(y)

∣∣∣ < ε for all f ∈ F , whenever d(x0, y) < δ.

The family F is said to be equicontinuous if it is equicontinuous at all
x ∈ X.

Here is the statement of the Arzelà–Ascoli Theorem.

Theorem 2.11

Let S be compact. A closed subset F of C(S) is compact if and only if
(i). supF ‖f‖∞ <∞, (F is uniformly bounded), and,

(ii). F is equicontinuous.

Professor Ocone’s notes have a sketch of proof, while Professor Mirek’s notes
have a formulation of the notion of equicontinuity and the Arzelà–Ascoli Theorem
which does not require S to be a metric space.

Example 2.12 Why do we care about inequalities such as (2.2)?

Inequalities about a general class of functions, perhaps subject to some side
conditions such as some boundary conditions, are essential for investigating
the behavior of solutions of differential equations and for their constructions.

We illustrate here a simple application of (2.2) in studying the behavior
of solutions of

u ∈ C2[a, b];u′′(x) = h(x), a < x < b;u(a) = u(b) = 0.

Here h ∈ C[a, b] is treated as a given function.
The essence of (2.2) is that the Lq norm of a function is controlled by

some Lp norm of the derivative of this function, provided that this function
equals 0 at one end (in fact, it suffices that it equals 0 somewhere in the
interval).

In our problem, the second derivative u′′(x) of u(x) on [a, b] is controlled in
terms of h(x). Can we control u(x) and u′(x) on [a, b] in terms of h ∈ C[a, b]?

We would like to first apply (2.2) to u′(x) on [a, b], but it requires u′(x) = 0
somewhere in [a, b]. This is guaranteed by Rolle’s Theorem based on the
boundary conditions u(a) = u(b) = 0. Thus

max
[a,b]
|u′| ≤ ‖u′′‖L1[a,b] = ‖h‖L1[a,b].

Next we apply (2.2) to u(x) on [a, b] to conclude that

max
[a,b]
|u| ≤ ‖u′‖L1[a,b] ≤ (b− a) max

[a,b]
|u′| ≤ (b− a)‖h‖L1[a,b].

Thus ‖h‖L1[a,b] alone bounds max[a,b] |u| and max[a,b] |u′|.
Question: Can one draw the same conclusions if only one boundary

condition of the problem above is kept? Namely, do the same conclusions
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hold for solutions to

u ∈ C2[a, b];u′′(x) = h(x), a < x < b;u(a) = 0.

Remark 2.13

A variant of the above inequality is the following. Let f̄ denote the mean of
f over [a, b]:

f̄ = (b− a)−1
∫ b

a

f(x) dx.

Then we have, for any x ∈ [a, b],

|f(x)− f̄ | ≤
(∫ b

a

|f ′(x)|p dx
) 1
p

(b− a)1− 1
p . (2.3)

One way to prove this is to use the theorem of the mean to find some
c ∈ [a, b] such that f(c) = f̄ , then apply the previous inequality on the
interval between x and c.

An integral version of this inequality takes the form of

‖f − f̄‖Lq [a,b] ≤ (b− a)1− 1
p+ 1

q ||f ′||Lp[a,b], (2.4)

where p, q ≥ 1.

Example 2.14 An interpolation inequality using Taylor’s formula.

Suppose that f ∈ C2[a, b]. Then for any 0 < ε ≤ (b− a)/4, there holds

max
[a,b]
|f ′(x)| ≤ εmax

[a,b]
|f ′′(x)|+ ε−1 max

[a,b]
|f(x)|.

One typical application of such an inequality is to obtain estimates on
the derivatives of a solution to a differential equation in terms of estimates
on max[a,b] |f(x)|. For example, if u(x) solves

u′′(x) = (10 sin x)u′(x)− 2u(x) on [a, b],

then we can use the above inequality with ε = 1
20 and the differential equation

to obtain

max
[a,b]
|u′(x)| ≤εmax

[a,b]
|u′′(x)|+ ε−1 max

[a,b]
|u(x)|

≤1
2 max

[a,b]
|u′(x)|+

(
1
10 + 20

)
max
[a,b]
|u(x)|,

from which we obtain

max
[a,b]
|u′(x)| ≤ 41 max

[a,b]
|u(x)|.

This can then be used in the differential equation to obtain estimate on
max[a,b] |u′′(x)| in terms of max[a,b] |u(x)|.
Solution. This is proved by using Taylor’s formula at any x ∈ [a, b] by
choosing h = ±2ε such that the interval with x and x + h as ends lies in
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[a, b]. The Taylor’s formula gives

f(x+ h)− f(x) = f ′(x)h+ h2

2 f
′′(c) for some c between x and x+ h.

It follows that

|f ′(x)| ≤|f(x+ h)− f(x)|
|h|

+
|h|max[a,b] |f ′′(y)|

2

≤
2 max[a,b] |f(y)|

|h|
+
|h|max[a,b] |f ′′(y)|

2 ,

which readily gives us the desired conclusion.
Note that if [a, b] is infinitely long and the natural replacements of the

quantities on the right hand side, sup(a,b) |f(x)|, sup(a,b) |f ′′(x)| <∞, then
we can vary ε > 0 arbitrarily, and by taking the ε > 0 which minimizes the
right hand side, and find the following interpolation inequality

sup
(a,b)
|f ′(x)| ≤ 2

√
sup
(a,b)
|f ′′(x)|

√
sup
(a,b)
|f ′′(x)|.

Often we are interested in finding the optimal constant which makes (2.4) true
for all f , namely, the smallest constant Cp,q > 0 such that

‖f − f̄‖Lq [a,b] ≤ Cp,q||f ′||Lp[a,b] ∀f ∈ Y.

We will give an easier to work with formulation in the case of p = q = 2. Then the
question is equivalent to identifying

CN := inf
{∫ b

a
|f ′(x)|2 dx∫ b

a
|f(x)|2 dx

: f ∈ Y, f̄ = 0
}
. (2.5)

According to (2.4) for the case of p = q = 2, CN ≥ (b − a)−2. Our goal is
to identify CN more explicitly, and more ambitiously, to identify those f which
attain this optimal constant CN . This is part of Calculus of Variations. This
part is conceptually more advanced, and is typically not considered as part of
the undergraduate mathematics curriculum, although the main ideas and most
calculations are fairly elementary.

It turns out that

CN =
(

2π
(b− a)

)2
(2.6)

and any function f which attains CN must be of the form of

f(x) = A sin
(

2π(x− a)
(b− a)

)
+B cos

(
2π(x− a)

(b− a)

)
for some constants A,B.

A proof of this statement requires new ideas. The elementary methods used
earlier would not work---considering that it’s not clear how π would enter an
elementary inequality argument and how these minimizers arise. We will only touch
on briefly some ideas in proving such an inequality.

We will first use Fourier series expansion to sketch a proof a weaker statement,
requiring the functions f to satisfy the additional requirement that f(a) = f(b).
Integration-by-parts plays a crucial role behind the scene in this proof. We first
review some facts on Fourier series to be used.
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Fact 2.15 Some relevant facts of Fourier series.

For ease of notation, we set b− a = 2l, a = 0.
1. The set of functions {1, cos

(
nπx
l

)
, sin

(
nπx
l

)
: n ∈ N} are mutually

orthogonal to each other on [0, 2l] in the sense that∫ 2l

0
X(x)Y (x) dx = 0 for any distinct X(x), Y (x) in this family.

2. Any integrable function g(x) on [0, 2l] has a Fourier expansion

g(x) ∼ a0 +
∞∑
n=1

[
an cos

(nπx
l

)
+ bn sin

(nπx
l

)]
,

where an, bn are obtained formally by multiplying both sides of the above
relation by either cos

(
nπx
l

)
or sin

(
nπx
l

)
and integrating over [0, 2l].

Using the above orthogonal relation, we have

a0 = 1
2l

∫ 2l

0
g(x) dx,

an = 1
l

∫ 2l

0
g(x) cos

(nπx
l

)
dx for n ≥ 1,

bn = 1
l

∫ 2l

0
g(x) sin

(nπx
l

)
dx for n ≥ 1.

3. The expansion relation above is an equality in the mean square sense.
Namely, the partial sums

SN [g](x) := a0 +
N∑
n=1

[
an cos

(nπx
l

)
+ bn sin

(nπx
l

)]
converge to g(x) in the mean square sense on [0, 2l]:

‖g − SN [g]‖L2[0,2l] → 0 as N →∞.

4. Furthermore, the following Parseval equality holds (which is a version
of the Pythagorean Theorem in this context):∫ 2l

0
|g(x)|2 dx = 2l|a0|2 + l

∞∑
n=1

[
|an|2 + |bn|2

]
.

5. Assume that g(x) is piecewise C1 on [0, 2l]. Denote the Fourier series
expansion of g′(x) on [0, 2l] by

g′(x) ∼ a′0 +
∞∑
n=1

[
a′n cos

(nπx
l

)
+ b′n sin

(nπx
l

)]
.

Assume further that g(x) is continuous on [0, 2l], and g(0) = g(2l).
Then

a′0 = 0, and a′n =
(nπ
l

)
bn, b

′
n = −

(nπ
l

)
an.

In other words, under our assumptions here, the Fourier series expan-
sion of g′(x) on [0, 2l] can be obtained by term-wise differentiation of
the Fourier series expansion of g(x) on [0, 2l].
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Remark 2.16

The following properties are used in a crucial way in deriving the above
properties of Fourier series.∫ 2l

0
cos2

(nπx
l

)
dx =

∫ 2l

0
sin2

(nπx
l

)
dx = l for n ∈ N,∫ 2l

0
g′(x) cos

(nπx
l

)
dx

=g(x) cos
(nπx

l

) ∣∣∣x=2l

x=0
+
(nπ
l

)∫ 2l

0
g(x) sin

(nπx
l

)
dx if g ∈ C[0, 2l]

=
(nπ
l

)∫ 2l

0
g(x) sin

(nπx
l

)
dx if g(0) = g(2l);∫ 2l

0
g′(x) sin

(nπx
l

)
dx

=g(x) sin
(nπx

l

) ∣∣∣x=2l

x=0
−
(nπ
l

)∫ 2l

0
g(x) cos

(nπx
l

)
dx if g ∈ C[0, 2l]

=−
(nπ
l

)∫ 2l

0
g(x) cos

(nπx
l

)
dx.

Checkpoint 2.17 Examine the relations of the Fourier series of a function
and its derivative. In item 5 above the assumption that g(x) is continuous on
[0, 2l] and g(0) = g(2l) is essential. Evaluate the Fourier series of the following
functions and their derivatives, and examine whether the relations in item 5 above
hold.

1. f(x) = x− 1 on[0, 2]

2. f(x) =
{
x if0 ≤ x ≤ 1,
x− 2 if1 < x ≤ 2

Proving a restrictive version of (2.6) using with Fourier series expansion. For any
f ∈ Y, f̄ = 0 satisfying the additional assumption that f(0) = f(2l), both f and f ′
has its Fourier series expansion on [0, 2l]:

f(x) ∼ a0 +
∞∑
n=1

[
an cos

(nπx
l

)
+ bn sin

(nπx
l

)]
,

f ′(x) ∼ a′0 +
∞∑
n=1

[
a′n cos

(nπx
l

)
+ b′n sin

(nπx
l

)]
.

Note that

a0 = 1
2l

∫ 2l

0
f(x) dx = 0 using the assumption f̄ = 0,

a′0 = 1
2l

∫ 2l

0
f ′(x) dx = 0 using f(0) = f(2l),

a′n =
(nπ
l

)
bn also using f(0) = f(2l),

b′n = −
(nπ
l

)
an.
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Now, according to the Parseval equality,

‖f‖2L2[0,2l] =
∫ 2l

0
|f(x)|2 dx = 2l|a0|2 + l

∞∑
n=1

[
|an|2 + |bn|2

]
,

‖f ′‖2L2[0,2l] =
∫ 2l

0
|f ′(x)|2 dx = 2l|a′0|2 + l

∞∑
n=1

[
|a′n|2 + |b′n|2

]
= l

∞∑
n=1

(nπ
l

)2 [
|an|2 + |bn|2

]
≥
(π
l

)2
l

∞∑
n=1

[
|an|2 + |bn|2

]
=
(π
l

)2
‖f‖2L2[0,2l].

Since equality holds iff an = bn = 0 for all n ≥ 2, namely, when f(x) = A cos
(
πx
l

)
+

B sin
(
πx
l

)
, (2.6) now follows. �

We now briefly describe the approach using calculus of variations. There are
several issues to deal with.

1. Is there an f which attains this optimal constant CN?

2. If the answer to the above is affirmative, is there a characterization for such
an f?

3. Can use the information above to evaluate CN?

We will assume that answer to item 1 above is affirmative, and briefly discuss
items 2 and 3. Set

Q[f ] :=
∫ b
a
|f ′(x)|2 dx∫ b

a
|f(x)|2 dx

for f ∈ Y, f̄ = 0, f 6≡ 0.

First, (2.4) for the case of p = q = 2 shows that the infimum of Q[f ] is positive.
Next, assume that f ∈ Y, f̄ = 0, f 6≡ 0 attains the infimum, then for any h ∈ Y, h̄ = 0
and any t, f + th is a competitor, and

CN = Q[f ] ≤ Q[f + th] ∀t small so that f + th 6≡ 0.

It is routine to see that Q[f + th] is a differentiable function in t, so we must have

d

dt

∣∣∣
t=0

Q[f + th] = 0.

SinceQ[cf ] = Q[f ] for any c 6= 0, we may scale f , if necessary, to make
∫ b
a
|f(x)|2 dx =

1. Then a routine computation shows that

d

dt

∣∣∣
t=0

Q[f + th] = 2
∫ b

a

[f ′(x)h′(x)− CNf(x)h(x)] dx.

Assuming that f is twice continuously differentiable, then integrating by parts on
the first integral gives∫ b

a

f ′(x)h′(x) dx = f ′(x)h(x)
∣∣∣x=b

x=a
−
∫ b

a

f ′′(x)h(x) dx.
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Therefore we conclude that

f ′(x)h(x)
∣∣∣x=b

x=a
−
∫ b

a

[f ′′(x) + CNf(x)]h(x) dx = 0 ∀h ∈ Y, h̄ = 0. (2.7)

If we take h ∈ Y, h̄ = 0, and further that h(a) = h(b) = 0, then we get

−
∫ b

a

[f ′′(x) + CNf(x)]h(x) dx = 0 ∀h ∈ Y, h̄ = 0, h(a) = h(b) = 0.

We now use the following calculus facts.

Fact 2.18

• If g ∈ C[a, b] such that
∫ b
a
g(x)h(x) dx = 0 for any h ∈ C[a, b] with

h(a) = h(b) = 0, then g ≡ 0 in [a, b].

• If g ∈ C[a, b] such that
∫ b
a
g(x)h(x) dx = 0 for any h ∈ C[a, b] with

h̄ = 0, then g equals some constant in [a, b].

• If g ∈ C[a, b] such that
∫ b
a
g(x) dx = 0 and

∫ b
a
g(x)h(x) dx = 0 for any

h ∈ C[a, b] with h̄ = 0, h(a) = h(b) = 0, then g = 0 in [a, b].

For the first property, if g(c) 6= 0 for some c, construct some hsupported nearc
to make

∫ b
a
g(x)h(x) dx 6= 0. For the second property, take any η ∈ C[a, b],

then take h = η − η̄ and use∫ b

a

g(x)h(x) dx =
∫ b

a

[g(x)− ḡ] η(x) dx.

Using Fact 2.18 and noting that, if we take η ∈ C[a, b] such that η(a) = η(b) = 0
and h = η − η̄ in (2.7), it takes the form of

0 =− [f ′(b)− f ′(a)]η̄ −
∫ b

a

[f ′′(x) + CNf(x)] (η(x)− η̄) dx

=− [f ′(b)− f ′(a)]η̄ −
∫ b

a

[f ′′(x) + CNf(x)] η(x) dx+ [f ′(b)− f ′(a)]η̄ (using f̄ = 0)

=−
∫ b

a

[f ′′(x) + CNf(x)] η(x) dx

It follows that f ′′(x) + CNf(x) = 0 on [a, b].
Now (2.7) takes the form of

f ′(x)h(x)
∣∣∣x=b

x=a
= 0 ∀h ∈ Y, h̄ = 0.

Since we can allow h(a), h(b) arbitrary subject to h ∈ Y, h̄ = 0, it follows that
f ′(a) = f ′(b) = 0. To summarize, any function f which attains the CN must satisfy

f ′′(x) + CNf(x) = 0, a < x < b; f ′(a) = f ′(b) = 0.

The question has been reduced to finding possible values CN for which the above
problem has a solution f which is not identically 0, and then identify the smallest
such CN . It turns out that only when CN =

(
nπ
l

)2 with l = (b− a)/2 and for some
n ∈ N, can we find some solution f ; in fact, in such a case,

f(x) = A cos
(
nπ(x− a)

l

)
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for some constant A. Thus we identify CN to be
(
π
l

)2.
Remark 2.19

Note that in the restrictive formulation of (2.6) we require the functions to
satisfy g(a) = g(b), and the minimizers under this condition are identified to
be A cos

(
π(x−a)

l

)
+B sin

(
π(x−a)

l

)
for some constants A,B; while in the full

formulation of (2.6) we find the infimum to be the same, but the minimizers
are more restrictive. In general the boundary conditions play an integral role
in such problems and in problems involving differential equations.

Checkpoint 2.20 Identify inf Q[f ] on a modified set of functions. Consider

Z1 = {f ∈ C[a, b] : f ′(x) piecewise continuous on [a, b], f(a) = 0}

and

Z2 = {f ∈ C[a, b] : f ′(x) piecewise continuous on [a, b], f(a) = f(b) = 0}.

Identify inf{Q[f ] : f ∈ Z1} and inf{Q[f ] : f ∈ Z2}. Also try to identify the
minimizers in each case.

3 More Applications of Integration-by-parts
We include here some more applications of integration-by-parts.

Example 3.1 Taylor’s remainder formula.

For any n+1 times continuously differentiable function f on [a, b], there
exists c between a and b such that

f(b) =
n∑
0

f (k)(a)
k! (b− a)k + f (n+1)(c)

(n+ 1)! (b− a)n+1. (3.1)

Solution. We will give a proof by using suitably chosen integration-by-
parts repeatedly to express f(b) − f(a) using higher order derivatives of
f .

f(b) = f(a) +
∫ b

a

f ′(x) dx

= f(a) +
∫ b

a

f ′(x) d(x− b)

= f(a) + f ′(x)(x− b)
∣∣x=b
x=a −

∫ b

a

(x− b)f ′′(x) dx

= f(a) + f ′(a)(b− a)−
∫ b

a

f ′′(x) d (x− b)2

2

= f(a) + f ′(a)(b− a)− f ′′(x) (x− b)2

2
∣∣x=b
x=a +

∫ b

a

(x− b)2

2 f ′′′(x) dx

= f(a) + f ′(a)(b− a) + f ′′(a) (b− a)2

2 +
∫ b

a

f ′′′(x) d (x− b)3

3!
= · · ·
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= f(a) + f ′(a)(b− a) + f ′′(a) (b− a)2

2 + · · ·+ f (n)(a) (b− a)n

n!

+ (−1)n
∫ b

a

f (n+1)(x) (x− b)n

n! dx.

In the second line above, d(x− b) is chosen so an undesired boundary term
is absent after integration by parts. This gives an integral version of the
Taylor’s reminder term. If we apply the theorem of the mean to the last
integral, we find some c ∈ (a, b) such that

(−1)n
∫ b

a

f (n+1)(x) (x− b)n

n! dx

=f (n+1)(c)
∫ b

a

(b− x)n

n! dx

=f (n+1)(c) (b− a)n+1

(n+ 1)! .

Integration-by-parts is often used to account for cancellation in some integrals.
Here are some examples.

Example 3.2 For any continuous function f on [0, 2π],
∫ 2π

0 f(x) sin(nx) dx→
0 as n→∞.

Solution. When f is a constant, we see easily that
∫ 2π

0 sin(nx) dx = 0. This
property holds not only on [0, 2π], for any a < b, we also have

∫ b
a

sin(nx) dx→
0 as n→∞. This is the cancellation property we referred to.

If f ∈ C1[0, 2π], then we can exploit this cancellation property using
integration-by-parts as follows.∫ 2π

0
f(x) sin(nx) dx =− 1

n

∫ 2π

0
f(x) d cos(nx)

=− f(x) cos(nx)
n

∣∣∣2π
x=0

+ 1
n

∫ 2π

0
cos(nx)f ′(x) dx

→ 0 as n→∞.

Now for any continuous function f on [0, 2π], and any ε > 0, we first find
some g ∈ C1[0, 2π] such that |f(x)− g(x)| < ε for all x ∈ [0, 2π]. Then∫ 2π

0
f(x) sin(nx) dx =

∫ 2π

0
[f(x)− g(x)] sin(nx) dx+

∫ 2π

0
g(x) sin(nx) dx.

Now ∣∣∣ ∫ 2π

0
[f(x)− g(x)] sin(nx) dx

∣∣∣ ≤ 2πε,

and ∫ 2π

0
g(x) sin(nx) dx→ 0 as n→∞,

so there exists some N such that∣∣∣ ∫ 2π

0
g(x) sin(nx) dx

∣∣∣ < ε for all n > N.
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Thus we get ∣∣∣ ∫ 2π

0
f(x) sin(nx) dx

∣∣∣ < (2π + 1)ε for all n > N,

which shows that
∫ 2π

0 f(x) sin(nx) dx→ 0 as n→∞.
Note that we didn’t use the continuity assumption on f directly: the

proof relies on approximating f by C1 functions, and we only need to get
the approximation in the integral sense instead of uniformly: for a sequence
of gk ∈ C1[0, 2π] ∫ 2π

0

∣∣∣f(x)− gk(x)
∣∣∣ dx→ 0 as k →∞.

Question: Do you know an explicit procedure to approximate a contin-
uous function on a closed interval uniformly by a sequence of C1 functions?
How about approximating a Riemann integrable function in the integral
sense by a sequence of C1 functions?
One possibility is to work with the average h−1 ∫ x+h

x
f(y) dy.

Checkpoint 3.3 Prove that the improper integral
∫∞

0
√
x sin(x2) dx is con-

vergent.
Hint. Treat the integrand

√
x sin(x2) as 1

2
√
x

(
sin(x2)

)′.
It turns out that another way to handle the previous example is to exploit the

periodicity of one of the factors in the integrand.

Example 3.4 For any continuous function f on [0, 2π],
∫ 2π

0 f(x)| sin(nx)| dx→
2
π

∫ 2π
0 f(x) dx as n→∞.

Here we note that | sin(nx)| has period π
n , and∫ π

n

0
| sin(nx)| dx = 2

n
.

When n → ∞, we can partition [0, 2π] into union of short intervals of
the form [ (k−1)π

n , kπn ], and approximate f on this interval by its value at one
end, say, f(kπn ), which would lead to an approximation of the integral on
that interval by 2

nf(kπn ). But the sum of these approximations gives us a
Riemann sum for the integral of f on [0, 2π] multiplied by a factor of 2

π .
Here are more details.∫ 2π

0
f(x)| sin(nx)| dx

=
2n∑
k=1

∫ kπ
n

(k−1)π
n

f(x)| sin(nx)| dx

=
2n∑
k=1

∫ kπ
n

(k−1)π
n

[f(x)− f(kπ
n

)]| sin(nx)| dx+
2n∑
k=1

2
n
f(kπ

n
).

On [ (k−1)π
n , kπn ], [f(x)−f(kπn )]| sin(nx)| is bounded by the oscillation of f on

it, so when n→∞, the first term tends to 0 due to the Riemann integrability
of f , while the second term tends to 2

π

∫ 2π
0 f(x) dx.
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Checkpoint 3.5 Find the limit
∫ b
a
f(x)s(nx) dx as n → ∞ when s(x) is a

general periodic function. The ideas in the previous example can be generalized.
Suppose that s(x) has period T > 0. Then∫ b

a

f(x)s(nx) dx→
(

1
T

∫ T

0
s(x) dx

)∫ b

a

f(x) dx as n→∞.

The second mean-value theorem for the integral is often used to estimate an
integral when the integrand is the product of a monotone function and another
function whose integral has control. It’s proof under the general condition stated
below needs to work with the Riemann sum definition of integrals and use the Abel
summation-by-parts formula. But if we assume that the monotone factor is
continuously differentiable, then one can use integration-by-parts to give a simple
proof.

Theorem 3.6 Second mean-value theorem for the integral.

If f, g are integrable on [a, b] and g is a monotonic function on [a, b], then
there exists a point ξ ∈ [a, b]such that∫ b

a

f(x)g(x) dx = g(a)
∫ ξ

a

f(x) dx+ g(b)
∫ b

ξ

f(x) dx.

Proof. We provide a proof when g is assumed to be continuously differentiable. Set
F (x) =

∫ x
a
f(y) dy. Then F (x) is a continuously differentiable function, and∫ b

a

f(x)g(x) dx =
∫ b

a

g(x) dF (x)

=g(x)F (x)
∣∣∣x=b

x=a
−
∫ b

a

F (x)g′(x) dx.

Let m,M be the minimum and maximum value of F (x) over [a, b], respectively.
Then, using that g′(x) has the same sign for all x ∈ [a, b],∫ b

a

F (x)g′(x) dx is between m
∫ b

a

g′(x) dx and M
∫ b

a

g′(x) dx,

so equals F̄
∫ b
a
g′(x) dx for some m ≤ F̄ ≤M . On the other hand, there exists some

ξ ∈ [a, b] such that F̄ = F (ξ), so we get∫ b

a

f(x)g(x) dx =g(b)F (b)− F (ξ)
∫ b

a

g′(x) dx

=g(b)F (b)− F (ξ) (g(b)− g(a))
=g(b) [F (b)− F (ξ)] + g(a)F (ξ)

=g(a)
∫ ξ

a

f(x) dx+ g(b)
∫ b

ξ

f(x) dx.

�
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Theorem 3.7 Abel–Dirichlet test for convergence of an improper integral.

Let x 7→ f(x) and x 7→ g(x) be functions defined on an interval [a, c) and
integrable on every closed interval [a, b] ⊂ [a, c), where c may be ∞. Suppose
that g is monotonic. Then under one of the following pair of conditions, the
integral

∫ c
a
f(x)g(x) dx is convergent.

(A). The integral
∫ c
a
f(x) dx is convergent, and g is bounded.

(B). The integral
∫ c
a
f(x) dx is bounded, and g(x) converges to 0 as x→ c.

Proof. One simply verifies the Cauchy integral criterion by applying the second
mean-value theorem for the integral. �

Checkpoint 3.8 Verify that
∫∞

0
arctan(x) sin x

x dx is convergent.

4 Modes of Convergence
When studying convergence of a sequence of functions there are different notions of
convergence. The most elementary ones are point wise convergence and uniform
convergence. In applications there is often a need to deal with convergence in the
integral sense. We will briefly discuss the relation and difference of these notions
and how they are used in applications.

4.1 Definition and Motivation
Let D denote the domain of a sequence of functions fk. We may take D to be an
interval (a, b). Let p ≥ 1.

Definition 4.1

We say that fk converges in Lp(D), if there exists a limit function f ∈ Lp(D)
such that

‖fk − f‖Lp(D) → 0 as k →∞.

It is often easier to check whether a sequence of functions converges point wise,
but when it does, we often gain very little on behavior of the limit function. For
example, if each fk is Riemann integrable, and the sequence fk converges to f point
wise, it may not imply that the limit f is Riemann integrable, and even if it is, it
may not imply that

∫
D
|fk(x)− f(x)|p dx→ 0 for any p ≥ 1.

Here is an example illustrating how convergence in Lp(D) arises in applications.
We will briefly describe how convergence in L2(D) arises in constructing a solution
to the mixed boundary-initial value problem for the heat equation

ut(x, t)− uxx(x, t) = 0 0 < x < l, t > 0,
u(0, t) = u(l, t) = 0 t > 0,
u(x, 0) = g(x) 0 < x < l,

where the initial data g(x) is a given continuous function on [0, l], and traditionally
we would like the solution u(x, t) to be twice continuously differentiable in x, once
continuously differentiable in t in the domain (0, l) × (0,∞), and continuous on
[0, l]× [0,∞).
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There is an elementary procedure of looking for separable solutions of the
form X(x)T (t), which solves the homogeneous heat equation and the homogeneous
boundary conditions. The result is that for any n ∈ N,

sin
(nπx

l

)
e−(nπl )2

t

is such a solution. Since we are so far dealing with linear homogeneous equations,
any linear combination of solutions is still a solution, so∑

n∈a finite set
cn sin

(nπx
l

)
e−(nπl )2

t

also satisfies the same equations. What remains is whether one can choose the cn’s
so that this solution at t = 0 gives rise to the prescribed initial data g(x). For that
purpose, first we need to form an infinite sum and demand that

∞∑
n=1

cn sin
(nπx

l

)
= g(x) on (0, l) in an appropriate sense.

But we also need to make sense of the infinite series as a continuously differentiable
solution. This is a version of the Fourier series expansion. It turns out that we must
choose cn such that

cn = 2
l

∫ l

0
g(x) sin

(nπx
l

)
dx.

We will only focus on the issue of in what sense

u(x, t) :=
∞∑
n=1

cn sin
(nπx

l

)
e−(nπl )2

t → g(x) for 0 < x < l, as t→ 0 + .

It turns out that it would take considerable effort to prove that u(x, t) is continuous
for (x, t) ∈ [0, l] × [0,∞), that u(y, t) → g(x) as y → x ∈ (0, l), t → 0+, and one
also needs to impose g(0) = g(l) = 0 to prove that the convergence is uniform
over x ∈ (0, l). On the other hand, it is fairly easy, and natural, to prove that
u(x, t) → g(x) in the mean square sense, namely, ‖u(x, t) − g(x)‖L2(0,l) → 0 as
t→ 0+.

This is seen by using the Parseval equality: for any t, t′ ≥ 0,

||u(·, t)− u(·, t′)||2L2[0,l] = 2
l

∞∑
n=1

c2n

∣∣∣e−(nπl )2
t − e−(nπl )2

t′
∣∣∣2 ;

2
l

∞∑
n=1

c2n = ‖g‖2L2(0,l).

Now for any given ε > 0, we can find N such that
∑∞
n=N+1 c

2
n <

ε
8 , which then

leads to
∞∑

n=N+1
c2n

∣∣∣e−(nπl )2
t − e−(nπl )2

t′
∣∣∣2 ≤ 4

∞∑
n=N+1

c2n ≤
ε

2 for t, t′ ≥ 0;

On the other hand, there exists δ > 0 such that, when |t− t′| < δ,

N∑
n=1

c2n

∣∣∣e−(nπl )2
t − e−(nπl )2

t′
∣∣∣2 ≤ ε

2 ,

which proves that u(·, t) is (uniformly) continuous in L2(0, l), including at t = 0.
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4.2 An Integral Convergence Theorem and a Generalization
When (a, b) is a bounded interval (or when D has bounded volume), uniform
convergence implies convergence in Lp(D). But when (a, b) is not a bounded interval
(or when D has infinite volume), uniform convergence does not necessarily imply
convergence in Lp(D); additional control is needed to obtain convergence in Lp(D).
This is in reference to the following commonly used integral convergence theorem.

Theorem 4.2 Integral Convergence Theorem.

Let fk be a sequence of continuous functions on the bounded interval [a, b].
Assume fk converges uniformly to f on [a, b]. Then

lim
n→∞

∫ b

a

fk(s) ds =
∫ b

a

f(s) ds.

Example 4.3 A Uniformly Convergent Sequence May Fail to Converge in
Lp(D).

consider fk(x) = k
k2+x2 on [1,∞). Since 0 < fk(x) ≤ k

k2+1 for all k ≥ 1, x ∈
[1,∞), it is clear that fk(x) → 0 uniformly on [1,∞). However, using the
change of variables x = ky, we see that∫

[1,∞)
|fk(x)− 0| dx =

∫
[1,∞)

k

k2 + x2 dx =
∫

[ 1
k ,∞)

1
1 + y2 dy →

π

2 ,

so fk(x) does not converge to 0 in L1([1,∞)).
It is clear that the failure of convergence in L1[1,∞) is due to lack of

uniform control on
∫∞
N
fk dx: fix any ε > 0, for each k, we can find some Nk

such that
∫∞
N
fk dx < ε; but there is no such N that would work for all k.

In other words, there exists some ε0 > 0, such that for any k, there is some
Nk →∞,

∫∞
Nk
fk dx ≥ ε0.

In many situations we can identify one or a finite number of locations near
which a sequence of functions fk may fail to converge uniformly, but away from
such points, fk converges uniformly; or fk converges uniformly over a set D, but
D may fail to have finite volume, the additional conditions needed to guarantee
the convergence of fk in Lp(D) often come in the form of some control of fk near
these identified points. We will give below a generalization of the above integral
convergence theorem; a more general theorem (Lebesgue’s Dominated Convergence
Theorem) will be one of the main results in the first year graduate analysis course.

Theorem 4.4 A Generalized Integral Convergence Theorem.

In the following we allow b =∞. Let fk be a sequence of continuous functions
on the interval (a, b). Assume that for any c, a < c < b, fk converges
uniformly to f on (a, c). Assume further that there exists a function g(x),
integrable on (a, c) for any c, a < c < b, such that (i). the integral (perhaps
improper)

∫ b
a
g(x) dx is convergent, (ii). |fk(x)| ≤ g(x) for any x ∈ (a, b).

Then the integral
∫ b
a
f(s) ds is convergent and

lim
n→∞

∫ b

a

fk(s) ds =
∫ b

a

f(s) ds.

30



In fact, the stronger statement

lim
n→∞

∫ b

a

|fk(s)− f(s)| ds = 0

holds.

Proof. First we show that the integrals
∫ b
a
fk(s) ds,

∫ b
a
f(s) ds are convergent. It

suffices to show that for any ε > 0, there exists some c, a < c < b, such that for any
c′, c < c′ < b,

|
∫ c′

c

fk(s) ds|, |
∫ c′

c

f(s) ds| ≤ ε.

This can be done by first identifying some c, a < c < b, such that for any c′, c <
c′ < b, |

∫ c′
c
g(s) ds| ≤ ε/2. It follows that |

∫ c′
c
fk(s) ds| ≤ ε/2 for all k. For any

c′, c < c′ < b, apply the regular integral convergence theorem above to fk on (c, c′),
we get |

∫ c′
c
f(s) ds| ≤ ε.

Next we show the limiting integral property along a similar line. It is clear that
point wise we have |f(x)| ≤ g(x). We use the same set up of the above paragraph,
then ∫ b

a

|fk(s)− f(s)| ds

≤
∫ c

a

|fk(s)− f(s)| ds+
∫ b

c

|fk(s)− f(s)| ds

≤
∫ c

a

|fk(s)− f(s)| ds+ 2
∫ b

c

g(s) ds

≤
∫ c

a

|fk(s)− f(s)| ds+ ε.

Now we apply the regular integral convergence theorem above to fk on (a, c) to get
some N such that for all k ≥ N ,

∫ c
a
|fk(s)− f(s)| ds < ε. This concludes our proof.

�

Example 4.5 Differentiation under the integral
∫ 1

0 |x− y|
αρ(y) dy.

Here 0 < α < 1 and ρ is Riemann integrable on [0, 1]. We will show that
u(x) :=

∫ 1
0 |x− y|

αρ(y) dy is differentiable in x ∈ (0, 1) and

u′(x) =
∫ 1

0
α(x− y)|x− y|α−2ρ(y) dy.

Namely we can differentiate under the integral sign here.
The main issue is that (x−y)|x−y|α−2 →∞ as y → x, so we are dealing

with an improper integral here. Furthermore, if hk → 0, then, in examining
the difference quotient

u(x+ hk)− u(x)
hk

=
∫ 1

0

|x+ hk − y|α − |x− y|α

hk
ρ(y) dy,

if we fix any y 6= x, then

|x+ hk − y|α − |x− y|α

hk
ρ(y)→ α(x− y)|x− y|α−2ρ(y) as k →∞,
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but this convergence is not uniform over the set y 6= x. However, for any
δ > 0, the convergence is uniform over (0, 1) \ (x − δ, x + δ). So the main
issue is the behavior for y near x. For simplicity, we split the integral as∫ x

0 +
∫ 1
x
and only work out some details for the integral

∫ x
0 .

It turns out that it is not even easy to apply our generalized integral
convergence theorem, as the difference quotient |x+hk−y|α−|x−y|α

hk
has its

absolute value equal to |hk|α−1 at y = x, x+hk, which→∞ as k →∞, so it
is not easy to find a function g(x) satisfying the conditions in the generalized
integral convergence theorem. However, we can adapt the ideas in the proof
of that theorem to handle the situation here. We will break the integral

∫ x
0

into three pieces
∫ x−δ

0 +
∫ x−|hk|
x−δ +

∫ x
x−|hk|.

Note that when y < x− |hk|, we have, by the theorem of the mean,∣∣∣ |x+ hk − y|α − |x− y|α

hk

∣∣∣ = α|x+ θkhk − y|α−1 ≤ α
∣∣∣x− |hk| − y∣∣∣α−1

,

for some 0 < θk < 1, so∣∣∣ ∫ x−|hk|

x−δ

|x+ hk − y|α − |x− y|α

hk
ρ(y) dy

∣∣∣ ≤ ∫ x−|hk|

x−δ

∣∣∣x−|hk|−y∣∣∣α−1
|ρ(y)| dy.

Since there exists some M > 0 such that |ρ(y)| ≤ M , and the improper
integral ∫ x−|hk|

x−δ
α
∣∣∣x− |hk| − y∣∣∣α−1

dy ≤ δα,

it follows that, for any given ε > 0, we can take δ > 0 small enough to make∣∣∣ ∫ x−|hk|

x−δ

|x+ hk − y|α − |x− y|α

hk
ρ(y) dy

∣∣∣ ≤ ε.
On the other hand,∣∣∣ ∫ x

x−|hk|

|x+ hk − y|α − |x− y|α

hk
ρ(y) dy

∣∣∣
≤ M

|hk|

∫ x

x−|hk|
(|x+ hk − y|α + |x− y|α) dy ≤ M

|hk|
(2|hk|)α+1,

so for hk → 0, we see that for sufficiently large k,∣∣∣ ∫ x

x−δ

|x+ hk − y|α − |x− y|α

hk
ρ(y) dy

∣∣∣ ≤ 2ε.

It remains to examine the limit∫ x−δ

0

|x+ hk − y|α − |x− y|α

hk
ρ(y) dy,

but we can deal with this limit using the regular integral convergence theorem.
To put things together, we have∣∣∣ ∫ x

0

|x+ hk − y|α − |x− y|α

hk
ρ(y) dy −

∫ x

0
α(x− y)|x− y|α−2ρ(y) dy

∣∣∣
≤
∫ x−δ

0

∣∣∣ |x+ hk − y|α − |x− y|α

hk
− α(x− y)|x− y|α−2

∣∣∣|ρ(y)| dy
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+
∫ x

x−δ

∣∣∣ |x+ hk − y|α − |x− y|α

hk
− α(x− y)|x− y|α−2

∣∣∣|ρ(y)| dy

≤
∫ x−δ

0

∣∣∣ |x+ hk − y|α − |x− y|α

hk
− α(x− y)|x− y|α−2

∣∣∣|ρ(y)| dy + 4ε.

Finally, we can find some N such that for k ≥ N ,∫ x−δ

0

∣∣∣ |x+ hk − y|α − |x− y|α

hk
− α(x− y)|x− y|α−2

∣∣∣|ρ(y)| dy ≤ ε, ,

which leads to∣∣∣ ∫ x

0

|x+ hk − y|α − |x− y|α

hk
ρ(y) dy −

∫ x

0
α(x− y)|x− y|α−2ρ(y) dy

∣∣∣ ≤ 5ε.

This complete an “ε− δ” type argument for showing

lim
k→∞

∣∣∣ ∫ x

0

|x+ hk − y|α − |x− y|α

hk
ρ(y) dy−

∫ x

0
α(x−y)|x−y|α−2ρ(y) dy

∣∣∣ = 0.

5 Completeness and Compactness
Completeness is so essential in analysis that its role can’t be emphasized enough.
The main advantage of Lebesgue’s integration theory is that the space of Lebesgue
integrable functions is complete in the integral norm, in contrast to the space of
Riemann integrable functions. Compactness is another essential concept in analysis.
Its role is to reduce a problem involving infinitely many possibilities to a finite
number of possibilities.

5.1 Statements of the Bolzano-Weierstrass Theorem and Heine-
Borel Theorem

In Modern literature, the Bolzano-Weierstrass Theorem refers to the following
theorem.

Theorem 5.1 Bolzano-Weierstrass Theorem.

Every bounded sequence in Rn contains a convergent subsequence.

Definition 5.2 Compactness and sequential compactness.

A set K in a topological space X (you may take X to be a metric space) is
called compact, if any cover of K by open sets of X has a finite subcover.

A set S in X is called sequentially compact, if any sequence (xk) ⊂ S
has a convergent subsequence with limit in S.

A set S in X is called sequentially pre-compact, if any sequence
(xk) ⊂ S has a convergent subsequence with limit in X.

Using Theorem Theorem 5.1, it is easy to prove
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Theorem 5.3 Bolzano-Weierstrass Theorem (Alternate Version).

A subset K in Rn is sequentially pre-compact iff it is bounded.
A subset K in Rn is sequentially compact iff it is bounded and closed.

Heine-Borel Theorem refers to the following theorem.

Theorem 5.4 Heine-Borel Theorem.

A subset K in Rn is compact iff it is bounded and closed.

It follows from Bolzano-Weierstrass Theorem and Heine-Borel Theorem that
subset in Rn is compact iff it is sequentially compact.

Historically Bolzano formulated and proved a result, which he used to prove the
intermediate-value-property of a continuous function on a closed interval, and is
equivalent to the following form of completeness of the set of real numbers.

Theorem 5.5 Bolzano’s Lemma.

Any nonempty set of R bounded above has a least upper bound.

Heine’s version of the Heine-Borel Theorem was about the finite subcovering
property of a closed interval, and he used it to prove that a continuous function
defined on a bounded closed interval is uniformly continuous.

Checkpoint 5.6 Reconstruct proofs of the uniform continuity of a con-
tinuous function on a bounded closed interval, one using the Bolzano-
Weierstrass Theorem, and another using the Heine-Borel Theorem. Then
extend your proof to a continuous function on a compact metric space.

Question: How do the Bolzano-Weierstrass Theorem and Heine-Borel Theorem
generalize in more general contexts?

Theorem 5.7 Heine-Borel Theorem in a metric space.

A set K in a metric space X is compact iff it is sequentially compact; both
are equivalent to the condition that K be complete and totally bounded.

Note that a bounded set in Rn is totally bounded, but a bounded set in a general
metric space may not be totally bounded.

Checkpoint 5.8 Prove that the unit ball in lp is not totally bounded.
Can you prove the same statement for the unit ball in a general infinite-
dimensional normed space?

Professor Ocone’s notes contain a sketch of proof of Heine-Borel Theorem in a
metric space.

Question 5.9 In Professor Ocone’s proof of “compactness =⇒ sequential
compactness”, where did he use the metric of the space?

Professor Ocone’s proof of “compactness =⇒ sequential compactness” implies
that any infinite set S of points in a compact set must contain an accumulation
point of S , defined as a point such that within any neighborhood there
are infinitely many points of S. When applied to a sequence of points in
S, and the sequence has infinitely many points, the argument produces an

34



accumulation point of the sequence. How does this give rise to a convergent
subsequence?

Remark 5.10

When the topology can’t be given via a metric (such a space is called non-
metrizable), compactness and sequential compactness may not be equivalent
to each other. In most applications in analysis we use sequential compactness.

In Elementary analysis, the following two characterizations of the conti-
nuity of a map f : X ⊂ Rn 7→ Y at some x0 ∈ X are equivalent

(a) For any open neighborhood V of f(x0) in Y , f−1(V ) is an open
neighborhood of x0 in X.

(b) For any sequence (xk)→ x0 in X, f(xk)→ f(x0) as k →∞.

This equivalence still holds in a metric space. In a general topological
space, (a) still implies (b), but (b) may not imply (a). For example, under the
weak topology of l1 (we will motivate the notion of weak topology through
an example in the next subsection, but will not have time to discuss it), the
function f(x) = ||x||l1 :=

∑∞
n=1 |x(n)| for x = (x(n)) ∈ l1 satisfies (b), but

not (a). The verification of (b) uses the so called Schur’s Lemma, which
implies that a weak convergent sequence in l1 is also norm convergent in l1.

Baire’s category theorem is an important property of a complete metric space,
and has many applications. Professor Mirek’s notes provide some discussions and
examples. The January 2011 Qualifying Exam1 has a problem which can be solved
using the Baire’s category theorem. We will not have time to discuss this theorem.

5.2 Some Examples
We will first discuss an example illustrating the difference between the roles of the
notions of completeness and compactness.

Example 5.11 (August, 2012 WQ).

Suppose that (X, d) is a complete metric space with a finite diameter: i.e.
there exists D <∞ such that

d(x, y) ≤ D for all x, y ∈ X.

Is it true that every continuous function f on X is bounded? Prove this
assertion or give a counterexample.
Solution. If we review a proof for the property that every continuous
function f on X is bounded, a key ingredient is that X be compact. A
complete metric space with a finite diameter is a bounded closed set, but we
only know that a bounded closed set of a finite dimensional Euclidean space
is compact.

Due to the Bolzano-Weierstrass Theorem in any finite dimensional Eu-
clidean space, any failure of the above property can only occur in an infinite
dimensional setting. If we take X to be the subset of functions in C[a, b]
with supremum norm ≤ 2, then it is a complete metric space with finite

1https://math.rutgers.edu/docman-lister/math-main/academics/graduate/
qualifying-exam/1267-wqw2011/file
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diameter. We examine whether it is possible to have a certain continuous
function defined on X, when evaluated at a sequence uk in X, becomes
unbounded. The key is that this sequence uk should not have any convergent
subsequence. If we take a unit step function v defined on [a, b], then it is not
continuous, and can’t be approximated uniformly over [a, b] by continuous
functions in X, but can be approximated by continuous functions in X in
the integral sense, thus if we define

f [u] = (‖u− v‖L1[a,b])−1 for u ∈ X,

then it is well defined, and there exists a sequence uk in X bounded in the
sup norm, such that ‖u− v‖L1[a,b] → 0, which implies that f [uk]→∞.

Question: Can you construct a similarly behaving example in some
other spaces such as lp?

Checkpoint 5.12 (August 2012 WQ). Let X and Y be locally compact metric
spaces, and let f : X 7→ Y be a continuous mapping which is bijective. Show that

f is a homeomorphism ⇔ f−1(K) is compact for all compact K ⊂ Y .

Note: a metric space is locally compact if and only if every point has an open
neighborhood with compact closure.
Checkpoint 5.13 Any two norms on a finite dimensional vector space
are equivalent. Let X be any finite dimensional vector space over R, and let
v1, · · · ,vn be a basis. For any x ∈ X, let (x(1), · · · ,x(n)) be the coordinates of x
in this basis:

x =
n∑
k=1

x(k)vk.

Then there exits constants c2 > c1 > 0 such that

c2

(
n∑
k=1
|x(k)|2

)1/2

≥ ||x|| ≥ c1

(
n∑
k=1
|x(k)|2

)1/2

∀x ∈ X.

Hint. The first inequality follows from triangle inequality. For the second inequality,
use homogeneity and examine effect of a sequence xm such that(

n∑
k=1
|xm(k)|2

)1/2

= 1, but ||xm|| → 0.

We will next briefly describe an example illustrating the need for working with the
space of functions complete in the L2 norm. It concerns the variational method
of constructing a solution of the boundary value problem

u′′(x) = f(x), 0 < x < l, (5.1)
u(0) = u(l) = 0. (5.2)

For an initial value problem, namely replacing the two boundary conditions
by the initial conditions of prescribing u(0), u′(0), we have a standard procedure
for constructing a solution. Professor Ocone’s notes provide a review of using a
fixed point argument to construct a solution. That procedure also relies on the
completeness of the space of continuous functions in the sup norm.

It turns out that a solution of the boundary value problem (5.1) (5.2) can be
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identified as a minimizer of the functional

E[u] :=
∫ l

0

(
1
2 |u
′(x)|2 + f(x)u(x)

)
dx

defined on the space X of continuously differentiable functions on [0, l] such that
u(0) = u(l) = 0. Namely, if u is a solution of (5.1) (5.2), then

E[u] ≤ E[v] for any v ∈ X; (5.3)

and conversely, if u ∈ X satisfies (5.3), and u is twice continuously differentiable
in (0, l) (this can actually be proved based on the previous property), then it is a
solution of (5.1)(5.2).

The first claim can be seen by setting w = v − u, and noting that

E[v] = E[u+ w]

=
∫ l

0

(
1
2 |u
′(x)|2 + 1

2 |w
′(x)|2 + u′(x)w′(x) + f(x)u(x) + f(x)w(x)

)
dx

= E[u] + 1
2

∫ l

0
|w′(x)|2 dx+

∫ l

0
(u′(x)w′(x) + f(x)w(x)) dx,

lastly integrating-by-parts on the last integral∫ l

0
(u′(x)w′(x) + f(x)w(x)) dx = u′(x)w(x)|x=l

x=0+
∫ l

0
(−u′′(x) + f(x))w(x) dx = 0,

using w(0) = w(l) = 0 and −u′′(x) + f(x) = 0.
The second claim can be seen by noting that a consequence of (5.3) is

0 = d

dt

∣∣∣
t=0

E[u+ tw] =
∫ l

0
(u′(x)w′(x) + f(x)w(x)) dx,

and that integrating-by-parts on this integral gives

0 =
∫ l

0
(u′(x)w′(x) + f(x)w(x)) dx

= u′(x)w(x)|x=l
x=0 +

∫ l

0
(−u′′(x) + f(x))w(x) dx, for any w ∈ X,

which then implies that
−u′′(x) + f(x) = 0

for x ∈ (0, l).
We now discuss the role played by completeness in proving the existence of some

u satisfying (5.3). First we argue that

m := inf
X
E[v] is finite.

This is seen by applying (2.2) and Hölder’s inequality as follows.

E[v] ≥
∫ l

0

1
2 |v
′(x)|2 dx− ||f ||L2(0,l)||v||L2(0,l)

≥1
2 ||v

′||2L2(0,l) − l||f ||L2(0,l)||v′||L2(0,l)

≥1
2 ||v

′||2L2(0,l) −
1
4 ||v

′||2L2(0,l) − l
2||f ||2L2(0,l)
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≥1
4 ||v

′||2L2(0,l) −−l
2||f ||2L2(0,l)

which shows that m is finite. Next we take a minimizing sequence for E[v], namely,
uj(x) ∈ X such that E[uj ] → m. The above argument shows that ||u′j ||L2(0,l) is
bounded. Furthermore, noting

E[uj ] + E[uk] = 2E[uj + uk
2 ] + 1

4 ||u
′
j − u′k||2L2(0,l) ≥ 2m+ 1

4 ||u
′
j − u′k||2L2(0,l)

and E[uj ], E[uk]→ m, we conclude that ||u′j − u′k||2L2(0,l) → 0 as j, k →∞. Namely,
the sequence {uj} is a Cauchy sequence in the norm ||u′j ||L2(0,l)!

The issue is that X is not complete under this norm! The way to resolve this
issue is to define the completion Y of X under this norm, extend E[v] to Y , and
rework the previous steps in the space Y . One final step is to show that a minimizer
u in Y is still twice continuously differentiable on (0, l), therefore is a solution to
(5.1)(5.2).

Next we use an example to illustrate the notion of compactness in an infinite
dimensional space. More examples of applications of compactness will come in the
examples of next section.

Example 5.14 A compactness criterion for a subset of lp.

Recall that, for 1 ≤ p < ∞, the space lp consists of the set of infinite
sequences {x = (x(1), x(2), · · · )} such that ‖x‖p := (

∑∞
k=1 |x(k)|p)1/p

<∞.
lp is a complete normed space with ‖x‖p as its norm.

It is easy to see that the closed unit ball

B := {x ∈ lp : ‖x‖p ≤ 1}

of lp is not compact, as the sequence

{ek = (0, · · · , 0, 1, 0, · · · ) : with the only 1 on the kth slot}

is in B, but can’t have any convergent subsequence.
We now give a compactness criterion for a subset of lp.

A subset K of lp is compact iff

1. K is a bounded and closed subset of lp;
2. For any ε > 0, there exists some N such that( ∞∑

k=N+1
|x(k)|p

)1/p

< ε for all x ∈ K.

Item 2 above says that the sum of the “tail part” of x ∈ K can be made
uniformly small (so we only need to focus on the first N components of
x ∈ K).

We will use the compactness criterion for a set in a metric space, which
is reviewed in Professor Ocone’s notes. More specifically,

a set K in a metric space is compact iff K is complete and totally
bounded. “Totally bounded” means that for every ε > 0, K can
be covered by a finite number of open balls of radius less than or
equal to ε.
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We will only sketch a proof that if K satisfies our criterion, then it is totally
bounded. Consider

KN := {(x(1), x(2), · · · , x(N)) : x ∈ K}.

It is a bounded and closed subset of RN under our assumptions, so is compact
in RN . Thus there exists a finite number L of points {x1, · · · , xL} in this
subset such that any x ∈ K, y = (x(1), x(2), · · · , x(N)) ∈ KN is in some
ball Bε(xl) of radius ε centered at some xl, 1 ≤ l ≤ L. Now for any x ∈ K,
we apply the Minkowski inequality to imply

‖x− xl‖p ≤

(
N∑
k=1
|x(k)− xl(k)|p

)1/p

+
( ∞∑
k=N+1

|x(k)− xl(k)|p
)1/p

≤ε+
( ∞∑
k=N+1

|x(k)|p
)1/p

+
( ∞∑
k=N+1

|xl(k)|p
)1/p

≤3ε,

which shows that K is totally bounded.

Remark 5.15

While the above example indicates that a key characteristic of a compact set
K in lp is that the sum of the “tail part” of x ∈ K can be made uniformly
small (so we only need to focus on the first N components of x ∈ K), the
analogue of this property of a compact set F in C(S), where S is a compact
metric space, is that F be equicontinuous.

Roughly speaking, this property controls the size of oscillation of the
functions in F in a common neighborhood, so when

|f(y)− f(x0)| < ε for all y, d(y, x0) < δ, f ∈ F holds, and
{f(x0) : f ∈ F} is covered by a finite number of balls of radius ε
centered at f1, · · · , fN , then
∀y, d(y, x0) < δ, f ∈ F , |f(y)− fk| < 2ε for some k.

This is how we reduce the uniform convergence of a sequence of functions in
F to the convergence of this sequence at a finite number of points.

Checkpoint 5.16 The set of points {x ∈ l2 :
∑∞
l=1 l|x(l)|2 ≤ 1} is compact

in l2.

Remark 5.17

The above example provides a good illustration for the notion of (sequential)
weak convergence. Let {xk} ⊂ lp, p > 1, be a sequence such that for each
fixed index l, the sequence of the lth components {xk(l)}∞k=1 → y(l) for some
y(l), and there exists some M > 0 such that

‖xk‖p ≤M for all k.

It is easy to see that it does not necessarily follow that ‖xk − y‖p → 0 as
k →∞, where y = (y(1), y(2), · · · ). However, for any z ∈ lq, where q is the
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conjugate exponent of p : p−1 + q−1 = 1, we will show that

〈xk, z〉 :=
∞∑
l=1

xk(l)z(l)→
∞∑
l=1

y(l)z(l) = 〈y, z〉.

This may be considered as an earliest example motivating the notion of
(sequential) weak convergence. Our claim amounts a generalization of the
Bolzano-Weierstrass compactness criterion to this infinite dimensional con-
text: Any sequence bounded in lp, p > 1 has a subsequence which converges
weakly in the above sense.

The claim is seen by using z to control the sum of the “tail” part: for
any ε > 0, there exists some N such that( ∞∑

l=N+1
z(l)q

)1/q

< ε.

Then

|〈xk − y, z〉|

≤|
N∑
l=1

[xk(l)− y(l)]z(l)|+ |
∞∑

l=N+1
[xk(l)− y(l)]z(l)|

≤|
N∑
l=1

[xk(l)− y(l)]z(l)|+
( ∞∑
l=N+1

|xk(l)− y(l)|p
)1/p( ∞∑

l=N+1
|z(l)|q

)1/q

≤|
N∑
l=1

[xk(l)− y(l)]z(l)|+

( ∞∑
l=N+1

|xk(l)|p
)1/p

+
( ∞∑
l=N+1

|y(l)|p
)1/p

( ∞∑
l=N+1

|z(l)|q
)1/q

≤|
N∑
l=1

[xk(l)− y(l)]z(l)|+ [M +M ] ε.

Here we have used(
L∑
l=m
|y(l)|p

)1/p

=
(

lim
k→∞

L∑
l=m
|xk(l)|p

)1/p

≤M,

for any finite m < L to imply( ∞∑
l=m
|y(l)|p

)1/p

≤M.

(You will see a generalization of this in the first year graduate analysis course
in the form of Fatou’s Lemma.) Finally, our assumption implies that

|
N∑
l=1

[xk(l)− y(l)]z(l)| → 0 as k →∞,

so we have

|
N∑
l=1

[xk(l)− y(l)]z(l)| < ε for all sufficiently large k.

This concludes the proof that 〈xk, z〉 → 〈y, z〉 as k →∞.
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Remark 5.18

For any p, 1 ≤ p <∞, and for any y ∈ lp′ , where p′ is the conjugate exponent
of p : p−1 + p′−1 = 1, then by Hölder’s inequality

fy(x) := 〈y,x〉 =
∞∑
n=1

x(n)y(n)

defines a continuous linear functional on lp, namely, a continuous function
f : lp 7→ R such that

f(a1x1 + a2x2) = a1f(x1) + a2f(x2)

for all x1,x2 ∈ lp, a1, a2 ∈ R. It turns out that any such a continuous linear
functional is equal to fy for some y ∈ lp′ . For this reason, the space lp′ is
called the dual space of lp.

The weak topology on lp is defined through the union of finite intersections
of the special open sets of the form

{x : a < fy(x− x0) < b}

for some x0 ∈ lp,y ∈ lp
′
, a < b ∈ R. Fix any x0 ∈ lp, by varying y ∈

lp
′
, a < 0 < b ∈ R and taking finite intersections of sets of the above form,

we obtain a neighborhood base for x0 ∈ lp in the weak topology of lp. Thus
any neighborhood of x0 ∈ lp in the weak topology of lp contains an open set
of the form

{x : ak < fyk(x− x0) < bk, 1 ≤ k ≤ N}

for some N and ak < 0 < bk, 1 ≤ k ≤ N . This only imposes a finite number
of linear constraints (more properly, affine constraints).

This definition is related to the definition of product topology of a family
of topological spaces.

Since lp is infinite dimensional, for any finite number N of yk ∈ lp
′ , there

exists some non-zero v ∈ lp such that fyk(v) = 0 for all k = 1, · · · , N . Thus
for any c ∈ R, vectors of the form x0 + cv will be in the open neighborhood
{x : ak < fyk(x − x0) < bk, 1 ≤ k ≤ N} of x0, so no neighborhood in the
weak topology of lp in bounded in the norm of lp.

6 Convexity and Some Applications
Convexity plays an important role in many extremal problems and inequalities.
Professor Ocone’s notes illustrate some basic applications (mostly in dimension
one), including in proving the Hölder and Minkowski inequalities. We will add some
additional discussion here.

6.1 Convex sets vs Convex Functions
The notion of a convex set in Rn is more general than that of a convex function.

Definition 6.1

A set C in Rn is called convex, if for any a,b ∈ C and any t ∈ R, 0 ≤ t ≤ 1,
we have (1− t)a + tb ∈ C.
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Geometrically, the set {(1− t)a + tb : 0 ≤ t ≤ 1} is the line segment in Rn with
a,b as its ends. A convex set needs not have any interior point.

Definition 6.2

A real-valued function f defined on a convex set C is called convex, if for
any a,b ∈ C and any t ∈ R, 0 ≤ t ≤ 1, we have

f((1− t)a + tb) ≤ (1− t)f(a) + tf(b).

f is called strictly convex if we have the strict inequality

f((1− t)a + tb) < (1− t)f(a) + tf(b) for any 0 < t < 1.

f is called concave if −f is convex. Equivalently, the defining inequality
above is reversed for a concave function.

Geometrically, if we construct a line in Rn × R ⊃ C × R through the points
(a, f(a)), (b, f(b)), then it has parametric equation

x = ((1− t)a + tb, (1− t)f(a) + tf(b)),

so (1− t)f(a) + tf(b) is the “height of the line above the point” (1− t)a + tb. When
f is convex, f((1− t)a + tb) stays below the height at (1− t)a + tb of the above line
segment for 0 ≤ t ≤ 1. Here1 is a Desmos page illustrating this geometric property.

f is a convex function iff the set {(x, y) : x ∈ C, y ≥ f(x)} in Rn ×R, called the
epigraph of f , is convex. Another characterization of a convex function is that for
every real number c, the sub level set of f defined by {x : f(x) ≤ c} is a convex
set.

Because of this relation, properties of convex functions can often be studied as
properties of convex functions. We will later discuss briefly the notion of supporting
hyperplane of a convex set and that of the graph of a convex function.

6.2 Some properties and applications of univariate convex func-
tions

The illustration above in the previous subsection also includes a sketch of the
argument that the slope of the secant lines on a convex function of a single variable
is an increasing function. Geometrically it seems clear that if f is a convex function
of a single variable, a < a < c, then f(c) stays above the secant line through
(a, f(a), (b, f(b)). This can be derived from the above property of secant lines: for
c > b,

f(c)− f(a)
c− a

≥ f(b)− f(a)
b− a

⇔ f(c) ≥ f(a) + f(b)− f(a)
b− a

(c− a).

These inequalities also hold when c < a.
The continuity of a convex function of one variable at an interior point is proved

using these bounds by linear functions. Say, a is an interior point. Then there
exist b, c in the domain such that b > a > c, and the above property of secant lines
implies that for any x, b > x > a,

f(a) + f(c)− f(a)
c− a

(x− a) ≤ f(x) ≤ f(a) + f(b)− f(a)
b− a

(x− a).

1https://www.desmos.com/calculator/mbdd9ymzug
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Then the sandwich theorem implies that f(x) → f(a) as x → a+. The direction
when x→ a− is done in a similar way.

Question 6.3 How can we extend this argument to higher dimensions? The
function is certainly continuous when constrained along any one-dimensional
lines, but there are infinitely many lines through any given point. Here we
will see some ideas of compactness at play.

Solution. We will assume that the origin is in the interior of the domain
of f ; in fact, we will assume the domain of f includes the unit ball centered
at the origin, and describe ideas to prove the continuity of f at the origin.

The key idea is that an appropriate choice of n points can be used to
form its convex hull,

{t1a1 + · · ·+ tnan : ti ≥ 0, t1 + · · ·+ tn = 1},

whose projection on the unit sphere Sn−1 covers an non-empty open set. As
a result

f(t1a1 + · · ·+ tnan) ≤ t1f(a1) + · · ·+ tnf(an) ≤M,

where M is chosen so that f(ai) ≤ M, i = 1, · · · , n. In fact, if we take
ai = ei, the standard basis vector in Rn, then

Q+ :={t1a1 + · · ·+ tnan : ti ≥ 0, t1 + · · ·+ tn = 1}
={(t1, · · · , tn) : ti ≥ 0, t1 + · · ·+ tn = 1}.

The next idea is to bound f(x) from above for those x which lie on a
segment between the origin and a point in Q+. In fact, for any x with each
xi ≥ 0, and

‖x‖ ≤ 1√
n
,

by the Cauchy-Schwarz inequality we have

x1 + · · ·+ xn ≤
√
n
√
x2

1 + · · ·+ x2
n ≤ 1.

Now we define ti = xi/(x1 + · · ·+ xn), and find that

ti ≥ 0, t1 + · · ·+ tn = 1.

Further, x = (x1 + · · ·+ xn)(t1, · · · , tn), so for such x

f(x) ≤ [1− (x1 + · · ·+ xn)]f(0) + (x1 + · · ·+ xn)f(t1, · · · , tn).

This implies that

f(x)− f(0) ≤ (M − f(0))(x1 + · · ·+ xn)→ 0 as x→ 0.

We can certainly cover Sn−1 by a finite number of similarly constructed sets,
and carry out this argument, which would allow us to prove that

lim sup
x→0

f(x) ≤ f(0).

To prove lim infx→0 f(x) ≥ f(0), we use the property of the secant lines as
done in the one-dimensional case. For any x such that ‖x‖ ≤ 1√

n
. We bound

f(x) from below by the secant line through (− x
‖x‖
√
n
, f(− x

‖x‖
√
n

), (0, f(0)):

f(x)− f(0) ≥
f(0)− f(− x

‖x‖
√
n

)
(
√
n)−1 ‖x‖.
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Since the slope
f(0)−f(− x

‖x‖
√
n

)
(
√
n)−1 has a lower bound due to the upper bound

of f(− x
‖x‖
√
n

), this allows us to conclude that lim infx→0 f(x) ≥ f(0).

The secant line property of a convex function implies that, if [a, a+ ε] is in the
domain of a convex function, then the slope of the secant line f(x)−f(a)

x−a has a limit
as x→ a+, although this limit could be −∞. If a is an interior point of the domain,
then picking some c < a in the domain implies a lower bound of f(x)−f(a)

x−a in terms
of f(c)−f(a)

c−a when x > a, so in such a case, f has finite left derivative D−f(a)
and right derivative D+f(a) at a, and D−f(a) ≤ D+f(a). Furthermore, for any
k,D−f(a) ≤ k ≤ D+f(a),

f(x)− f(a)
x− a

≥ D+f(a) ≥ k, for x > a;

f(x)− f(a)
x− a

≤ D−f(a) ≤ k, for x < a.

This then implies that

f(x) ≥ f(a) + k(x− a) for all x in the domain of f.

Since the right hand side, f(a) + k(x − a), represents a straight line, the above
inequality shows that a convex function has a (linear) support function at any
interior point of its domain.

The support function property of a convex function can be used to give a simple
proof of Jensen’s inequality.

Theorem 6.4 Jensen’s inequality.

Suppose that f : X 7→ (A,B) and p(x) ≥ 0 is a density function on X,
namely,

∫
X
p(x) dx = 1. Suppose that φ : (A,B) 7→ R is convex, then

φ

(∫
X

f(x)p(x) dx
)
≤
∫
X

φ(f(x))p(x) dx.

In words, “φ evaluated at the average of f is not more than the average of
φ ◦ f .”

Proof. Set f̄ =
∫
X
f(x)p(x) dx. It is easy to rule out the possibility that f̄ = A or

B, so we assume that A < f̄ < B. Using the support property of φ at f̄ , there
exists some k such that

φ(y) ≥ φ(f̄) + k(y − f̄) for all y ∈ (A,B).

Substituting y by f(x), multiplying the above inequality by p(x) and integrating
over x ∈ X, we get∫

X

φ(f(x))p(x) dx ≥ φ(f̄)
∫
X

p(x) dx+ k

(∫
X

f(x)p(x) dx− f̄
∫
X

p(x) dx
)
.

The right hand side is simply φ(f̄), which proves the Jensen’s inequality. �

Commonly used cases of Jensen’s inequalities include φ(y) = − ln y or y ln y.
Proofs for Hölder’s and Minkowski’s inequalities also use convexity in crucial ways.
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Checkpoint 6.5 Prove that ln
(∫
X
eu(x)p(x) dx

)
≥
∫
X
u(x)p(x) dx for p(x) ≥

0,
∫
X
p(x) dx = 1.

6.3 Some properties of convex functions of several variables
When proving the continuity of a convex function of several variables, we already
saw the complications for multi-dimensions. We do not intend to do a serious study
of properties of convex functions of several variables, but only want to briefly discuss
a few properties related to the notion of supporting planes to illustrate how the
notion of compactness comes into play.

Definition 6.6

Let K be a convex set, x0 be a point on the boundary of K. K is said to
have a supporting hyperplane at x0 if there exists a non-zero vector n such
that

(x− x0) · n ≥ 0 for all x ∈ K.

Definition 6.7

Let K be a convex set and f(x) be a convex function defined on K. Let
x0 ∈ K. The graph of f at (x0, f(x0)) is said to have a supporting hyperplane
if there exists a non-zero vector v such that

f(x) ≥ f(x0) + v · (x− x0) for all x ∈ K.

Note that we use the same terminology in these two contexts, but they have a
slight distinction, as illustrated by the simple example f(x) = −

√
x on [0, 1]. As a

function it does not have a supporting hyperplane (a straight line here) at x = 0,
but its epigraph has a supporting hyperplane at (0, 0) (a vertical line).

For a convex function of a single variable we gave a proof of the existence of
a supporting line at any interior point using the property of secant lines. We can
apply this argument along any direction to a convex function of several variables,
but it alone would not give us a supporting hyperplane at a point on the graph.
The extension to multi-dimensions would necessarily involve some kind of limiting
argument and compactness. We will discuss the following theorems.

Theorem 6.8 Existence of a supporting hyperplane of a closed convex set.

Any boundary point of a closed convex set has a supporting hyperplane.

Proof. Let x0 ∈ K be a boundary point of the closed convex set K. Then there
exists a sequence xk 6∈ K,xk → x0. Each xk also has a closest point pk ∈ K. This
is done either by the Bolzano-Weierstrass compactness theorem or the parallelogram
law of the Euclidean norm

2‖p− q
2 ‖2 = ‖p− xk‖2 + ‖q − xk‖2 − 2‖p + q

2 − xk‖2

and the completeness of Rn. This law shows that if ql ∈ K is such that
‖ql − xk‖ → inf{‖x− xk‖ : x ∈ K},

then ql is a Cauchy sequence, therefore has a limit.
Next we claim that

(pk − xk) · (x− pk) ≥ 0 for all x ∈ K. (6.1)

45



This follows from considering

h(t) := (tx + (1− t)pk − xk) · (tx + (1− t)pk − xk).

Note that h(t) = ‖tx + (1− t)pk − xk‖2, and tx + (1− t)pk ∈ K for 0 ≤ t ≤ 1, so
h(0) ≤ h(t) for all 0 ≤ t ≤ 1. It follows that

h′(0) = 2(pk − xk) · (x− pk) ≥ 0.

Define nk = (pk − xk)/‖pk − xk‖. Then nk is a sequence of unit vectors, so
there exists a subsequence, still denoted by itself, and a limiting unit vector n such
that nk → n. We also know that pk → x0 as

‖pk − x0‖ ≤ ‖pk − xk‖+ ‖xk − x0‖ ≤ 2‖xk − x0‖.

For each fixed x ∈ K, dividing through both sides of (6.1) by ‖pk−xk‖, and passing
to the limit, we get

n · (x− x0) ≥ 0,

which is the inequality defining a supporting hyperplane.
In summary, the idea is that, in the absence of a direct construction of a

supporting plane at the given point, one finds a relatively easy way to construct a
supporting plane at a nearby, but unspecified point, and one then takes a limiting
process to obtain a supporting plane at the given point. �

Theorem 6.9 Existence of a supporting hyperplane of the graph of a convex
function at an interior point.

Let f(x) be a convex function defined on the convex set K. If x0 ∈ K in
an interior point of K, then the graph of f has a supporting hyperplane at
(x0, f(x0)).

Proof. The epigraph Gf = {(x, y) : x ∈ K, y ≥ f(x)} is a convex set. Its closure Gf
is a closed convex set, and (x0, f(x0)) is on the boundary of Gf . By the previous
theorem, there exists a non-zero vector n = (v, c) such that

v · (x− x0) + c(y − f(x0)) ≥ 0 for all (x, y) ∈ Gf .

Since x0 ∈ K in an interior point of K, we claim that c 6= 0. For, otherwise, we
would have

v · (x− x0) ≥ 0 for all x ∈ K,

which would force v = 0.
Next we claim that c > 0. This is because (x0, f(x0) + t) ∈ Gf for any t > 0,

and the above inequality then forces c > 0. Now it follows that for any x ∈ K,
applying the above inequality for y = f(x) implies that

f(x) ≥ f(x0)− c−1v · (x− x0),

which demonstrates a supporting hyperplane to the graph of f at (x0, f(x0)). �

It is possible to prove this theorem directly using the properties of a convex
function, along the lines of proof for the one dimensional case. You should try to
construct such a proof, at least for the two dimensional case.

Checkpoint 6.10 The tangent plane of a convex function at a differen-
tiable point is a supporting plane to the graph of the function. Further-
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more, if the point is in the interior of the domain, then it is the unique
supporting plane.
Hint. If f denotes the function, and Df(x0) denotes the gradient of f at x0, it
may be geometrically easier to consider

g(x) = f(x)− f(x0)−Df(x0) · (x− x0),

which is also convex.
We close this subsection by discussing a more subtle application of convex/

concave functions in an optimization problem.

Example 6.11 A different approach to Example 1.11 using concavity.

We introduce the new variables ui = a2
i , vi = b2i , and reformulate the problem

in Example 1.11 in terms of ui, vi. The quotient there now becomes∑
i

√
uivi√

(
∑
i ui)(

∑
i ui)

,

and the constraints become

a2 ≤ ui ≤ A2; b2 ≤ vi ≤ A2.

Our argument will be based on the following observation.

1.
√
uv is a concave function in the first quadrant.

2. For any (u, v) in the rectangle [a2, A2]× [b2, B2], there exists unique
(p, q) with p, q ≥ 0, such that

(u, v) = p(a2, B2) + q(A2, b2).

3. In the set up above, we have
√
uv ≥ paB + qAb,

with equality iff (u, v) equals (a2, B2), or (A2, b2), equivalently, (p, q) =
(1, 0), or (0, 1).

For the second item, note that for any (u, v) in the rectangle [a2, A2]×
[b2, B2], there exists a unique s > 0, such that s(u, v) lies on the diagonal
from (a2, B2) to (A2, b2), which implies the existence of a unique 0 ≤ t ≤ 1
such that

s(u, v) = (1− t)(a2, B2) + t(A2, b2).

This then implies our desired relation.
We remark that in proving the last item above, only the (strict) concavity

of
√
uv along the diagonal from (a2, B2) to (A2, b2) is used. It is this last

item that makes it possible to bound
∑
i

√
uivi from below.

Now for each (ui, vi), we find (pi, qi) according to the second item above

(ui, vi) = pi(a2, B2) + qi(A2, b2),

then we can bound the quotient as∑
i

√
uivi√

(
∑
i ui)(

∑
i ui)

≥
∑
i(piaB + qiAb)√

[
∑
i(pia2 + qiA2)][

∑
i(piB2 + qib2)]

.
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Setting p =
∑
i pi, q =

∑
i qi, α = A/a, β = B/b, and after dividing the

quotient on the right hand above by ab, it becomes

pβ + qα√
(p+ qα2)(pβ2 + q)

,

and now the task is to find the infimum of this quotient when p, q ≥ 0 , and
identify when equality can occur. This calculus problem was formulated in
Checkpoint 1.12, and the answer is 2

√
αβ

αβ+1 .

Checkpoint 6.12 Prove a lower bound of
∫ x2
x1

f(x)g(x) dx√(∫ x2
x1

f(x)2 dx

)(∫ x2
x1

g(x)2 dx

) when

f(x), g(x) are subject to positive upper and lower bounds. This problem is
from #93 in Part II, Chapter 2 of Polya and Szegö’s classic “Problems and Theorems
in Analysis I”

Let a,A, b, B be positive numbers such that a < A, b < B. If the two functions
f(x) and g(x) are integrable over the interval [x1, x2], and a ≤ f(x) ≤ A, b ≤ g(x) ≤
B on the interval. Then∫ x2

x1
f(x)g(x) dx√(∫ x2

x1
f(x)2 dx

)(∫ x2
x1
g(x)2 dx

) ≥ 2√
AB
ab +

√
ab
AB

.

7 Some Comments on Calculus of Several Variables,
including Green’s Theorem, Divergence Theorem,
and Stokes’ Theorem

Professor Ocone’s notes contain some review on the Jacobian of a differentiable map
of several variables, and the inverse/implicit function theorems in that setting. We
will only make some comments about integrals involving several variables.

Multiple (Riemann) integrals can be defined in a similar fashion as the Riemann
integrals in the one variable case. Instead of defining integrals only on closed
intervals in the one variable case, there are often needs to define integrals over
more general sets in multi-dimensions. However, complications arise in extending to
multi-dimensions the concept of partitions over general sets; there are even bounded
open sets U in Rn for which

∫
U
f(x)dx is not well defined in this fashion for f that

are continuous over the closure Ū of U .
However, it is not too hard to establish the following two facts:

• If f(x) is continuous and has compact support in Rn, then the Riemann
integral

∫
Rn f(x)dx is well defined.

• Suppose U is a bounded open set in Rn such that its boundary ∂U has a
finite cover ∪Vj , and each Vj ∩ ∂U is modeled as the differentiable image of
an open set in Rk for some k ≤ n− 1, namely, Vj ∩ ∂U = φj(Wj), where Wj

is a bounded open set in Rk, and φj is Lipschitz over the closure W̄j of Wj .
Then for any f(x) which is continuous over the closure Ū of U , the Riemann
integral

∫
U
f(x)dx is well defined.

Although the cases covered above contain most cases that we normally encounter,
Riemann integral has the obvious defect that it is not well defined for a wide enough
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class of functions and sets; in particular, reasonable limits of integrable functions
may not be integrable. This lack of completeness of integrable functions is a
major drawback of Riemann integrals: we would rather keep the completeness, but
accept that integrals do not have to be defined in the Riemann fashion. Lebesgue’s
integration theory was developed to overcome this difficulty, and will be the focus
of the first semester’s graduate analysis course.

However, there are several aspects of the integration theory in the Euclidean
space and its submanifolds which can not be swept under the general framework of
Lebesgue’s integration theory. These include

• Change of variables formula for integrals in several variables.

• Integrals defined on submanifolds in the Euclidean space (such as hyper
surfaces).

• Integration of vector fields and more generally differential forms on submani-
folds in the Euclidean space (or more generally on abstract manifolds), and
relations between such integrals as given by Green’s theorem, Divergence
theorem, and Stokes’ theorem.

I have two separate documents discussing aspects of the above topics, one is named
CurDivergence.pdf1, another named ChangeofVar.pdf2. You may consult these
documents if you need a review on certain topics. Here we will discuss some
examples involving these aspects.

Example 7.1 (January 2016 WQ).

Consider the vector field F(x, y, z) = (−4xz3, 0, z4) in R3 and let S be the
(compact) portion of the paraboloid z = x2 + y2 having z ≤ 9. Use Stokes’
theorem to evaluate ∫

S

F(x, y, z) · dS,

where dS is the vector surface element corresponding to the upward pointing
normal vector.
Solution. This integral could have been evaluated directly using the def-
inition. One first recognizes that S can be parametrized as a graph over
{(x, y) : x2 + y2 ≤ 9}, so∫

S

F(x, y, z) · dS =
∫
x2+y2≤9

F(x, y, z)ů(−zx,−zy, 1) dx dy,

where we have used

(−zx,−zy, 1)√
z2
x + z2

y + 1
as the unit normal of S,

and
√
z2
x + z2

y + 1 dx dy as the area element of S.
However, the instruction asks for using Stokes’ theorem, which suggests

that we need to recognize F(x, y, z) to be equal to or related to the curl of
some vector field. Using the differential form formulation for such integrals,
we associate F(x, y, z) with the differential form

F1(x, y, z) dy ∧ dz + F2(x, y, z) dz ∧ dx+ F3(x, y, z) dx ∧ dy

1https://rutgers.box.com/s/qhg3yu17o4tka6xikxwo1xshp0nm5b2r
2https://rutgers.box.com/s/ur2mhmgqq7f61jll1qw6pz3z72g7b9ub
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=− 4xz3 dy ∧ dz + z4 dx ∧ dy
=d(xz4) ∧ dy = d(xz4 dy),

so ∫
S

F(x, y, z) · dS =
∫
S

d(xz4 dy) =
∫
∂S

xz4 dy,

by the Stokes’ theorem. On ∂S, z = 9, so∫
∂S

xz4 dy = 94
∫
∂S

xdy = 9432π,

where we have used
∫
∂S
xdy to be the area enclosed by the circle x2 + y2 = 9

(This can be seen by Stokes’ theorem again:
∫
∂S
x dy =

∫
x2+y2≤9 dx ∧ dy =

32π).
One could also apply the Divergence Theorem to evaluate this integral by

recognizing the S, together with the top T := {(x, y, 9) : x2 + y2 ≤ 9 encloses
a solid region V , and choosing (0, 0, 1) as the unit normal to T exterior to
V , we see that∫

T

F · (0, 0, 1) dx dy −
∫
S

F(x, y, z) · dS =
∫
V

div F dx dy dz.

But div F = (−4xz3)x + 0 + (z4)z = 0, so∫
S

F(x, y, z) · dS =
∫
T

F · (0, 0, 1) dx dy =
∫
T

z4 dx dy = 9432π.

Checkpoint 7.2 Let ~F denote the vector field ~F (~x) = (x, y,−2z) in R3, and SR
denote the upper hemisphere

{
(x, y, z) : x2 + y2 + z2 = R2, z ≥ 0

}
. Evaluate the

integral ∫
SR

~F (~x) · ~n(~x) dσ(~x),

where ~n(~x) denotes the unit normal vector to SR at ~x ∈ SR, pointing upward, and
dσ(~x) denotes the area element of SR.

Example 7.3 (January 2007 WQ).

Suppose that Ω is a bounded domain in R3 whose boundary, ∂Ω, is a
C1 hypersurface. Let ν(y) = (ν1(y), ν2(y), ν3(y)) denote the unit exterior
normal vector to ∂Ω at y ∈ ∂Ω, and dσ(y) denote the area form for ∂Ω.
(a). Prove that ∫

∂Ω

y · ν(y)
|y|3 dσ(y) =

{
0, if 0 ∈ R3 \ Ω;
4π, if 0 ∈ Ω.

(b). Fix a domain Ω satisfying the assumptions above, define for x ∈ R3

Vi(x) =
∫
∂Ω
|x− y|−1νi(y) dσ(y).

Prove that
3∑
i=1

∂Vi(x)
∂xi =

{
0, if x ∈ R3 \ Ω;
4π, if x ∈ Ω.
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Solution. The domain Ω is not given explicitly, so we should not expect
to evaluate the integral directly. Since ∂Ω is a closed surface, the integral
formulated is in a form that the Divergence Theorem may be applicable. The
vector field on ∂Ω, y

|y|3 has a smooth extension inside of Ω when 0 ∈ R3 \ Ω,
in which case a direct application of the Divergence Theorem gives∫

∂Ω

y · ν(y)
|y|3 dσ(y) =

∫
Ω

div
(

y
|y|3

)
dy = 0,

as div
(

y
|y|3

)
dy = 0.

When 0 ∈ Ω, the extension inside y
|y|3 becomes singular at y = 0, so we

can’t apply the Divergence Theorem directly inside of Ω. We need to take a
small ε > 0 so that the ball Bε(0) ⊂ Ω, and we can apply the Divergence
Theorem on Ω \Bε(0) to get(∫

∂Ω
−
∫
∂Bε(0)

)
y · ν(y)
|y|3 dσ(y)

=
∫

Ω\Bε(0)
div

(
y
|y|3

)
dy = 0.

Using |y| = ε on ∂Bε(0), we get∫
∂Bε(0)

y · ν(y)
|y|3 dσ(y) =

∫
∂Bε(0)

ε−2 dσ(y) = 4π,

and conclude that ∫
∂Ω

y · ν(y)
|y|3 dσ(y) = 4π,

in this case.

Example 7.4 (January 2019 WQ).

Let (P (x, y), Q(x, y)) be a C1 vectorfield in R2 \ {(0, 0)}. It is said to be
curl free in R2 \ {(0, 0)} if ∂xQ(x, y)− ∂yP (x, y) = 0 there; it is said to have
a potential function in R2 \ {(0, 0)} if there exists a C2 function φ(x, y) in
that region such that (P (x, y), Q(x, y)) = (∂xφ(x, y), ∂yφ(x, y)) there.
(a). Prove that (P (x, y), Q(x, y)) is curl free in R2 \ {(0, 0)} iff for any

(x0, y0) ∈ R2 \{(0, 0)},
∫
∂Dr(x0,y0) P (x, y) dx+Q(x, y) dy = 0 for all0 <

r <
√
x2

0 + y2
0 , where Dr(x0, y0) is the disc of radius r centered at

(x0, y0).

(b). Prove that for any curl free vectorfield (P (x, y), Q(x, y)) in R2\{(0, 0)},
there exists a unique c ∈ R such that

(P (x, y), Q(x, y))− c(− y

x2 + y2 ,
x

x2 + y2 )

has a potential function in R2 \ {(0, 0)}.

Solution. (a). Applying Green’s Theorem, we have∫
∂Dr(x0,y0)

P (x, y) dx+Q(x, y) dy =
∫ ∫

Dr(x0,y0)
(∂xQ(x, y)− ∂yP (x, y)) dx dy.
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The conclusion follows from this.
(b). First, note that, for any 0 < r1 < r2,∫

∂Dr2 (0,0)
P (x, y) dx+Q(x, y) dy −

∫
∂Dr1 (0,0)

P (x, y) dx+Q(x, y) dy

=
∫ ∫

r2
1≤x2+y2≤r2

2

(∂xQ(x, y)− ∂yP (x, y)) dx dy = 0,

so
∫
∂Dr(0,0) P (x, y) dx+Q(x, y) dy = 2πc is independent of 0 < r for some

constant c ∈ R. Note also that (− y
x2+y2 ,

x
x2+y2 ) is also curl free in R2\{(0, 0)},

and ∫
∂Dr(0,0)

(
− ydx

x2 + y2 + xdy

x2 + y2

)
= 2π

is also independent of 0 < r. Setting

(P̂ (x, y), Q̂(x, y)) = (P (x, y), Q(x, y))− c(− y

x2 + y2 ,
x

x2 + y2 ),

then
∫
∂Dr(0,0) P̂ (x, y) dx + Q̂(x, y) dy = 0 for all 0 < r. In the simply

connected region U ⊂ R2 \ {(0, 0)} by deleting the negative x-axis, by
Poincarè Lemma, (P̂ (x, y), Q̂(x, y)) has a well defined potential function
φ(x, y), and

φ(x, y) =
∫
C(x,y)

P̂ (x, y) dx+ Q̂(x, y) dy,

where C(x,y) is the arc of circle from (
√
x2 + y2, 0) to (x, y). Due to the

property that
∫
∂Dr(0,0) P̂ (x, y) dx + Q̂(x, y) dy = 0 for all 0 < r, φ(x, y)

extends to be a continuous function on R2 \ {(0, 0)}. To see that the
extended φ is C2 in a neighborhood of any point (x, 0) along the negative
x-axis, note that each such point has a small disc D ⊂ R2 \ {(0, 0)} on which
(P̂ (x, y), Q̂(x, y)) has a well defined C2 potential function ψ. Since ψ and φ
differ by a constant in this disc, it follows that φ is also C2 in this disc.
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